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Molecular dynamics (MD) is a promising computational 
approach to investigate dynamical behavior of molecular 
systems at the atomic level. Here, we present a new MD 
simulation engine named “myPresto/omegagene” that is 
tailored for enhanced conformational sampling methods 
with a non-Ewald electrostatic potential scheme. Our 
enhanced conformational sampling methods, e.g., the 
virtual-system-coupled multi-canonical MD (V-McMD) 
method, replace a multi-process parallelized run with 
multiple independent runs to avoid inter-node communi-
cation overhead. In addition, adopting the non-Ewald-
based zero-multipole summation method (ZMM) makes 
it possible to eliminate the Fourier space calculations 
altogether. The combination of these state-of-the-art 

techniquesrealizesefficientandaccuratecalculationsof
the conformational ensemble at an equilibrium state. By 
taking these advantages, myPresto/omegagene is special-
ized for the single process execution with Graphics Pro-
cessing Unit (GPU). We performed benchmark simula-
tions for the 20-mer peptide, Trp-cage, with explicit 
solvent. One of the most thermodynamically stable con-
formations generated by the V-McMD simulation is very 
similar to an experimentally solved native conformation. 
Furthermore, the computation speed is four-times faster 
than that of our previous simulation engine, myPresto/
psygene-G. The new simulator, myPresto/omegagene, is 
freely available at the following URLs: http://www. 
protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.
protein.osaka-u.ac.jp/myPresto4/.
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The molecular dynamics (MD) method is a promising approach to investigate a variety of biophysical phenomena at the atomic level. In particular, 
elucidation of the conformational ensemble of bio-molecules is of paramount importance. We present here a new MD simulation program, 
“myPresto/omegagene” which is tailored for efficient computation of enhanced conformational sampling powered by GPU acceleration. “myPresto/
omegagene” is unique in that it adopts our original multi-canonical ensemble approach and our non-Ewald electrostatic potential scheme named 
“zero-multipole summation method” to effectively enhance computations. In addition, “myPresto/omegagene” builds upon a wealth of tools and 
resources provided by the myPresto suite to enable good user experience for myPresto users.
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In addition, we developed a series of theories for the 
non-canonical MD simulations, namely enhanced confor-
mational sampling methods. We have developed the multi- 
canonical ensemble MD simulation method [30], and here-
inafter we refer this method as multi-canonical MD (McMD). 
On the basis of the McMD method, several enhanced con-
formational sampling methods have been developed and 
applied to analyze a variety of bio-molecular systems [31–
34]. These methods are powerful tools to elucidate physico-
chemical properties of molecular systems at an equilibrium 
state. We have previously demonstrated that trajectories gen-
erated from many independent McMD runs with different 
initial conditions can be combined for statistical analysis 
[35]. This theory allows us to execute many relatively short 
MD runs independently in parallel instead of a single long 
simulation.

Our enhanced conformational sampling methods and the 
ZMM have been implemented in myPresto/psygene-G. 
However, myPresto/psygene-G was tailored for long-term 
simulations of large molecular systems using multi-GPU 
parallelization with the space-decomposition algorithm, and 
thus it is not suitable for running multiple independent sim-
ulations of small systems, which are what enhanced confor-
mational sampling methods target.

Here, we developed a new MD simulation program from 
scratch, named “myPresto/omegagene” that is tailored for 
our original McMD methods with the ZMM. myPresto/ 
omegagene is distributed under open-source license from 
http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/, and 
it is also available from http://presto.protein.osaka-u.ac.jp/
myPresto4/. In this report, Section 1 “Software Details” 
presents requirements and detailed information of the imple-
mentation. Section 2 “Simulations” presents results of two 
types of test simulations, with a 20-mer peptide, Trp-cage. 
The first simulation with the micro-canonical ensemble 
demonstrates a base capability: four-fold acceleration com-
pared with myPresto/psygene-G with an energy conser-
vation property. The second simulation with the virtual- 
system-coupled McMD (V-McMD) method, which is a 
variant of the McMD method, shows successful application 
results: an energy landscape of the Trp-cage at 300 K along 
with near-native conformations sampled as the most stable 
cluster.

1. Software Details
1.1. Overview

myPresto/omegagene consists of the two parts: i) the core 
MD engine written in C++ and CUDA languages, and ii) the 
toolkit for pre- and post-simulation processing written in 
Python language (Fig. 1). The installation process is semi- 
automated, by taking advantage of a standard cross-platform 
building tool “cmake” (version 3.2 or later). myPresto/ 
omegagene is easily built on a variety of environment, e.g., 
Linux, Windows, and OS X (also known as MacOS). For 

The molecular dynamics (MD) method is a key technol-
ogy for dissecting dynamical properties of molecular systems 
at the atomic level. Along with the rapid growing of the high 
performance computing technologies, the field of MD simu-
lations has been growing and extensively applied for highly 
complex and large-scale phenomena. A recent milestone in 
this field is the rise of the special-purpose hardware, named 
“ANTON” [1,2]. This hardware achieved millisecond- 
timescale simulations for a variety of molecular systems 
[3,4]. Yet another MD-specialized hardware, “MD-GRAPE”, 
was recently developed by Taiji et al. in RIKEN [5]. While 
specialized hardware pushes the limits of the MD method, it 
is not widely used due to its very high costs and difficulty in 
modifying the algorithms set in the hardware.

Consequently, developments in the field of MD simula-
tions have mainly targeted general-purpose cluster machines 
and a variety of MD software have been developed. At the 
moment, one of the most efficient implementations of the 
MD is “GROMACS”, which comes with implementations 
of low level single-instruction-multiple-data (SIMD) instruc-
tions [6,7]. The software “AMBER” also accomplishes a 
good performance, especially when powered by NVIDIA 
GPU-based accelerator [8,9]. In parallel, several MD pro-
grams based on unique state-of-the-art physics theories have 
also been developed. The MD program “GENESIS” takes 
advantage of a variety of replica exchange MD (REMD) 
methods, e.g., the temperature REMD and the surface 
 tension REMD, and several original algorithms [10–12]. 
“MODYLAS” applies a non-Ewald electrostatic potential 
calculation scheme, the fast multipole method [13]. Another 
MD program “MARBLE” implements a partial rigid-body 
method under membrane-specific ensembles [14]. “SCUBA” 
has a unique algorithm for generating the structural ensem-
ble fitted to low resolution electron microscopy data [15]. 
These programs are extensively tuned for supercomputer 
systems, such as the “K computer”.

During the past several decades, we developed and main-
tained “myPresto” package, which consists of a variety of 
tools for in-silico drug development, including a docking 
program between a receptor protein and drug candidates 
(“sievegene”) [16–18], a ligand binding pocket finder (“mol-
site”) [19], a small-compound structure library (“ligand-
box”) [20]. More recently added to myPresto was the MD 
simulation engine “psygene-G”, which implemented two 
major original features: a multi-GPU accelerated paralleliza-
tion scheme [21], and the zero-multipole summation method 
(ZMM) [22–26]. By utilizing many GPUs to parallelize the 
space-decomposition routine, myPresto/psygene-G accom-
plishes a scalable computation for a wide range of system 
sizes and have been applied for a variety of biomolecular 
systems [27–29]. As the ZMM estimates the electrostatic 
potential with a cutoff pair potential, the computational cost 
is drastically reduced compared with Ewald-based methods, 
and the scalability of the multi-node parallel computation is 
improved.
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on GPU. myPresto/omegagene applies an algorithm based 
on the method proposed by Páll and Pronk [6] which is uti-
lized in GROMACS. To find atom pairs within the cutoff 
radius (the neighbor search task), myPresto/omegagene 
groups the atoms in the system into “sub-cells” with the 
same number of atoms, in contrast to myPresto/psygene-G, 
which divides the system into sub-cells with a uniform 
 volume [21].

As the SIMD width of NVIDIA GPU is 32 threads (a 
bunch of 32 threads is defined as a “warp”), the atoms in the 
system are grouped into 8-atom sub-cells (Fig. 2A). Accord-
ingly, there are 64 atom-atom interactions between atoms 
from each sub-cell in a pair, and these pair potentials are 
calculated in bulk by one warp (32 threads) using two loop 
iterations. Before the pair potential calculations, a search for 
all pairs of sub-cells whose inter-cell distance are within a 
distance threshold (the summation over the cutoff radius 
and an offset value) is performed at every predefined inter-
val number of steps (test calculations for this interval are 
described in the next section). The neighbor search process 
enumerates all sub-cell pairs within this cutoff. For example, 
in Figure 2A, the neighbor sub-cells of the 1st sub-cell are 
0th, 2nd, 3rd, and 4th sub-cells. In one iteration of the pair-
wise potential calculation algorithm, the m-th warp calcu-
lates pairs of the m-th sub-cell and its neighbor sub-cells. In 
order to balance the number of sub-cell pairs owned by each 
warp, we developed our original scheduling scheme, in 
which a sub-cell pair m–n (m and n refer to sub-cell indices) 
is considered for calculation if either one of following 
 conditions hold: 1) when m is an even number, n is an odd 
number for m<n and n is an even number for n>m; and 2) 

compiling the programs, C++ compilers compatible to 
C++11 standard is required. The GPU acceleration requires 
a NVIDIA GPU board with compute capability ≥3.5.

The input and output files formats of myPresto/omegagene 
are compatible with those of existing tools in the myPresto 
package. The input molecular topologies of proteins and 
nucleic acids are generated by a “tplgene” program, a 
myPresto tool. A list of atom groups with non-holonomic 
constraints is prepared, by using the “SHAKEinp” program. 
In addition, some other tools for pre- and post-simulation 
analyses and data handling are attached as omega_toolkit. 
For example, the simulation trajectory written in PRESTO 
format can be converted into other standard binary formats, 
e.g., .trr format (GROMACS). The initial velocities of atoms 
in simulation systems are generated by using a Python script 
included in omega_toolkit. These input files are then inte-
grated into a single binary file, by using another script. Sep-
aration of such pre- and post-simulation lightweight tasks 
from the core engine makes it easier to develop and maintain 
the tools.

1.2. Implementation
The MD engine of myPresto/omegagene is implemented 

in C++11 in an object-oriented manner. SIMD paralleliza-
tion, powered by NVIDIA GPU with CUDA was applied 
for the cutoff pair-wise potential calculations, which is the 
bottle- neck of MD computations. As this program utilizes 
the ZMM for the electrostatic potential calculation, Lennard- 
Jones and electrostatic potentials are computed in the same 
kernel function on GPU. A main difference from myPresto/
psygene-G is the routine for pairwise potential calculations 

Figure 1 Overview of the myPresto/omegagene ecosystem.
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64 atom pairs in each pair of sub-cells, and these pair poten-
tials are calculated in two cycles of the loop, by using 32 
threads (one warp). The variable l means the iterator variable 
of the loop. The first cycle (l=0) of the 1st warp, pairs of 
eight atoms in the 1st sub-cell and four atoms in the 0th sub-
cell are computed. In the next cycle (l=1), pairs of the eight 
atoms in the 1st sub-cell and the remaining four atoms in the 
sub-cell 0 are computed. The calculated forces for each atom 
are gathered with a warp shuffle instruction and are written 
back to the global memory with an atomic operation. While 
the calculations of force and energy in each term are exe-
cuted in the single precision, summation of these terms 
(warpShuffle and atomicAdd in Fig. 2D) is done in the dou-
ble precision. To exclude the i–j atom pairs connected within 
four successive covalent bonds and the atom pairs i≤ j in a 
sub-cell (m=n; shaded pairs in Fig. 2C), a 64-bit bitmask is 
prepared for each sub-cell pair to switch the pair potential of 
each atom pair [36].

when m is an odd number, n is an even number for n<m and 
n is an odd number for n>m; or m=n. Using Figure 2B as an 
example, the 1st warp in the GPU grid calculates pairwise 
potentials in the sub-cell pairs 1–0, 1–1, and 1–3, while the 
2nd and 4th warps calculate pairwise potentials in sub-cell 
pairs 2–1 and 4–1, respectively. Note that this algorithm does 
not guarantee a good load balance among warps, because not 
all sub-cells have the same number of neighbors. While Páll 
and Pronk’s method limits the number of sub-cell pairs cal-
culated in each warp to eight in order to balance the work-
load of each warp, we did not apply this scheme here, since 
dividing the loops requires frequent communications between 
the registers and the global memory with atomic operations. 
In addition, as it is expected that the distribution of the parti-
cle density is not largely biased in usual systems, we assume 
the impact of this load imbalance is limited.

Then, the pairwise potentials are calculated in each warp 
(Fig. 2C and D). As each sub-cell has eight atoms, there are 

Figure 2 Schematic diagram of the algorithm for the pairwise potential calculations. (A) The system consisting of sub-cells, each of which 
consists of eight atoms (filled circles). The number in the circle indicates the ID of each sub-cell. The red dashed line indicates the cutoff length from 
the border of the 1st sub-cell. The blue dashed line represents the cutoff added by the offset value. (B) The matrix describing assignments of each 
sub-cell pairs to each warp. The pairs marked as the orange squares in each row are processed by a warp. Note that the periodic boundary condition 
is ignored for simplicity in this figure. (C) Pairs of atoms calculated in each thread in warp 1. The numbers in the matrix denote the thread IDs in 
the warp, processing the corresponding pair of atoms. Each row indicates one of eight atoms in 1st sub-cell. Each column indicates an atom nearby 
the 1st sub-cell. The filled circles correspond to the atoms in Figure 2A. (D) A pseudo code of the kernel function. num_neighbor_cubcells[m] is the 
number of neighboring sub-cells of m-th sub-cell. isMasked(i, j) excludes the i–j pairs within four successive covalent bonds and the pairs i≤ j in the 
same sub-cell. force[i] is the 3D array keeping the force of the i-th atom along x, y, and z axes. The function calForce(i, j) calculates the force of 
the i-th atom acted by the j-th atom. warpShuffle(force[i]) sums up the force values among threads with the same i value in the same warp.  
atomicAdd adds the force[i] value to the variable globalmem_force[I] in the global memory.
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systems [21].
We found that while a 10-step interval for the neighbor 

search improves the computation time and maintains the 
accuracy of simulation run that runs the neighbor search rou-
tine at every step, further elongation of the interval (30 and 
50) causes drifts in the total energy (Fig. 3A and B). Thus, 
we recommend a 10-step interval as the default setting. 
Although even the conditions with small intervals (1 and 10 
steps) in myPresto/omegagene showed a drift of the energy 
as well as myPresto/psygene-G does, the drift is so small 
that the results would be acceptable for usual purposes. 
Under the 10-step interval setting, the computation time 
with a single GPU is 4.12-times faster than the execution by 
myPresto/psygene-G with the same resource, and 1.68-times 
slower than the execution by myPresto/psygene-G with 
eight GPUs (the 2×2×2 space decomposition). The bottle-
neck of computations was the pair potential functions on 
GPU (78.5% of the computation time was occupied; Supple-
mentary Fig. S2) and the other potential calculations do not 
affect the computation speed because they are performed by 
CPU behind the GPU task. The integration task including 
the SHAKE algorithm spent 16.6% of the computation time. 
The remaining 5.9% was for the neighbor search. Although 
our main targets of myPresto/omegagene are small molecu-
lar systems with enhanced conformational sampling meth-
ods, we also tested a large molecular system consisting of an 
11-subunit assembly of RNA polymerase (PDB ID: 4qiw; 
Supplementary Figs. S1C and S2B). The computation speed 
was approximately 0.27 ns/day for this 670,957-atom sys-
tem by a single CPU/GPU.

2. Simulations
To demonstrate the performance of myPresto/omegagene, 

we carried out micro-canonical simulations and enhanced 
conformational sampling with the V-McMD method. The 
former was performed to evaluate the energy drift and 
 compare the computation speed compared with that of 
myPresto/psygene-G. The system used in the both simula-
tions includes a 20-mer peptide, Trp-cage with the sequence  
NLYIQWLKDGGPSSGRPPPS. For the potential parame-
ters, Amber99SB-ILDN force field [37] for the protein, 
TIP3P water model [38], and the ion model reported by 
Joung and Cheatham [39] were applied. The electrostatic 
potential was calculated by ZMM with the zero-dipole con-
dition and dumping parameter α=0 [22]. The integration 
time step was 2.0 fs and covalent bonds with hydrogen atoms 
were constrained by the SHAKE algorithm [40].

2.1. Micro-canonicalSimulation
We ran micro-canonical simulations with myPresto/ 

omegagene for 1.0 ns, using several settings of intervals for 
the neighbor search, e.g., 1, 10, 30, and 50 steps. The initial 
structure of Trp-cage was taken from the solution NMR 
structure (PDB ID: 1L2Y, model 1) [41], immersed into 
150 mM NaCl solution (13,277 atoms; Supplementary Fig. 
S1A). A 12 Å cutoff radius was applied for the Lennard- 
Jones and electrostatic interactions and a 1 Å offset value 
was applied for the neighbor search. The same system was 
also simulated with myPresto/psygene-G for comparison, 
whose computation speeds were described for many protein 

Figure 3 Benchmark results of myPresto/omegagene. (A) Time courses of the total energy of the system in various conditions. “NS interval” 
means the interval steps of the neighbor search. “GPU” is the number of GPU boards used in the simulation. The vertical axis indicates the ratio of 
the total energy over that at the first step. The value overlaid on each plot is the slope of fitted linear function. In these calculations, the time step 
was 2.0 fs, and the SHAKE algorithm was applied. (B) The computation speed in each condition.
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one of the most stable structures and the NMR structure 
(PDB ID: 1L2Y, model 1) is 0.944 Å. This result demon-
strates that myPresto/omegagene reasonably analyzed the 
conformational ensemble of the 20-mer peptide. In this cal-
culation, the calculation speed was 10.7 ns/day, which is 
four-times faster than myPresto/psygene-G for the V-McMD 
with the ZMM.

3. Conclusions
We developed a new MD simulation program, myPresto/

omegagene, that is tailored for our original enhanced sam-
pling methods [31,32] and the electrostatic potential scheme 
[22–26]. This software is freely available to users, and the 
source code is distributed under an open-source license. In 
contrast to myPresto/psygene-G, which is powered by multi-
GPU parallel computations [21], myPresto/omegagene is 
tailored for a single process execution with a single GPU, in 
order to optimize the enhanced conformational sampling 
methods [35]. Elimination of space-decomposition routines 
from the code greatly simplifies the codebase and the simple 
object-oriented structure of the code allows for easy devel-
opment and maintenance of the software. In addition, the 
compatibility with the myPresto family provides advantages 
for applying many existing tools accumulated during the 
past decades and easy to use for myPresto users.

The evaluation study with the micro-canonical ensemble 
demonstrated the acceptable properties of the energy drift 
and efficient computation. Furthermore, we demonstrated 
that the enhanced conformational sampling simulation suc-
cessfully reproduced experimentally solved structure of Trp-
cage, as the most thermodynamically stable structure in the 
simulated conformational ensemble. myPresto/omegagene 
can be applied for the conformational sampling of such a 
practical molecular system with computation speed about 

2.2. McMDsimulation
We applied myPresto/omegagene to conformational sam-

pling with the V-McMD method [31]. The initial structure of 
Trp-cage was generated using “Modeller” without any tem-
plate, and randomized by a constant temperature simulation 
at a high temperature (800 K; Supplementary Fig. S1B). The 
solution contains only one Cl– for neutralization of the sys-
tem (15,596 atoms in total). The same force field used for the 
earlier micro-canonical simulations was applied.

We briefly explain the protocols of the V-McMD for the 
present study below. A detailed elaboration of the metho-
dology can be found in the reference [42]. The initial guess 
of the density of states was first approximated from a series 
of constant temperature simulations at various temperatures, 
ranging from 296 K to 629 K. Based on this result, the first 
iteration of the V-McMD simulation was performed under a 
biasing force. The energy distribution obtained from this 
simulation (Supplementary Fig. S3A) was then used to refine 
the estimated density of states and the biasing force, and this 
iterative process was performed 34 times (1.8×109 steps in 
total), until the energy distribution became nearly flat. After 
obtaining the biasing force, which produces the flat energy 
distribution, 50 independent runs with 1.5×107 steps for each 
were performed as the production runs (Supplementary Fig. 
S3B). The canonical ensemble at 300 K of this system was 
generated by reweighting the probability of each snapshot. 
The conformational ensemble of Trp-cage at 300 K is sum-
marized as the potential of mean force (PMF) landscape, by 
applying principal component analysis (PCA), where 190 
interatomic distances for the all pairs of Cα atoms in the pep-
tide were used for variables to define the variance- covariance 
matrix [34]. As a result, we obtained the landscape with a 
major basin and some peripheral shallow basins (Fig. 4A). 
The most thermodynamically stable basin corresponds to the 
native structure (Fig. 4B) and the Cα RMSD value between 

Figure 4 The results of the V-McMD simulation. (A) The simulated PMF landscape at 300 K. The horizontal and vertical axes are the first and 
second principal components (PC1 and PC2), respectively. The color graduation represents the PMF values (blue means the most stable). The low-
est PMF is set to zero kJ/mol. (B) A superimposed picture of the NMR structure of Trp-cage (gray; PDB ID: 1L2Y, model 1) and the most stable 
conformation in the V-McMD simulation (blue).
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