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Abstract: Infrared absorption spectroscopy is a widely used tool to quantify and monitor composi-
tions of gases. The concentration information is often retrieved by fitting absorption profiles to the
acquired spectra, utilizing spectroscopic databases. In complex gas matrices an expanded parameter
space leads to long computation times of the fitting routines due to the increased number of spectral
features that need to be computed for each iteration during the fit. This hinders the capability of
real-time analysis of the gas matrix. Here, an artificial neural network (ANN) is employed for rapid
prediction of gas concentrations in complex infrared absorption spectra composed of mixtures of CO
and N2O. Experimental data is acquired with a mid-infrared dual frequency comb spectrometer. To
circumvent the experimental collection of huge amounts of training data, the network is trained on
synthetically generated spectra. The spectra are based on simulated absorption profiles making use
of the HITRAN database. In addition, the spectrometer’s influence on the measured spectra is charac-
terized and included in the synthetic training data generation. The ANN was tested on measured
spectra and compared to a non-linear least squares fitting algorithm. An average evaluation time of
303 µs for a single measured spectrum was achieved. Coefficients of determination were 0.99997 for
the predictions of N2O concentrations and 0.99987 for the predictions of CO concentrations, with
uncertainties on the predicted concentrations between 0.04 and 0.18 ppm for 0 to 100 ppm N2O and
between 0.05 and 0.18 ppm for 0 to 60 ppm CO.

Keywords: spectral analysis; quantitative gas analysis; machine learning; artificial neural networks;
dual comb spectroscopy; broadband spectroscopy; laser spectroscopy

1. Introduction

Quantitative gas analysis for the determination of the concentration of gases present
in the sample has emerged as a powerful tool in a variety of applications in environmental
sensing [1–3], medicine [4,5], or process monitoring [6]. Well-established techniques such
as mass spectrometry and gas chromatography offer high sensitivity and selectivity even
in highly complex gas matrices, but do not support high acquisition rates [7–10]. By
comparison, optical techniques based on infrared (IR) absorption spectroscopy offer fast
measurement times in addition to high sensitivity. They make use of the absorption of light
in the sample at wavelengths that are characteristic for the illuminated gas species [11].
One issue in the use of optical techniques is that complicated gas matrices with more than
one infrared-active component can lead to overlapping absorptions and hence to increased
cross-sensitivities [12]. To circumvent this, it is useful to increase the spectral bandwidth to
be able to reliably distinguish the different gas species. To determine the concentrations
of the gases of interest, fitting algorithms based on non-linear least squares are often
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employed [13,14], relying on absorption profiles provided by spectroscopic databases
such as HITRAN [15]. The extended spectral bandwidth, however, leads to an increased
number of absorption profiles, which have to be computed for every iteration during a fit.
This drastically increases the computation time to retrieve the concentration information.
Furthermore, broadband spectra also suffer from complex background structures. These
need to be corrected in pre-processing or also considered by the fit hypothesis, which
increases the number of free parameters, leading to more required iterations during fitting
and hence to an increased computation time. This makes it a difficult task to reliably detect
and fit weakly absorbing gases in the spectrum, posing an obstacle to rapid quantitative gas
analysis, which is needed especially for applications such as closed-loop process control
and for monitoring of dynamic processes.

With the use of machine learning-based methods, it is possible to build regression mod-
els, e.g., partial least-square regression (PLSR), for the prediction of gas concentrations [16].
In particular, models based on artificial neural networks (ANNs) have shown promising
results in building regression models and processing acquired data in real time [17,18].
ANNs consist of nodes that are typically arranged in layers. During training the strengths of
the connections (weights) between the different nodes and layers are adjusted to minimize
the deviation of the ANNs predictions to the target values, which are attached as so-called
labels to the training data. Training of these network structures typically requires large
datasets (often in the order of hundreds of thousands of data, or more) with a high variety
of concentrations and mixtures, setting a high experimental burden for the preparation of
actual measurements. Data augmentation techniques, for example, can be used to increase
the amount of training data by linear combination of measured spectra [19,20].

In this work, we present a different approach for rapid quantitative analysis of molec-
ular absorption spectra based on a feed-forward artificial neural network building a re-
gression model. The network is trained purely with synthetic infrared absorption spectra
instead of experimentally recorded datasets, following a similar approach described by
Kern et al., where they utilized synthetic training data based on spectral models for NMR
spectra [21]. In our approach, the synthetic spectra are composed of absorption features
described by Voigt profiles calculated with the HITRAN API [22]. In addition, we also take
into account the dual comb spectrometer’s properties, e.g., resolution or noise equivalent
absorption, and additional influences on the spectra, e.g., optical fringes. The synthetic
training data are generated in the Fourier-transformed domain, as opposed to recorded
time domain interferograms (as demonstrated by Voumard et al. [18]). Thus, only the
instrument influences and parasitic signals within the observed spectral band have to be
considered, and other contributions to the interferograms, such as radio station signals or
parasitic signals from surrounding electronics, which couple into the signal lines, can be
neglected.

The proposed synthetic training was evaluated on measurements taken with a mid-
infrared dual frequency comb spectrometer, suited for the analysis of multi-component
gas mixtures [23,24]. For the application demonstration, the spectrometer system was set
up for the detection of CO and N2O in a wavelength band around 4.57 µm, which shows
overlapping absorption profiles for both gases. First, the spectrometer’s properties and
influence on the measured spectra were investigated. A quantity of 107 synthetic spectra
with arbitrary concentrations between 0 to 60 ppm and 0 to 100 ppm for CO and N2O,
respectively, were generated and superimposed by a baseline with arbitrarily chosen pa-
rameters in a range, which was known from the previous investigation of the spectrometer.
This approach is only valid for trace gas concentrations, as higher concentrations would
lead to distortions of absorption profiles, e.g., due to changes of broadening coefficients.
The network was trained and validated with generated synthetic spectra and tested using
spectra measured with the dual comb spectrometer. We then compared the ANN’s pre-
dictions on the measured spectra with the results given by a classical fitting algorithm in
terms of uncertainty, linearity, and calculation time. There already exist several dedicated
systems and approaches for the precise determination of N2O and CO [25,26]. This use case,
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however, exemplifies the potential of the proposed method for the analysis of absorption
spectra within a specific spectral band.

2. Methods
2.1. Experimental Setup

Experimental data for quantitative evaluation and testing of the ANN were obtained
from a mid-infrared dual frequency comb spectrometer. The spectrometer is based on
electro-optic modulation of a common continuous wave laser at 1550 nm, subsequent spec-
tral broadening in dispersion-compensating fibers, and conversion into the mid-infrared
by difference frequency generation with a tunable pump source. A detailed description of
the spectrometer can be found in [23]. The central wavelength of the spectrometer is set
to 4.57 µm with a spectral coverage of 150 GHz (5 cm−1) and a mode spacing of 500 MHz
(0.017 cm−1), which defines the effective frequency resolution. The mode spacings of the
single combs are slightly different—in the order of kHz—which results in a beat signal
between both combs and hence in a train of interferograms [27]. In the mid-infrared, the
dual comb is split into two branches. One branch is detected by a HgCdTe detector (PVI-
4TE/VIGO Systems) as a reference. The other branch is passed through a multi-reflection
cell with an absorption length of 720 cm and detected with a second detector behind the
cell (see Figure 1). The cell is filled with mixtures of CO and N2O. The concentrations
are set using three mass flow controllers (EL Flow Prestige/Bronkhorst), which mix two
premixtures of 60 ppm CO in synthetic air and 100 ppm N2O in nitrogen. For lower target
gas concentrations, these mixtures are further diluted by adding pure nitrogen. Due to the
mutual coherence of the combs [24], coherent averaging can be employed before computing
the power spectra for each of the individual channels via fast-Fourier-transformation (FFT).
From the spectra, only the maximum positions of the comb modes are selected, which
yields the respective sample Ssample and reference Sref spectra. The coherent averaging and
comb mode selection allow compressing the recorded data stream from 1 GByte/s down to
10 kByte/s, enabling the continuous spectra acquisition with a 10 Hz rate [28]. Absorbance
spectra are obtained by normalization of the sample spectrum derived from the recorded
signal of PD 1 by the spectrum derived from the signal of PD 2 given with [12]:

A = − ln
(Ssample

Sref

)
. (1)

Figure 2a shows an exemplary measured absorbance spectrum for 50 ppm N2O and
30 ppm CO composing 301 spectral elements.
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Figure 1. Schematic setup of the spectrometer. The light emitted by a continuous wave laser (CW)
is split into two branches and modulated by two intensity modulators (IM) with slightly different
repetition rates. The resulting combs are spectrally broadened in dispersion-compensating fibers
(DCF), superimposed and converted to the mid-infrared via difference frequency generation (DFG)
with an optical-parametric oscillator (OPO) in a periodically poled lithium niobate crystal. The
mid-infrared dual comb is divided by a beam splitter and detected with PD 2 before the gas cell and
after with PD 1.
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Figure 2. (a) measured absorbance spectrum of a gas sample with target gas concentrations of 30 ppm
for CO and 50 ppm for N2O. The spectrum is recorded with a dual comb spectrometer comprising
301 spectral elements separated by 0.017 cm−1; (b) exemplary measured nitrogen spectrum, which is
not infrared-active. From these, the spectrometer influence on the measured absorbance spectrum is
estimated by fitting and subsequent normalization using a polynomial function (top) and additional
sine functions (bottom) to model optical fringes.

2.2. Description of the Fitting Algorithm and Raw Data Analysis

Classical fitting algorithms are based on optimizing a parameter set β for a given
model function f (x, β), describing the underlying data with N datapoints (xN , yN). This is
usually performed by using non-linear least squares, where the residual sum of squares
SSres = ∑N

i (yi − f (xi, β))2 is minimized. For this, it is beneficial that the initial parameters
for the fitting procedure are already a coarse approximation of the fit results. Otherwise,
the fit may not converge or a local minimum in SSres may stop the algorithm, resulting in
incorrect or unreasonable fit results.

To validate our approach using ANNs trained with synthetic data to evaluate infrared
absorption spectra, we compared it to a non-linear least squares fitting algorithm imple-
mented in the Python library SciPy [29]. The model function to fit the measured spectra is
therefore given with:

ffit(ν, ν0, cCO, cN2O,
→
b ) = α(ν− ν0, cCO, cN2O)L + baseline(ν,

→
b ). (2)

This function includes the gas absorption profiles α based on HITRAN [15], gas
concentrations cCO and cN2O, the absorption path length L, which is kept constant at
720 cm, and a global wavenumber shift ν0. To increase robustness against additional
absorbers, e.g., water, the theoretical model (Equation (2)) can be expanded. Additionally,
the normalization of the spectra (given by Equation (1)) is imperfect due to a power
mismatch on the detectors in addition to optical fringes, e.g., caused by the lithium niobate
crystal. We treat these effects as additional baseline contributions, which must be included
in the fit model. The baseline contribution is demonstrated on a measured absorbance
spectrum for 30 ppm CO and 50 ppm N2O, depicted in Figure 2a. The baseline function,

baseline(ν,
→
b ) = b0 + b1ν + b2ν2 + b3 sin(b4ν + b5) + b6 sin(b7ν + b8) (3)
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consists of a polynomial of second order—several orders were tested, this gave the best
results according to RMS-noise in the residuals—and two sine functions, where the ampli-
tudes, phases, and frequencies are considered, to account for the apparent optical fringes in

the spectrum, resulting in nine free baseline parameters (
→
b ).

To be able to retrieve the information of the spectrometer’s influence on the spectra
isolated from gas absorptions, the described fitting procedure was applied to pure nitrogen
spectra, where no absorbing gas is present. This allowed us to quantify the variations of the
parameters, to be able to consider this in the synthetic training data for the ANN. For this,
we measured 100 nitrogen spectra, where an exemplary spectrum is shown in Figure 2b,
and fitted them with Equation (3), as no absorbing gases are present and therefore no
concentrations or wavenumber shifts can be fitted. The information on the range of the
global wavenumber shift in the spectra is determined by evaluating slow wavelength drifts
of the OPO and the seed-laser of the near-infrared dual comb with long term wavelength
measurements. The limits of the variations of the baseline parameters, and the limits
for the wavenumber shifts, are shown in Table 1. These limits are expanded by 20% to
increase robustness of the ANN against variations potentially undetected by the fit. The
parameter analysis for this dual comb setup tuned to this particular spectral region limits
the parameter space as the variations of the respective parameters are limited. We assume
that expanding the parameter space is possible, but would require a longer training or a
larger set of training data, and was not undertaken for this demonstration.

Table 1. Determined limits of the parameter space for the generation of the training data, baseline
parameters and wavenumber shift ranges.

Minimum Value Maximum Value

Wavenumber shift (cm−1) −0.1 0.1

b0 6.041× 10−2 2.012× 10−1

b1 (cm) 1.694× 10−4 8.201× 10−4

b2 (cm2) −3.533× 10−7 8.870× 10−7

b3 3.915× 10−4 8.387× 10−3

b4 (cm) −1.601 6.662× 102

b5 −1.428× 102 2.644× 102

b6 5.111× 10−4 7.89× 10−3

b7 (cm) 3.149× 10−1 6.229× 10−1

b8 −1.444× 102 2.132× 102

2.3. Artificial Neural Network Description

The ANN architecture is set up as a fully connected, feed-forward neural network
with two hidden layers (Figure 3a) making use of the Python library PyTorch [30]. The
input layer consists of 301 nodes, which correspond to the number of spectral elements
(comb modes) in the measured spectra. A range of configurations of nodes in the hidden
layers were tested for this specific case. Here, 10 nodes in the first and 4000 in the second
hidden layer resulted in a minimum achievable deviation of the predicted concentrations
from the target concentrations. The output layer consisting of two nodes directly yields
the information of interest, namely the concentrations of CO and N2O. For the activation
function we chose the rectified linear unit. For optimization during training the back
propagation algorithm Adam [31] is used and the loss function is defined by the mean
squared error loss (MSE) given by:

MSE =
1
N ∑N

i (yi − ŷi)
2, (4)
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with the number of predictions N, the predicted concentration yi and the target concentra-
tion ŷi.

2.4. Synthetic Data Generation and Network Training

To train the ANN, we first simulate two isolated absorbance spectra with 301 spectral
points (150 GHz/5 cm−1 spectral coverage), an absorption path length of 720 cm, and gas
concentrations of 1 ppm for both CO and N2O. To account for the random global wavenum-
ber shift ν0, the synthetic spectra are shifted pairwise by 10 MHz (0.00033 cm−1). To cover
the wavenumber range determined before, this results in 600 spectra pairs, where, in each
pair, CO and N2O are shifted by the same amount. The temperature and pressure of the
spectra are set to 299.3 K and 0.982 atm, which we measured in the gas cell while acquiring
the test spectra for this proof-of-principle. However, when samples with different pressures
and temperatures are investigated, those parameters would also have to be varied. We
then set 107 labels for both gases ranging from 0 to 110 for N2O and 0 to 66 for CO respec-
tively. These labels were also used to rescale the basic absorbance spectra for 1 ppm to the
respective concentration. Within these ranges, the labels are generated randomly following
a uniform distribution. This ensures that each subset of the respective concentrations
range is prioritized equally. Again, the limits are expanded by 10% to train the ANN more
robust against unexpected variations. We do not expect larger deviations from the setpoints
given by the error budget, comprising an uncertainty of 2% on the concentrations of the
premixtures, and of 0.5% on the MFC flows (according to the manufacturer), an uncertainty
of 2% on the absorption path length, and additional uncertainties on the line intensities
(2 to 5% for N2O and <1% for CO [15]), where uncertainties on the measured pressure
and temperature are negligible. In each training step, a randomly shifted spectrum pair
is picked and multiplied by a random label for each gas, as the absorbance scales strictly
linear with the gas concentration, and both spectra are combined. The resulting mixture
spectrum is then superimposed with a random baseline, whose parameters are randomly
chosen with a uniform distribution between the values given in Table 2, to construct a
synthetic spectrum, which is inserted into the network after adding noise. The synthetic
noise follows a normal distribution with a sigma value of 1.45× 10−2 which is derived from
the noise equivalent absorbance of the spectrometer for 0.1 s [23]. At each 10th iteration
within an epoch, where an epoch is defined by an iteration over 107 datasets, the training is
stopped and the model is evaluated with validation data, that are synthesized the same
way as the training data but are never seen by the model while training. This is ensured
by generating the validation data independently from the training data and by randomly
picking and compiling new sets of spectra at each validation step. The network is trained
over 100 epochs on a NVIDIA Quadro P4000 graphics unit within 36 h of training time.
The evolving mean squared error (MSE) while training is depicted in Figure 3b, where the
MSE is a measure for the performance of the ANN on the training and validation data.
Although the MSE only decreases moderately after the third epoch, it was chosen to train
the ANN within 100 epochs, to check if the MSE starts to oscillate or overfitting of the
regression model occurs, where the ANN is forced to learn too many details of the training
data, leading to a decreased performance in generalization and hence to a divergence of the
training and the validation MSE. In our case, neither oscillations of the MSE nor overfitting
are observed, even up to 500 epochs of training.

Table 2. Setpoints for measured mixtures of N2O and CO.

Mixture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Set N2O
concentration (ppm) 0 100 50 25 75 10 40 20 30 0 10 2 8 3 7 4 6 5

Set CO
concentration (ppm) 60 0 30 45 15 24 6 18 12 6 0 4.8 1.2 4.2 1.8 3.6 2.4 3
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Figure 3. Artificial neural network architecture and training results. (a) The spectrum with 301
spectral points is put into the first network layer, whose number of nodes corresponds to the number
of spectral points. The network consists of two hidden layers with 10 and 4000 nodes for the first
and second layer, respectively. The network is trained to provide the gas concentrations in units of
parts per million (ppm) in the output layer; (b) Evolution of the mean squared error while network
training for the training and the validation dataset. The number of epochs is defined by the number
of iterations on the entire training dataset, which contains 107 labeled synthetically generated spectra.

3. Results and Discussion
3.1. Network Evaluation on Measured Spectra

To study the performance of the ANN, namely uncertainties of the determined concen-
trations, linearity, and computation time, and to be able to compare it to the results obtained
by a fit with Equation (2), we measured absorbance spectra of 18 different mixtures of N2O
and CO with concentrations between 0 and 100 ppm for N2O and 0 and 60 ppm for CO,
with a recording time per mixture of 10 s (100 acquired spectra per mixture). The different
mixtures are listed in Table 2, where all set flows of the MFCs are within the specified
operational range (20 to 1000 mL/min) provided by the manufacturer.

The concentrations resulting from the fit (crosses) and predicted by the ANN (circles)
are depicted in Figure 4a. The determined concentrations are corrected by a factor, which
is derived from the difference between the expected and the concentrations determined
by the fit and the ANN of the pure sample gases, as the expected concentrations are not
known accurately due to the error budget described above. We perform a linear fit with
the equation

flin(cset) = mcset + yint, (5)

where cset represents the concentration setpoints, m is the slope, and yint is the y-axis
intercept. With this we determine the coefficient of determination given by

R2 = 1− SSres

SStot
(6)

with the residual sum of squares SSres = ∑N
i (yi − ŷi)

2 and the total sum of squares SStot =

∑N
i (yi − y)2, where N is the number of samples, yi the predicted (fitted) concentration

given by the ANN (fit), ŷi the estimated concentration given by the linear fit, and y the
global mean value of the predicted (fitted) concentrations. The resulting coefficients of
determination are listed in Table 3. Figure 4b shows the relative deviation of the calibrated
concentrations cfit and cANN from the linear fit—which provides information for the linear
behavior of the predictions and fit results—in addition to the uncertainties on cfit and cANN.
The uncertainties are calculated by the standard deviation of cfit and cANN.

The relative deviations decrease with increasing gas concentrations. The minimum
relative deviations from the linear fit, in addition to the minimum and maximum observed
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uncertainties, are listed in Table 3. The uncertainties of the fit results and ANN predictions
stay constant around 0.05 ppm until 10 ppm. For higher concentrations, the uncertainty
increases to more than two times the value for N2O for the fit results. Additionally, an
unexpected increase at 15 ppm of the fit uncertainty is visible.
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The determined concentrations are corrected by a factor, derived from the difference of the concen-
trations of the pure premixtures and the expected value; (b) relative deviation of the determined
concentrations to the linear fits and uncertainty for the ANN predictions and fit results, given by the
standard deviation of the calibrated concentrations for each mixture.

Table 3. Coefficients of determination, minimum achieved relative deviations, and minimum and
maximum uncertainties resulting from ANN predictions and fits.

ANN Fit

N2O CO N2O CO

R2 0.99997 0.99987 0.99973 0.99991

Minimum relative
deviation (%) 0.03 0.04 0.14 0.09

Minimum/maximum
uncertainty (ppm) 0.04/0.18 0.05/0.18 0.01/0.47 0.03/0.22

Between 3 and 6 ppm, an increase in the relative deviation of CO predictions from
the linear fit is observed. This may result from the random selection of synthetic training
spectra, as the network was trained with too few spectra in this concentration range,
and hence is less robust against baseline contributions. The stronger impact on the CO
predictions compared to the N2O predictions may stem from the fact that the area under the
CO absorptions—where the area under the absorption is proportional to the respective gas
concentration—is smaller compared to the area under N2O absorptions (see Figure 2a), due
to fewer absorption lines of CO in this spectral region. This leads to an increased influence
of the baseline to the network prediction. Additionally, the CO line around 2187.5 cm−1

strongly overlaps with a weaker N2O line, which increases the cross-sensitivity of the CO
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predictions for lower CO concentrations. This will be investigated further in the future
with different sets of test spectra, e.g., CO and CO2 or N2O and CO2.

The ANN predictions show a linear behavior with uncertainties comparable to the
fit for gas concentrations up to 10 ppm. For higher gas concentrations, the uncertainties
of the ANN predictions are lower compared to the fit, indicating a higher repeatability of
the results. However, the ANN is susceptible to systematic deviations due to the training
approach with randomized synthetic data. The achieved levels of relative uncertainty on
the predictions compare well to the results of a PLSR-based evaluation of CO and N2O
concentrations from quartz-enhanced photoacoustic spectroscopy (QEPAS) measurements
in the same spectral region [16]. In contrast, the absolute uncertainties of the ANN approach
presented here consistently lie in the ppb range and also demonstrate applicability for
lower concentration ranges. An in-depth comparison of the methods, however, would
require additional considerations of the underlying instrumentation.

The computation time per spectrum is reduced from 484 s on average for the used
fit to 303 µs on average for the ANN predictions. This enables real-time evaluation of
acquired spectra with a maximum rate of 3 kHz without further optimization or dedicated
hardware, e.g., FPGAs. An additional advantage of the proposed method is that classical
fitting algorithms need prior suggestions on the parameters, which have to be fitted.
Unsupervised problems, where no coarse prior knowledge on the concentrations in the
sample is available, can lead to an increased computation time, unreasonable fit results, or
a failure of the fit.

It has to be mentioned that evaluation times of the fit can be decreased using more
dedicated hardware or by further optimization of the fitting algorithm. For example,
Tao et al. showed computation times of comparable spectra of a mixture of N2O and
CO down to 0.1 s with a dedicated numerical fitting model for wavelength modulation
spectroscopy [26]. Nevertheless, the fit used in our work enabled a true comparison of the
ANN and fitting approach in a closed system as the synthetic training data are based on
the same model as the fit function.

3.2. Unsupervised Evaluation of a Dynamic Process

To test the performance of our implemented method on an unsupervised dynamic
process, we evaluated the gas exchange in the cell when switching from pure nitrogen to
a preset gas mixture. The gas cell was therefore completely purged with nitrogen so that
no absorbing gas is left in the cell. We then filled the cell with a flow rate of 500 mL/min
for each gas (total flow rate of 1 L/min) and recorded spectra with a 10 Hz rate with 100
s of acquisition, where the flow was started roughly 7 s after data acquisition. The gas
concentrations during gas exchange were unknown, except for the start and end point of
data acquisition.

The ANN was trained again as described previously on 107 synthetic spectra. The
variations of the gas concentrations were adapted to new concentration ranges up to a
maximum of 55 ppm for N2O and 33 ppm for CO. The acquired spectra were then evaluated
by the ANN. The resulting predictions for the gas concentrations are shown in Figure 5. To
identify the time to reach the target concentrations of 50 ppm N2O and 30 ppm CO we fit
the function

f
(
t, t0, cgas, τ

)
= cgas(1− exp(−(t− t0)k) (7)

to both curves, with time t, the time where the gas exchange started t0, the exchange
rate k, and the target gas concentration cgas. The resulting fitted target concentrations (fit
uncertainties) are 47.585(2) ppm and 29.428(1) ppm with the times to reach 99% of the
target gas concentrations of 20.3 s and 19.3 s for N2O and CO, respectively. The average
predicted concentrations after 20.3 s are 47.66 ppm for N2O and after 19.3 s 29.46 ppm for
CO. We observe a relative deviation of the determined target gas concentrations by the
ANN predictions compared to the expected values of 4.68% for N2O and 1.80% for CO.
The deviations from the expected values lie within the expected systematic error, which
can be estimated as 6% on the set N2O concentration and 4% on the set CO concentration,
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resulting from the previously described error budget. These results are comparable to the
deviations of the predicted concentrations of the pure premixtures, which have found to be
4.27% for N2O and 1.47% for CO.
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Figure 5. ANN predictions of gas concentrations during gas exchange of the gas cell, which was
initially filled with nitrogen and then flushed with a mixture of 30 ppm CO and 50 ppm N2O. The
inset shows the first 7 s of the measurement, where only nitrogen is present in the cell.

The inset in Figure 5 shows the predicted concentrations in the first 7 s, where only
nitrogen should be present in the cell. However, the ANN predicts concentrations around
0.21 ppm for N2O and 0.17 ppm for CO. To investigate this, we gradually decreased the
number of synthetic spectra for training in steps of 105 from 107 to 105. For instance, we
observe an increase in the offset to 0.46 ppm for N2O and 0.24 ppm for CO with 106 spectra
and to 1.11 ppm for N2O and 0.75 ppm for CO with 105 spectra. This indicates that the
offset depends on the quantity of training data, converging towards zero for larger datasets.
How this effect can be further minimized will be part of future investigations, e.g., by using
dedicated data augmentation techniques, as presented in [32].

The observed offset influences the limit of detection (LOD) of the method. For compari-
son, the LOD (3σ) of the spectrometer for spectra acquired with a 10 Hz rate was found to be
0.36 ppm for N2O and 0.14 ppm for CO, which was calculated using the standard deviation
(σ) of the determined concentration, where no absorbing gas was present [33]. Following
the same approach to calculate the LOD for the ANN predictions, we found 0.09 ppm for
N2O and 0.06 ppm for CO, which results in 0.30 and 0.23 ppm, respectively, when we also
take into account the observed offsets. Thus, the use of the ANN does not increase the LOD
of the system, but introduces a systematic offset, which has to be considered.

4. Conclusions

We present a method for rapid analysis of broadband mid-infrared absorption spectra
for trace gas detection enabled by a feed-forward artificial neural network (ANN). The
collection of huge amounts of training data under variation of target gas concentrations
is avoided by utilizing synthetic mid-infrared spectra with absorption profiles given by
HITRAN. For training of the network, these synthetic spectra are augmented by allowing
for shifts in their spectral position, considering baseline effects with a polynomial function
and approximating optical fringes with sine functions. This reproduces the underlying
impact of the used spectrometer—namely a mid-infrared dual comb spectrometer—on
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measured spectra. The variation ranges of these effects were approximated a priori by
classical fitting methods on nitrogen spectra, which led to a drastically decreased set of
calibration spectra, as no concentration variations had to be covered. The implemented
artificial neural network builds a regression model and consists of two hidden layers. The
network is trained within 36 h and tested with measured infrared absorption spectra of
mixtures of gases CO and N2O with concentrations from 0 to 60 ppm and 0 to 100 ppm,
respectively. The network predictions show linear behavior with coefficients of determina-
tion of R2

N2O = 0.99997 and R2
CO = 0.99987, and uncertainties on the predictions ranging

from 0.05 to 0.18 ppm for concentrations from 0 to 60 ppm CO, and uncertainties on the
predictions from 0.04 to 0.18 ppm for concentrations ranging from 0 to 100 ppm N2O. These
results are comparable to a classical evaluation based on a non-linear least squares fit. With
the ANN, the computation time to analyze a single spectrum is decreased from 484 s on
average per spectrum to 303 µs per spectrum on average. The high computation times of
the classical evaluation result from the absence of reference spectra (where no absorbing
gas is present), as complex baseline contributions to the spectra had to be covered in the fit,
whereas the ANN is trained robustly against these contributions. This renders the recurrent
gas exchange of the sample gases with nitrogen as in [23,33] unnecessary, hence reducing
the experimental effort needed to acquire spectra. Additionally, no initial approximations
on the gas concentrations are needed to reliably evaluate the spectra. The method com-
petes well against multivariate analysis in terms of prediction uncertainty. However, the
synthetic data-based training approach here further reduces the reliance of training on
experimental data compared to the existing literature. The spectra analysis rate is currently
limited by the spectra acquisition rate of the dual comb spectrometer and the algorithm
for continuous data acquisition. Nonetheless, we assume that the proposed approach can
also be applied to other spectrometer types such as tunable laser absorption spectrometers,
allowing higher acquisition rates. This shows the potential of ANN-based methods as a
promising instrument towards rapid and precise analysis of gases and gas mixtures.
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