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Automated quantification of 
protein periodic nanostructures in 
fluorescence nanoscopy images: 
abundance and regularity of 
neuronal spectrin membrane-
associated skeleton
Federico M. Barabas1,2, Luciano A. Masullo   1,2, Martín D. Bordenave1,2, Sebastián A. Giusti3, 
Nicolás Unsain4,5, Damián Refojo3, Alfredo Cáceres4,5 & Fernando D. Stefani1,2

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein 
structures in their natural environment, as well as the unveiling of previously unknown protein periodic 
structures. Deciphering the biological functions of such protein nanostructures requires systematic and 
quantitative analysis of large number of images under different experimental conditions and specific 
stimuli. Here we present a method and an open source software for the automated quantification of 
protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the 
abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal 
neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis 
reveals that both the abundance and the regularity of the MPS increase over time and reach maximum 
plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides 
indication of dynamical assembly and disassembly of the MPS.

The advent of fluorescence nanoscopy techniques like Stimulated Emission Depletion microscopy (STED)1,2, 
Stochastic Optical Reconstruction Microscopy (STORM)3 and Photoactivatable Localization Microscopy 
(PALM)4, meant a revolution in the field of fluorescence-based imaging. Conceptually, they provide a spatial 
resolution only limited by the size of the fluorescent marker, while keeping the advantages of traditional fluores-
cence microscopy such as low invasiveness and high sensitivity and specificity. In practice, spatial resolution in 
biological samples has been limited by the photostability of fluorophores and the overall size of immune-labels 
to around 20 nm5,6. Remarkably, a recent breakthrough concept for the localization of single molecules using the 
minimum number of photons (MINFLUX) has the capacity of delivering routinely super-resolved images with 
1 nm resolution7, which constitutes the ultimate physically meaningful limit for an optical technique. For these 
reasons, fluorescence nanoscopy is on its way to becoming the imaging standard for cellular biology.
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Proteins frequently function in the form of regular or periodic, self-assembled supramolecular structures8, 
with typical sizes in the range of tens of nanometers. Super-resolution fluorescence imaging enables the visualiza-
tion of such protein periodic structures in their natural environment, as demonstrated for example in the nuclear 
pore complex5,9,10. Furthermore, previously unknown periodic protein structures are being discovered by fluo-
rescence nanoscopy imaging. A remarkable example is the unveiling of an actin/spectrin membrane-associated 
periodic skeleton (MPS) first observed in axons of hippocampal neurons in culture by Zhuang and colleagues6.

The MPS is composed of alternating ring-like structures of actin and spectrin, which underlie the circumfer-
ence of axons and are repeated along the axonal shafts with a periodicity of around 190 nm. MPS are also present 
in dendrites and in cellular projections of mature oligodendrocites11. The high prevalence of this structure points 
towards functional or structural relevance in neurite development and physiology11–13. The MPS emerges dur-
ing early stages of neuronal maturation. It appears after 2 days in vitro (DIV) in proximal regions of axons and 
then extends towards distal ends to become ubiquitous at approximately 7 DIV13. So far, quantitative analysis of 
the MPS has been performed by autocorrelation analysis with manual selection of regions-of-interest aiming to 
determine the “degree of spectrin periodicity” in different segments of axons13, for comparing the MPSs of axons 
and dendrites12 and for assessing the periodicity of bidimensional protein structures11. However, this approach 
has severe limitations. First, the regions of interest are handpicked with the risk of introducing subjective bias. 
Secondly, because such a task is highly time-consuming, only a relatively small number of neurons can be ana-
lyzed, limiting the statistical relevance of results. Quantitative studies of the MPS call for specific and automated 
image analysis tools that overcome these two major drawbacks, enabling the comparison between measurements 
obtained in different laboratories as well as the identification of subtle, but probably physiologically relevant 
effects.

Furthermore, the function of the MPS remains a matter of speculation and a significant amount of work is still 
necessary before a full picture is completed. It is yet unknown, for example, how the actin/spectrin-MPS of axons 
responds to physiological (i.e. electrical activity and neurotrophic factors) or pathological (i.e. excitotoxicity, 
hypoxia, inflammatory) stimuli. In general, advancing from observation and description, to deciphering mecha-
nisms and function, requires systematic and quantitative studies involving larger numbers of images taken under 
varying experimental conditions and biological stimuli. This, even more, calls for reliable and automated image 
analysis tools for the automated quantification of periodic protein structures.

Here, we present a method and its implementation as an open-source image analysis tool for the automated 
quantification of the abundance and quality of protein periodic structures in images of biological samples. Its 
reliable performance is demonstrated by a quantitative examination of both STED and STORM super-resolved 
images of the MPS in spectrin-stained cultured hippocampal neurons at different developmental time points  
in vitro. The code, algorithms and main user functions are described and made available in a public repository.

Results
Working principle and steps of the analysis.  Given a known periodic structure, the analysis consists of 
interrogating systematically the presence of the structure in images, by comparing subregions of the images to 
a reference pattern. As output, it provides the abundance and spatial distribution of the periodic structures, as 
well as a measure of the similarity to the reference pattern. We apply the methodology to the quantification of the 
spectrin MPS in cultured hippocampal neurons (Fig. 1a–c), which is clearly visible in both STED and STORM 
images of mature neurons (STED example in Fig. 1d). Below we describe each step of the analysis.

Definition of the reference pattern.  The first step in the analysis is the definition of the reference periodic pattern 
to look for in the images. Since the final spatial resolution and image quality may vary for different nanoscopy 
methods, two reference patterns must be defined in our case, one for the analysis of STED images and another 
one for the analysis of STORM images. For this purpose, we computed the average of 10 representative profiles of 
the MPS as measured by STED and STORM (Fig. 1e,f) and searched for a suitable analytical function to represent 
it. The average MPS profiles of both STED and STORM images were satisfactorily fitted by the following function 
(Fig. 1e,f):
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where A, B, TMPS and ϕ represent the baseline, amplitude, period and phase of the MPS. The power P modulates 
the sharpness of the MPS features. We found best fits using =P 6 and =T 190MPS  nm.

Detection of biological material.  In order to analyze only meaningful regions of the nanoscopy images, an auxil-
iary image is generated where each pixel is classified as containing biological (neuronal) material or not. This is 
achieved by two steps, each one controlled by one user-defined parameter. First, a Gaussian filter of width σGF is 
applied to the STED or STORM images in order to smooth out super-resolved features and small bright spots 
usually present in the cultures that should be considered as background. Then, the regions of the image contain-
ing labeled neuronal material are identified using an intensity discrimination threshold ITh. All pixels with inten-
sity above this threshold are considered as part of a neuron. A binary image indicating neuron presence at each 
pixel is built. We call it the neuron discrimination image (Fig. 2a).

Values of σGF  between 100 and 150 nm, and intensity thresholds ITh equivalent to 0.5–0.8 standard deviations 
above the average image intensity allowed to effectively identify the neuronal material on both STED and STORM 
images.
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Image segmentation.  Next, the image is segmented into subregions where the presence of the MPS will be inter-
rogated locally. This is done in squared sub-regions whose size Lsr  can be defined by the user. In principle, a 
smaller subregion size is desirable to attain a higher spatial resolution of the analysis. But in order to allow a reli-
able identification of the MPS, the subregion size must be kept large enough so as to accommodate a few periods. 
We found a value of Lsr = 1 μm suitable for the 190 nm period of the MPS.

Determination of axon/dendrite orientation.  The algorithm must search for the presence of the MPS with a pri-
ori unknown direction θ and phase ϕ, inside axons and dendrites, which are themselves directional structures. 
The automated search for the MPS is facilitated by estimating first the axon/dendrite direction. This is achieved 
by detecting linear intensity edges inside each subregion of the neuron discrimination image using a progressive 
probabilistic Hough transform algorithm14 (Fig. 2b,c). Then, a cluster analysis of the directions of the detected 
intensity edges is performed. If there is one main cluster with more than 50% of the occurrences, then the direc-
tion of the axon/dendrite θN  is estimated as the mean value of that cluster. If no cluster fulfills this condition, that 
particular subregion is discarded from the subsequent analysis because a proper fit of the MPS is not possible 
when the axon/dendrite has a large curvature or more than one axon/dendrite is present. Another reason to 
choose a small subregion size in the case of the MPS is to keep the fraction of such subregions to a minimum, 
particularly when imaging high-density cultures where axons/dendrites frequently cross each other.

Interrogating the presence of the target periodic structure. The presence of the MPS is assessed in each subregion 
of the super-resolved image, by computing the pixel-by-pixel two-dimensional Pearson correlation coefficient 
(RP) with the reference pattern, only within the neuronal area:
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where Imn and Pmn are the intensities of the pixel with coordinates (m, n) of the subregion image and the reference 
pattern, respectively. I  and P  are the intensity averages of the image and the pattern, respectively. The coeffi-
cient is computed only over pixels corresponding to neuronal mass, determined from the neuron discrimination 
image. RP takes values between 0, for totally uncorrelated images, and 1 when both images are identical up to an 
intensity scaling factor. These extreme, ideal values are never reached in practice, but a clear maximum of RP is 
expected if the MPS is present and the reference pattern has the correct orientation θ and phase ϕ. Since the ori-
entation and phase of the MPS are a priori unknown, RP must be computed for each sub-region using all possible 
combinations of (θ, ϕ).

Figure 1.  Hippocampal neurons cultured at 21 days in vitro fixed and immunostained against spectrin with 
ATTO 647 N. (a–c) Confocal images. (d) STED image of the area shown in (c). The sub-diffraction resolution 
of STED reveals the presence of MPS. (e, f) Representative profiles of the MPS obtained averaging 10 profiles of 
STED (e) and STORM (f) images. Both average profiles are satisfactorily fit using equation (1), with P = 6 and 
TMPS = 190 nm.
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Taking advantage of the pre-analysis of axon/dendrite orientation, and the fact that the MPS is structured 
perpendicularly to the axon/dendrite axis, θ was scanned over a range of ±20° around the predetermined axon/
dendrite direction θN  (Fig. 2d). This was achieved by applying a rotation of θ to the reference pattern function 
(eq. 1). The phase ϕ was scanned over its full range of 2 π. The maximum value of ϕR ( )P  is plotted as a function of 
θ in Fig. 2d for the example subregions of Fig. 2b,c. The method is effective to detect the presence of MPS. 
Subregions where the MPS is present show a clear maximum RP near θN , while subregions absent of MPS do not. 
(Fig. 2d). The maximum value of RP(θ, ϕ) obtained is stored as characteristic of the subregion.

Test of performance and calibration for the automated detection.  Figure 3a shows an image com-
posed of 100 STORM images, each one 1 × 1 μm2 and manually selected so that the 50 images at the top clearly 
exhibit the spectrin MPS, while the 50 images at the bottom do not. The result of the analysis of this test image is 
shown in Fig. 3b, where the maximum RP of each subregion is shown with a color scale. Clearly, the algorithm 
effectively recognizes the presence of the MPS; the two sets of images are discernable with a threshold value of RP 
between 0.18 and 0.24.

Figure 2.  Workflow of the automated quantification of periodic structures exemplified with the MPS of a 
cultured hippocampal neuron imaged by STORM. (a) First, the regions containing neuronal material are 
identified using a suitable Gaussian filter and intensity threshold on the nanoscopy image (neuron 
discrimination). Then, the image is divided in subregions of predefined size (1 μm × 1 μm in this case) which 
are then catalogued as containing or not neuronal material. (b,c) The direction of the axon/dendrite θN  is 
determined on each subregion. (d) The two-dimensional Pearson correlation coefficient RP is computed 
between each subregion and the reference pattern, within the area of neuronal material and for a range of 
directions θ and phases ϕ of the reference pattern. Here, the maximum value of ϕR ( )P  vs. θ is shown for the 
subregions shown in (b) and (c).
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Setting an optimum threshold value of RP for the automated detection of the MPS requires an analysis of the 
distributions of maximum RP obtained from a large number of subregions with and without MPS, under the dif-
ferent imaging conditions. Figure 3c,d show the distributions of maximum RP obtained from the analysis of sub-
regions handpicked with and without spectrin MPS, from STORM and STED images. The distributions are all 
nearly Gaussian, with slightly different averages (RP) and standard deviations (σ) for STED and STORM. In this 
particular case, STORM delivers a slightly better discrimination of the two populations, probably due to its 
slightly superior resolution, a more favorable combination of primary and secondary immunolabeling and fluoro-
phore performance. On the other hand, STED acquisitions are in general considerably faster than STORM (~s vs 
~min), hence making STED imaging more convenient for acquiring large number of images in order to perform 
statistical analysis.

From the analysis of these distributions it is possible to set a threshold value of RP to detect the presence of the 
MPS with a predefined probability of false positives or false negatives. In this study we chose to limit the proba-
bility of false detections of the MPS to 1%. Therefore, we used a threshold at σ= + .R R 2 5P P  of the distributions 
in the absence of MPS, which corresponds to = .R 0 2P  for STORM and = .R 0 17P  for STED images. These thresh-
olds lead to 0.35% of false negatives for STORM, 4% of false negatives for STED imaging.

It is also interesting to probe the robustness of the method to detect the MPS. For this purpose we performed 
the analysis on simulated images where the immunolabeling density and unspecific labeling were adjusted to 

Figure 3.  Performance of the automated detection algorithm to discern the presence of the MPS. (a) Image 
composed of 100 handpicked subregions (1 μm × 1μm each) of STORM images of axons and dendrites. The 50 
subregions on the top half were selected for evidently showing the MPS, whereas the 50 on the bottom half were 
selected for the absence of MPS. (b) Image showing the maximum RP obtained for each subregion of (a) as the 
intensity values. (c,d) Distributions of RP obtained from subregions not showing MPS and clearly showing MPS, 
handpicked from STORM (c) and STED (d) images. The vertical dotted lines show the value σ+ .R 2 5P  for the 
distributions of RP of subregions without MPS. (e) Dependency of RP on signal to background ratio (SBR) 
obtained from the analysis of simulated images. Error bars indicate ± one standard deviation of 10 simulations. 
The shaded green area shows the range of SBR typical of STED and STORM images.
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reproduce the experimental images, and the signal to background ratio (SBR) was varied in a controlled manner. 
Figure 3e shows the average value of RP obtained from the analysis of simulated images with different SBR. Each 
data point corresponds to the average of 10 simulations, and the error bars indicate one standard deviation. The 
SBR of our STED and STORM images ranged between 3 and 10. Such variations in SBR lead to an uncertainty of 
10% in RP.

Automated batch analysis.  Once the threshold is chosen, batch analysis of a large number of images 
obtained under identical experimental conditions can be performed. Figure 4a shows example STORM and 
STED images of the spectrin MPS of hippocampal neurons of 2, 8 and 28 DIVs, alongside with their correspond-
ing distributions of RP. At DIV 2 the distributions of RP obtained from the STED and STORM images are practi-
cally identical to the distributions of RP values obtained from hand-picked images lacking the MPS. As the DIVs 
progress, the MPS becomes more evident and the fraction of subregions displaying values of RP above threshold 
increases. Figure 4b shows the quantification of the abundance of the spectrin MPS in STED and STORM images 
of hippocampal neurons from 2 to 40 DIV, computed as the fraction of subregions with RP above threshold. Both 
STED and STORM imaging reveal practically identical evolutions of the abundance of the spectrin MPS as a 
function of the DIV, reaching a maximum plateau after 14 DIV. Sigmoidal fits retrieve half-height times of 8.6 
DIV for STORM and 10.2 DIV for STED.

Remarkably, the distributions of RP  are not bimodal with mean values corresponding to the presence and 
absence of MPS. Not even for stages where the MPS has been fully established like DIV 28 or DIV 40 (e.g. Fig. 4a). 
This shows that the regularity of the MPS increases during neuronal development. The average value of RP of all 
subregions above the threshold serves as a measure of the similarity of the MPS to the reference, ideal pattern, i.e. 
a measure of the MPS regularity. Figure 4c shows the evolution of the average RP above threshold as a function of 

Figure 4.  Evolution of the MPS vs. DIV. (a) Example STORM and STED images of the MPS neurons of 2, 8, 
and 28 DIVs, and the corresponding distributions of RP. The vertical line indicates the threshold used for the 
discrimination of the MPS. (b) Fraction of subregions of STED and STORM images showing the MPS as a 
function of DIV. Lines are sigmoidal fits retrieving half-height times of 8.6 DIV (STORM) and 10.2 DIV 
(STED). (c) Average value of RP above threshold for STED and STORM images of neurons for DIVs from 2 to 
40. Lines are exponential fits aiming only to reveal the increasing trend.
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DIV. In both STORM and STED images the regularity of the MPS increases with DIV, reaching a plateau after 14 
DIV. The plateau value of the STORM images was found to be 20% higher than for the STED images. Both plateau 
values are considerably lower than the corresponding average of handpicked images showing the MPS. The fact 
that even after complete neuronal maturation, the MPS is not present in all axonal or dendrite segments, nor is 
fully regular, is a strong indication of an underlying dynamical assembly and disassembly of the structure.

Open source code and executable programs.  The source code, Python executable programs with 
graphical user interfaces, and detailed documentation are maintained at a public repository in https://github.
com/cibion-conicet/Gollum. The software set is entirely written in Python 3 with Qt as the graphical user inter-
face (GUI) framework, making it cross-platform. It is composed of two Python executable programs which make 
use of the same underlying algorithms but serve different purposes: Gollum and Gollum Developer.

Before performing a batch analysis of a large number of images, Gollum Developer (Fig. 5) is used for setting 
the analysis parameters so that the target periodic structure is identified reliably. These parameters are: i) pixel size 
of STED and STORM images, ii) the neuron discrimination settings σGF and ITh  iii) the sub-region size Lsr, iv) the 
period of the MPS, which in our case was maintained fixed at 190 mn, v) the sampling range and step for in θ and 
ϕ. Some of these parameters can be modified directly from the GUI for faster testing (Fig. 5).

Naturally, the reference periodic pattern can be arbitrarily defined to search for different biological structures, 
with linear or cyclic periodicity. We have used an analytical expression for the reference pattern (eq. 1), but it is 
also possible to use reference patterns defined numerically. The parameters displayed in the GUI can be modified 
as well according to experimental needs or user preference.

The GUI also shows the loaded super-resolved image in the upper left view, overlaid with the sub-region divi-
sions, in this case on a square grid of 1 × 1 µm2 unit cells. Individual subregions can be selected with mouse or 
keyboard, and analyzed. The selected subregion is highlighted in the original image and displayed in larger size 
on an individual graph (lower-left panel). The “Run correlation analysis” button triggers the analysis of the 
selected subregion. The detected linear intensity edges are shown. In the upper right, the maximum value of ϕR ( )P  
is plotted as a function of θ over the full range. Knowing that the MPS structure evolves along the axon/dendrite 
orientation, θ can be scanned over a smaller range centered at the estimated axon/dendrite direction, defined by 
the used and shown shaded in blue. The maximum Pearson value within this range is taken as the characteristic 
value of the subregion. In the lower right view, the data is overlaid with the reference pattern for the combination 
of ϕ and θ that maximizes the Pearson value, so that the user can verify the effectivity of the identification. In this 
way, the user can test the reliability of analysis on hand-picked subregions and optimize the analysis parameters, 
including the definition of the reference pattern.

Once the analysis parameters are set, the user must switch to Gollum executable program, which performs 
automatic bulk processing of images. The detailed usage guidelines for Gollum are described in the documenta-
tion. The final output is the list of ϕR ( )P  values of all neuronal subregions, including the fraction of subregions 
where the periodical structure was positively identified. Another useful output is a binary image with value zero 
in all pixels or subregions absent of MPS, and value 1 in all pixels or subregions where MPS was detected. The 
analysis of 15 images, 1500 subregions, takes ~ 120 s running on an Intel i5–4440 CPU.

Figure 5.  Gollum Developer graphical user interface (GUI). The parameters of the algorithm can be selected 
and each part of it can be run individually (left). A live display of the image and of the selected regions (right) 
allows to explore different parameters and to tune and identify optimal combinations for a given experiment.

https://github.com/cibion-conicet/Gollum
https://github.com/cibion-conicet/Gollum
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MS Windows executable versions of Gollum and Gollum Developer, with all necessary Python libraries 
embedded are available upon request.

Discussion
We have presented an automated method, and its corresponding open source software, for the quantification of 
periodic protein structures in fluorescence nanoscopy images. It consists of analyzing subregions of the original 
image, testing the presence of a predefined target periodic pattern by computing the two-dimensional Pearson 
correlation. After calibration using handpicked subregions, batch analysis can be performed cataloguing each 
subregion for the presence or absence of the target periodic structure. Furthermore, the quality of the observed 
pattern can be addressed by quantitative analysis of the correlation coefficient.

As demonstration example, we have quantified the abundance and regularity of the spectrin membrane-associated 
periodic skeleton (MPS) of cultured hippocampal neurons during development, from 2 to 40 DIV, imaged by both 
coordinate stochastic (STORM) and coordinate targeted (STED) nanoscopy. The analysis of STED and STORM 
images retrieves consistent results, revealing a similar evolution of the MPS. The abundance and the regularity of the 
MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of 
correlation coefficients indicate the presence of MPS of variable regularity. Also, even after full maturation, the MPS 
is present only in 50% of the axon/dendrite volume. Altogether these results are a strong indications of an underlying 
dynamical assembly and disassembly of the MPS.

Although it was not used in this study, the image segmentation of the method naturally offers the possibility of 
analyzing the presence and quality of periodic structures as a function of position. The spatial resolution of such 
analysis will depend on the particular characteristics of the periodic pattern; in this case it was 1 μm.

Finally, it is important to note that the method (and its open-source code) is highly versatile. It is applicable 
to practically any periodic structure simply using a suitable reference pattern, including cyclic structures such as 
the nuclear pore complex. Supramolecular protein structures typically have well defined geometries; the MPS has 
been found to have a period of 190 nm ubiquitously in practically all types of neurons11,12. For this reason we have 
chosen to keep fixed any fitting parameter related to the periodic structure, and scanned only orientational and 
phase parameters to interrogate the presence and quality of the structures. Nevertheless, it is straightforward to 
modify the algorithm to scan additional parameters, including characteristics of the protein periodic structure.

As fluorescence nanoscopy becomes the imaging standard in cellular biology, quantitative and automated 
analysis tools will become necessary to perform statistical studies of images obtained under different conditions, 
aiming to decipher the function biological nanostructures. Such tools are necessary not only for the efficient 
analysis of large number of images, but also to enable the quantitative comparison and complementation of data 
obtained in different laboratories. We believe that our method and future derivations of it will be frequently used 
for functional studies of periodic protein structures visualized in their natural environment through fluorescence 
nanoscopy.

Methods
Primary hippocampal neuronal cultures.  CD1 mice were provided by our Specific Pathogen Free 
Animal Facility. All procedures were approved by National Department of Animal Care and Health (SENASA, 
Argentina) and were in compliance with the general guidelines of the National Institute of Health (NIH, USA). 
Primary hippocampal neurons were prepared as previously described15,16. Briefly, hippocampi from CD1 mouse 
embryos (E16.5–17.5) were dissected and a neuronal suspension was prepared through Trypsin digestion 
and mechanical disruption of the tissue. Neurons were plated at a density of 125 cells/mm2 and maintained in 
Neurobasal-A medium with 2% B27 and 0.5 mMGlutaMAX-I (Gibco) at 37 °C and 5% CO2.

Immunofluorescence.  Neurons were simultaneously fixed and permeabilized in PHEM buffer (60 mM 
PIPES, 25 mM HEPES, 5 mM EGTA, 1 mM MgCl2) containing 0.25% glutaraldehyde, 3.7% paraformaldehyde, 
3.7% sucrose, and 0.1% Triton X-100, for 20 min at RT. Samples were quenched with 0.1 M glycine in PBS for 
15 min and blocked for 1 h in 5% BSA solution in PBS containing 0.01% Triton X-100. Purified Mouse Anti- 
β-Spectrin II primary antibody (Clone 42/B-Spectrin II, BD Biosciences) was diluted 1:400 in blocking solution 
and incubated with the samples overnight at 4 °C. For STED microscopy, an anti-mouse secondary antibody 
(1:250) conjugated to Atto647N (Sigma) was used andcoverslips were mounted in slides with a home-made 
mounting media based in Mowiol (2.4% Mowiol 4–88 (poly(vinyl alcohol), Sigma) and the antifade reagent 
DABCO (2.5% w/v, 1,4-diazobicyclo[2.2.2]octane, Sigma), as described previously17, which provided a suita-
ble refractive index. For STORM microscopy, the secondary antibody (1:750) was conjugated to Alexa647 (Life 
Technologies).

STORM imaging.  The STORM microscope was custom-built around an Olympus IX-73 inverted 
microscope operating in wide-field epifluorescence mode. A 642 nm 1.5 W laser (MPB Communications 
2RU-VFL-P-1500–642) was used for fluorescence excitation and a 405 nm 50 mW laser (RGB Photonics Lambda 
Mini) for fluorescence re-activation. The lasers were combined with a dichroic mirror (CM01–427, Semrock), 
magnified and then focused to the back focal plane of the oil immersion objective Olympus PlanApo 60x NA 1.42. 
A dichroic mirror (Di03-R 405/488/532/635-t1 25 × 36, Semrock) and a band-pass filter (ET700/75 m, Chroma) 
were used for decoupling of the fluorescence emission of the sample from the laser excitation. Further blocking 
of the illumination lasers was performed with a multi-edge notch filter (NF03–405/488/532/635E-25, Semrock). 
The emission light was expanded with a 2x telescope so that the pixel size of the EMCCD camera (Andor iXon3 
897) would match the optimal value for single-molecule localization. The camera and lasers were controlled with 
a custom software developed in the laboratory and described in18.
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Cells cultured on 18 mm coverslips were placed in a holder and imaging was perform in a 50 mM Tris pH = 8, 
10 mM NaCl buffer. The imaging buffer was supplemented with 10% w/v glucose, 100 mM beta-mercaptoethanol, 
1 μg/mL glucose oxidase (Sigma-Aldrich) and 0.5 ug/mL catalase (Sigma-Aldrich) as oxygen scavenging system.

Prior to STORM imaging, conventional fluorescence images of the region of interest were acquired by setting 
the excitation laser intensity to 1–5 W cm−2. STORM data acquisition was then started by changing the excitation 
laser intensity to 20–30 kW cm−2, thus inducing on-off switching of the fluorescent marker in the tens of ms time 
range, as required by the STORM technique. Throughout the whole acquisition, the activation 405 nm laser power 
was increased in steps whenever the density of single-molecule events decreased below ~1 molecule per μm2. 
Typically, it took 25000 frames at 20 ms of exposition time for each STORM acquisition. Data analysis and the 
rendering of the final super-resolved image were performed with ThunderSTORM software19.

STED imaging.  The STED nanoscope was home-built. For excitation of fluorescence, a linearly polarized 
pulsed (200 ps) laser at 640 nm (PicoQuant LDH-P-C-640B) operating at 20 MHz repetition was used. Light 
was coupled into a polarization maintaining single-mode fiber (Thorlabs P3-488PM-FC-5) using a fiber col-
limator (Schäffer + Kirchhoff 60FC-4-A7.5-01). Light exiting the fiber was collimated (f = 30 mm) in order to 
obtain a TEM00 excitation beam and circular polarization was adjusted using a broadband (400 nm–800 nm) 
quarter-wave plate (Thorlabs AQWP05M-600) and a broadband (400 nm–800 nm) half-wave plate (Thorlabs 
AHWP05M-600).

For STED, a linearly polarized pulsed (1 ns) laser at 775 nm was used (Onefive Katana HP). Light was cou-
pled into a polarization maintaining single-mode fiber (Thorlabs P3-630PM-FC-5) using a fiber collimator 
(Schäffer + Kirchhoff 60FC-4-A11-02). STED light coming out of the fiber was then collimated (f = 30 mm) and 
sent through a 2π vortex phase plate (RPC Photonics VPP-1a). Circular polarization was adjusted using a broad-
band (690 nm–1200 nm) quarter-wave plate (Thorlabs AQWP05M-980) and a broadband (690 nm–1200 nm) 
half-wave plate (Thorlabs AHWP05M-980).

Excitation and STED beams were combined using a notch filter at 22 degrees (Semrock NF03-658-25) and 
a 5 mm short pass dichroic mirror (Chroma Z780sprdc) respectively. Lateral beam scanning was performed by 
a system composed of a home-made galvanometric scanner, a scanning lens (Leica) and a tube lens (Leica). For 
additional positional control and fine focusing, the sample was mounted on a XYZ piezoelectronic nanoposition-
ing stage (Thorlabs NanoMax MAX311D/M). Light was focused to the diffraction limit with an objective of 1.4 
NA (Leica HCX PL APO 100x/1.40-0.70 Oil CS).

Co-alignment of the excitation and STED foci was performed measuring scattering of 40 nm gold nanoparti-
cles. A magnetically mounted pellicle beamsplitter coated for 400 nm–700 nm, 45:55 (R:T) (Thorlabs BP145B1) 
directed scattering light to a broadband (280 nm–850 nm) photomultiplier tube (Thorlabs PMM02).

STED wavelength was rejected from the detection path using a notch filter (Semrock NF03-785-25), fluores-
cence was selected using a bandpass filter (Semrock FF01-676/37-25). Light was then coupled (f = 50 mm) into a 
25 μm, 0.1 NA multi-mode fiber (Thorlabs M67L01) connected to the photodetector (MPD PD-050-CTC-FC). 
Time gating of fluorescence photons was performed using a custom-made electronic board (MPI for biophysical 
Chemistry). The scanning and fluorescence count acquisition were computer controlled via an AD/DA board 
(National Instruments PCIe-6353) using the software ImSpector20.

Numerical simulation.  Simulated segments of a neurite presenting the MPS is created in four steps. First, 
a 2D matrix that is a rotation of the periodic function described in equation (1) is created, this is considered the 
ground truth and has a digital resolution of 1 nm. Second, the immunolabeling process is simulated by assigning 
a probability to each element of the matrix that is proportional to the intensity of the periodic function. A smaller 
probability of labeling is added throughout the neurite to simulate non-specific labeling. The final number of 
simulated fluorophores is adjusted in order to match experimental conditions. Third, the image of the simulated 
fluorophores is convoluted with a Gaussian function with FWHM = 40 nm simulating a typical super-resolution 
effective PSF. Finally, a Gaussian background with a given average and a 10% standard deviation is added, and 
Poissonian shot-noise is added to the resulting image accounting for the emission and detection process. The 
average of the Gaussian background contribution is varied to obtain images with different signal-to-background 
ratios (SBRs).
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