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Abstract

Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, causing significant mortality. There is a mechanistic
relationship between intracellular coronavirus replication and deregulated autophagosome–lysosome system. We
performed transcriptome analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and identified the
aberrant upregulation of genes in the lysosome pathway. We further determined the capability of two circulating markers,
namely microtubule-associated proteins 1A/1B light chain 3B (LC3B) and (p62/SQSTM1) p62, both of which depend on
lysosome for degradation, in predicting the emergence of moderate-to-severe disease in COVID-19 patients requiring
hospitalization for supplemental oxygen therapy. Logistic regression analyses showed that LC3B was associated with
moderate-to-severe COVID-19, independent of age, sex and clinical risk score. A decrease in LC3B concentration<5.5 ng/ml
increased the risk of oxygen and ventilatory requirement (adjusted odds ratio: 4.6; 95% CI: 1.1–22.0; P=0.04). Serum
concentrations of p62 in the moderate-to-severe group were significantly lower in patients aged 50 or below. In conclusion,
lysosome function is deregulated in PBMCs isolated from COVID-19 patients, and the related biomarker LC3B may serve as a
novel tool for stratifying patients with moderate-to-severe COVID-19 from those with asymptomatic or mild disease.
COVID-19 patients with a decrease in LC3B concentration<5.5 ng/ml will require early hospital admission for supplemental
oxygen therapy and other respiratory support.
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Introduction

Patients with coronavirus disease 2019 (COVID-19), caused by
the severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2), exhibit diverse clinical manifestations [1]. While 5–10%
of patients develop severe respiratory distress, others remain
asymptomatic or have minimal symptoms that do not require
hospital admission or supplemental oxygen [2].

Autophagy is an important lysosome-dependent host
defense mechanism [1]. To counteract viral infection, host
autophagy not only selects viral components for lysosomal
degradation but also facilitates antigen processing and adaptive
immune response. However, some viruses, such as SARS-CoV,
filoviruses (e.g. Ebola) and Middle East respiratory syndrome
coronavirus (MERS-CoV) [3], could hijack the host autophagic
machinery for intracellular viral replication and propagation [4–
7]. SARS-CoV, which is genetically similar to SARS-CoV-2, has
been shown to impair lysosomal function and autophagic flux
in the airway epithelium [5–7]. Biologically, it is plausible that
SARS-CoV-2 may encode virulence factors to escape lysosome-
dependent autophagic lysis and immune surveillance. In this
regard, microtubule-associated proteins 1A/1B light chain 3B

(LC3B) and p62/SQSTM1 (p62) are the central proteins in the
autophagic pathway, mediating autophagosome biogenesis and
the removal of ubiquitinated protein aggregates, respectively [8].

Herein, we examined the involvement of the autophago-
some–lysosome system by transcriptomic analysis of periph-
eral blood mononuclear cells (PBMCs) isolated from COVID-19
patients and healthy subjects, followed by gene set enrichment
analysis. We further conducted a retrospective cohort study to
determine the association between the circulating levels of two
related markers, namely LC3B or p62, and the clinical outcomes
in patients with COVID-19.

Methods

Transcriptome analysis

Ribonucleicacid (RNA) sequencing datasets of PBMCs, isolated
from three COVID-19 patients and three healthy controls, were
obtained from the Genome Sequence Archive in BIG Data
Center (https://bigd.big.ac.cn/) under the project PRJCA002326.
RNA sequencing data were first evaluated by FastQC (https://

https://bigd.big.ac.cn/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the
default parameter and were then aligned with Hisat2 (version
2.1.0) onto the human (hg38) genome guided by the GENCODE
gene annotation (version 34) with the default parameters.
The expression of genes in each sample was calculated
by the featureCounts package (version 2.0.1) with the ‘-M’
parameter. Differentially expressed genes (DEGs) were identified
using the R package EBSeq (version 1.28.0) with the following
conditions: adjusted P-value < 0.05 and the absolute value of
log2 fold-change > 1.

Pathway enrichment analysis

Enrichment analysis of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotation was performed with the
identified DEGs using the R package clusterProfiler (version
3.16.1). The Benjamini and Hochberg methods were used to
correct the P-values for the false discovery rate (FDR).

Patient recruitment

We included 168 adult COVID-19 patients who were tested
positive for SARS-CoV-2 with throat swabs, based on real-
time reverse transcription (RT)-polymerase chain reaction
(PCR) according to a standard protocol [9]. All patients were
admitted to the Third People’s Hospital of Shenzhen. The study
was approved by the ethics committee. The requirement for
informed consent was waived as described previously [10].

Clinical data collection

We collected the patient details and clinical outcomes by review-
ing patient medical records. All data were recorded on a specif-
ically designed data collection form. To ensure data accuracy,
two researchers independently reviewed the clinical notes and
laboratory results. Disagreements were resolved by consensus.

Biomarker measurement

Blood samples were collected during the hospital stay as
clinically indicated. Whole blood samples were allowed to set
at 4◦C for 60 min. After centrifuging at 1500× g for 10 min,
the supernatant was collected and stored at −30◦C until assay.
Serum concentrations of two circulating autophagy-/lysosome-
associated proteins, LC3B and p62, were measured using
the commercially available enzyme-linked immunosorbent
assay (ELISA) kits (Omnimabs, USA and Cloud-Clone Corp) as
previously described [11]. The lowest detection limits were
0.1 ng/ml and 0.312 ng/ml for LC3B and p62, respectively.

Primary outcome

The primary outcome was the use of any supplemental oxygen
during the hospital stay to maintain resting oxyhemoglobin
saturation≥90%. Outcome severity was stratified as: (1) asymp-
tomatic; (2) mild disease—had symptoms but did not require
oxygen therapy; (3) moderate disease—required supplemental
oxygen at ≤8 L/min and (4) severe disease—required high flow
nasal cannula oxygen therapy, noninvasive or invasive venti-
lation or extracorporeal membrane oxygenation [12, 13]. The
secondary outcomes were the length of hospital stay with viral
clearance until viral RT-PCR for SARS-CoV-2 became negative.

Statistics

Data were expressed as median and interquartile range (IQR), or
range and counts with percentages, as appropriate. Differences
in the clinical characteristics, outcomes and serum LC3B and
p62 levels were compared between the severity of COVID-19
using t-test. The Chi-square test or Fisher’s exact test was used
to compare the baseline characteristics and outcomes where
appropriate. Multiple logistic regression was used to identify
the independent risk factors for moderate-to-severe COVID-19.
Statistically significant clinical and laboratory variables in mul-
tivariate logistic regression were selected to construct a clinical
risk score to classify patients with different outcomes. The best
cut-off point for each continuous predictor was determined
by the maximized Youden Index score [14]. The score of each
parameter was finalized based on the odds ratio (OR) of the
multivariate analysis.We also evaluated the ability of the clinical
risk score by receiver operating characteristic (ROC) curves, of
which, the 95% confidence intervals (CI) were calculated by
bootstrapping of 1000 samples. In the final model, we combined
age, sex and the clinical risk score with the autophagy markers.
All statistical analyses were done based on R (version 4.0, R
Foundation for Statistical Computing). A P-value < 0.05 was
considered as statistically significant.

Results

DEGs in PBMCs isolated from COVID-19 patients were
enriched in cell cycle, cholesterol metabolism and the
lysosome pathway

A total of 1454 DEGs (adjusted FDR-adjusted P-value < 0.01 and
the absolute value of log2 fold-change > 1), namely 664 upregu-
lated and 790 downregulated genes (Figure 1A), were identified
in the PBMCs isolated from patients with COVID-19 as com-
pared with those from healthy subjects. The top significantly
enriched pathways by these COVID-19-associated DEGs were
‘cholesterol metabolism’ and ‘cell cycle’, which are implicated
in the innate immune response against viral infection and lym-
phocyte expansion during inflammation. Interestingly, the third
top pathophysiologically relevant, significantly enriched path-
way by these DEGs was ‘lysosome’ (Figure 1B). Notably, most of
the genes involved in the lysosome development and function
were strongly upregulated (Figure 1C), suggesting a strong acti-
vation of lysosome function in the PBMCs. Eight DEGs in choles-
terol metabolism were also upregulated in the PBMCs from
COVID-19 patients (Supplementary Figure S1 available online at
http://bib.oxfordjournals.org/).

Baseline characteristics, clinical and laboratory risk
factors and clinical outcomes

Next, we verified the occurrence of autophagosome–lysosome
dysfunction in COVID-19 patients by measuring the circu-
lating levels of two related markers, namely LC3B and p62.
Consistent with the literature, both proteins were confirmed
to be degraded by lysosomes in human monocytic cells
(Supplementary Figure S2 available online at http://bib.oxfo
rdjournals.org/). Patients were enrolled from 2 January 2020,
and the last patient was followed up on 8 March 2020
(Supplementary Figure S3 available online at http://bib.oxfo
rdjournals.org/). Table 1 shows the baseline characteristics,
within 48 h of hospital admission, and Figure 2 displays the
patient progress and treatment provided. A total of 77 patients
(45.8%) were male and the median age was 48 (IQR: 35–61) years.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Table 1. Demographic and epidemiologic characteristics within 48 h of admission

Asymptomatic or
mild COVID-19

Moderate-to-severe
COVID-19

OR (95% CI) P-value∗ OR (95% CI) P-value∗

(N=81) (N=87) Univariate – Multivariate –

Patient characteristics
Male sex—no. (%) 35 (43.2) 42 (48.3) 0.8 (0.4–1.5) 0.51 2.1 (0.9–5.3) 0.11
Median age (IQR) 40 (33–57) 54 (40–62) 1.0 (1.0–1.1) <0.001 – –
Age> 50—no. (%) 27 (33.3) 47 (54.0) 2.4 (1.3–4.4) 0.01 0.7 (0.3–2.0) 0.71
Median heart rate (IQR)—beats/min 86 (78–93) 86 (80–94) 1.0 (0.9–1.0) 0.35 – –
Median respiratory rate
(IQR)—breaths/min

20 (19–20) 20 (19–20) 1.2 (1.0–1.5) 0.04 1.1 (0.9–1.4) 0.56

Median systolic blood pressure
(IQR)—mmHg

122 (113–131) 127 (117–138) 1.0 (1.0–1.1) 0.02 1.1 (1.0–1.1) 0.002

Median diastolic blood pressure
(IQR)—mmHg

79 (74–86) 81 (75–88) 1.0 (0.9–1.0) 0.22 – –

Median temperature (IQR)—◦C 36.8 (36.5–37.2) 37.0 (36.8–37.6) 2.1 (1.2–3.5) 0.01 1.2 (0.9–2.5) 0.59
Epidemiology—no. (%)
Living in Hubei 22 (27.2) 14 (16.1) 0.5 (0.2–1.1) 0.08 – –
Recently visited to Hubei 23 (28.4) 34 (39.1) 1.6 (0.8–3.1) 0.15 – –
Had contact with Hubei residents 11 (13.6) 6 (6.9) 0.5 (0.2–1.3) 0.16 – –
Principle symptoms at admission—no. (%)
Fever 50 (61.7) 64 (73.6) 1.7 (0.9–3.3) 0.10 – –
Cough 38 (46.9) 45 (51.7) 1.2 (0.7–2.2) 0.53 – –
Sputum 13 (16.0) 17 (19.5) 1.3 (0.6–2.8) 0.56 – –
Nasal congestion 5 (6.2) 6 (6.9) 1.1 (0.3–3.8) 0.85 – –
Rhinorrhea 5 (6.2) 6 (6.9) 1.1 (0.3–3.8) 0.85 – –
Sore throat 9 (11.1) 16 (18.4) 1.8 (0.7–4.3) 0.19 – –
Chest pain or tightness 4 (4.9) 14 (16.1) 3.7 (1.2–11.7) 0.03 6.5 (1.5–37.3) 0.02

Dyspnea 0 (0.0) 6 (6.9) – – – –
Fatigue 6 (7.4) 14 (16.1) 2.4 (0.9–6.6) 0.09 – –
Diarrhea 3 (3.7) 10 (11.5) 3.4 (0.9–12.7) 0.07 – –
Myalgia 5 (6.2) 17 (19.5) 3.7 (1.3–10.5) 0.01 5.1 (1.4–21.6) 0.02

Headache 4 (4.9) 10 (11.5) 2.5 (0.8–8.3) 0.14 – –
Dizziness 1 (1.2) 6 (6.9) 5.9 (0.7–50.3) 0.10 – –
Chill and rigor 8 (9.9) 13 (14.9) 1.6 (0.6–4.1) 0.32 – –
Nausea or vomiting 2 (2.5) 2 (2.3) 0.9 (0.1–6.8) 0.94 – –
Co-morbidities—no. (%)
Hypertension 8 (9.9) 17 (19.5) 2.2 (0.9–5.5) 0.21 – –
Diabetes mellitus 3 (3.7) 6 (6.9) 1.9 (0.5–8.0) 0.66 – –
Hyperlipidemia 1 (1.2) 1 (1.1) – 0.99 – –
Liver disease 4 (4.9) 7 (8.0) 1.7 (0.5–6.0) 0.42 – –
Coronary heart disease 1 (1.2) 1 (1.1) – 0.99 – –
Tuberculosis 2 (2.5) 2 (2.3) 0.9 (0.1–6.8) 0.94 – –
Chronic pulmonary disease 3 (3.7) 3 (3.4) 0.9 (0.2–4.7) 0.93 – –
Renal disease 0 (0.0) 2 (2.3) – 0.99 – –
Coronary artery disease 2 (2.5) 3 (3.4) 1.4 (0.2–8.7) 0.71 – –
Laboratory result (within 48 h of admission)
Median white cell count (IQR)—×109 4.8 (3.9–6.5) 4.6 (3.5–5.8) 0.8 (0.7–0.9) 0.02 0.7 (0.5–0.9) 0.003

Median neutrophil count (IQR)—×109 2.9 (2.2–3.9) 3.0 (2.0–3.8) 1.0 (0.9–1.1) 0.26 – –
Median lymphocyte count (IQR)—×109 1.4 (1.1–1.9) 1.2 (1.0–1.6) 1.1 (0.9–1.2) 0.27 – –
Median alanine aminotransferase
(IQR)—U/L

20.0 (13.0–27.9) 23.8 (16.1–33.7) 1.1 (1.0–1.1) 0.001 1.0 (0.9–1.0) 0.20

Missing—N 2 0 2 – – –
Median aspartate transaminase
(IQR)—U/L

22.0 (18.5–29.5) 28.0 (22.3–42.1) 1.0 (0.9–1.0) 0.07 – –

Missing—N 2 0 2 – – –
Median creatinine (IQR)—µmol/L 60.0 (51.0–72.0) 64.0 (53.0–76.4) 1.0 (0.9–1.0) 0.06 – –
Missing—N 4 0 4 – – –
Median C-reactive protein (IQR)—mg/l 5.90 (1.82–14.5) 14.6 (5.5–36.0) 1.1 (1.0–1.1) <0.001 1.0 (1.0–1.1) 0.002

Missing—N 4 2 6 – – –

∗For group comparison between asymptomatic/mild COVID-19 versus moderate-to-severe COVID-19 infection, logistic regression was used. Patients with missing
laboratory results were omitted from the comparison.
p-values < 0.05 are marked in bold.
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Figure 1. Activation of lysosome pathway in PBMCs revealed by transcriptome analysis. (A) DEGs in PBMCs isolated from three COVID-19 patients versus three healthy

subjects. (B) KEGG enrichment analysis of the DEGs. (C) Upregulation of genes involved in lysosome function and biogenesis in COVID-19.

Among the 168 patients in this cohort, 81 (48.2%) did not
require oxygen therapy and were classified as asymptomatic
or mild COVID-19, 87 (51.8%) had moderate-to-severe disease
and were receiving supplemental oxygen or ventilatory support.
Patients who received supplemental oxygen were older, had a
higher systolic blood pressure and had a more frequent occur-
rence of chest pain/tightness, dyspnea and myalgia compared
with those who did not. Patients with more moderate-to-severe
COVID-19 also had lower white cell count and higher serum
levels of alanine aminotransferase and C-reactive protein. The
common symptoms at the time of hospital admissionwere fever

(67.9%) and cough (49.4%). The median time from the onset of
symptom to hospital admission was 3 days.More than one-third
of the patients (36.9%) reported at least one coexisting disease.
Systolic blood pressure> 124, presence of chest pain/tightness
or myalgia at hospital admission, white cell count < 3 × 109

and C-reactive protein > 22 mg/l within 48 h of admission
were the independent variables included for the clinical risk
score calculation (Table 2). The prognostic performance of the
clinical risk score was shown in Supplementary Figure S4 avail-
able online at http://bib.oxfordjournals.org/, demonstrating an
area under curve of 0.74 (95% CI: 0.67–0.81), with a sensitivity

http://bib.oxfordjournals.org/


6 Fang et al.

Figure 2. Progress of and treatment provided to 168 patients with COVID-19. Day of admission was set as day 0.

of 0.71 and specificity of 0.86 at the best cut-off point (total
score=3).

Among the 26 patientswhohad severe COVID-19 infection, 16
required noninvasive ventilation, 13 received tracheal intubation
andmechanical ventilation and 2 required extracorporeal mem-
brane oxygenation. Both patients required extracorporeal mem-
brane oxygenation died subsequently. Overall, among patients
with moderate-to severe COVID-19 infection, the most frequent

complications were acute respiratory distress syndrome (24.1%),
deranged liver function (11.5%) and nosocomial infection (3.4%).
Patients who had received oxygen support had a higher com-
plication rate than those who did not (4/81, 4.9% versus 44/87,
50.6%, P<0.001, Fisher’s exact test). The median duration of
hospital stay and time to viral clearance were longer for those
patients requiring supplemental oxygen or mechanical ventila-
tion (Table 3).
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Table 2. Clinical risk score for predicting COVID-19 outcome

Items OR (95% CI) (multivariable) Score

Systolic blood pressure> 124 1.9 (0.9–4.1) 2
Chest pain or tightness 3.6 (1.1–14.5) 4
Myalgia 2.7 (0.9–9.7) 3
White cell count< 3 ×109 2.2 (0.6–9.3) 2
C-reactive protein>22 mg/l 3.9 (1.7–9.4) 4

Table 3. Clinical outcomes

Asymptomatic or mild COVID-19 Moderate-to-severe COVID-19 All patients

(N=81) (N=87) (N=168)

Complications—no. (%)
Acute respiratory distress syndrome 0 (0.0) 21 (24.1) 21 (12.5)
Nosocomial infection 3 (3.7) 3 (3.4) 6 (3.6)
Deranged liver function test 1 (1.2) 10 (11.5) 11 (6.5)
Acute kidney injury 0 (0.0) 5 (5.7) 5 (3.0)
Myocarditis 0 (0.0) 2 (2.3) 2 (1.2)
Septic shock 0 (0.0) 2 (2.3) 2 (1.2)
Disseminated intravascular
coagulopathy

0 (0.0) 1 (1.1) 1 (0.6)

Oxygen therapy—no. (%)
Supplemental oxygen therapy
(≤8 L/min)

0 (0.0) 81 (93.1) 81 (48.2)

High-flow nasal cannula oxygen therapy 0 (0.0) 23 (26.4) 23 (13.7)
Noninvasive ventilation 0 (0.0) 16 (18.4) 16 (9.5)
Tracheal intubation 0 (0.0) 6 (6.9) 6 (3.6)
Prone ventilation 0 (0.0) 5 (5.7) 5 (3.0)
Extracorporeal membrane oxygenation 0 (0.0) 2 (2.3) 2 (1.2)
Median hospital stay (IQR)—days 16 (14–20) 22 (16–28) 19 (15–25)
Median viral positive duration
(IQR)—days

11 (9–17) 16 (9–20) 13 (9–19)

Discharge destination—no. (%)
Home 69 (85.2) 62 (71.3) 131 (78.0)
Transfer to other hospitals for
surveillance

12 (12.8) 23 (26.4) 35 (20.8)

Death 0 (0.0) 2 (2.3) 2 (1.2)

Concentrations of autophagy-/lysosome-associated
biomarkers in serum samples

The change of serum LC3B and p62 concentrations over time
in the entire cohort is displayed in Supplementary Figure S5
available online at http://bib.oxfordjournals.org/. A total of 50
patients (30 asymptomatic or mild cases and 20 moderate-to-
severe COVID-19) had blood samples collected within 10 days
of symptom onset. The baseline characteristics and clinical
outcomes of this sub-group of patients are summarized in
Supplementary Tables S1 and S2 available online at http://
bib.oxfordjournals.org/. Serum LC3B concentrations in the
moderate-to-severe group were significantly lower than that
in the asymptomatic or mild COVID-19 patients (P=0.03)
(Figure 3A). There was, however, no difference in the serum p62
concentrations between the two groups (Figure 3B).

Association between LC3B level, clinical risk factors and
outcomes

Table 4 shows the regression models using autophagy/lyso-
some markers and the clinical risk score for predicting

moderate-to-severe COVID-19. In the univariate model that
evaluates autophagy/lysosome markers, there was an asso-
ciation between a decrease in the serum LC3B concentration
and moderate-to-severe COVID-19. Serum LC3B concentration
of 5.5 ng/ml significantly distinguished patients with asymp-
tomatic or mild disease from those with moderate or severe
COVID-19 [OR 4.02 (95% CI: 1.2–13.6), P=0.026]. Serum p62
concentrations, however, did not predict the outcome. The pre-
diction performance of each autophagy biomarker was shown
in Supplementary Figure S6 available online at http://bib.oxford
journals.org/. Nevertheless, in patients ≤50 years, serum
concentrations of p62 in the moderate-to-severe group were sig-
nificantly lower than in the asymptomatic/mild group for those
aged 50 or below (P=0.03) (Supplementary Figure S7 available
online at http://bib.oxfordjournals.org/). Using the univariate
model, the OR of the clinical risk score alone was 1.6 (1.1–2.2)
per unit score. Patients with total score> 3 increased the risk
of moderate-to-severe COVID-19 OR: 7.5 (2.0–27.9). In the mul-
tivariate model that included both serum LC3B concentration
and the clinical risk score together with age and sex, a decrease
in LC3B concentration<5.5 ng/ml remained as an independent
predictor for moderate-to-severe COVID-19 disease.

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 3. Violin plots of s concentrations of (A) LC3B and (B) p62 in COVID-19 patients with asymptomatic or mild (N=30) and moderate-to-severe disease (N=20).

Horizontal lines in the plots are medians. The differences among groups were compared by t-test.

Table 4. Models to predict moderate-to-severe COVID-19 disease with LC3B level and clinical risk score

Models Asymptomatic or mild
COVID-19 (N=30)

Moderate-to-severe
COVID-19 (N=20)

OR (95% CI) P-value

Autophagy/lysosome markers (univariate)
LC3B concentration—ng/mla 6.13 [5.58–9.24] 5.38 [4.52–6.66] 0.7 (0.5–0.9) 0.044

LC3B<5.5 ng/ml—no.(%) 7 (23.3) 11 (55.0) 4.0 (1.2–13.6) 0.026

p62 concentration—ng/mla 2.40 [1.21–4.48] 2.05 [0.93–3.48] 1.0 (0.9–1.1) 0.647
p62<3.0 ng/ml—no.(%) 17 (56.7) 14 (70.0) 1.8 (0.5–5.9) 0.344
Clinical risk score (univariate) 2 [0–2] 4 [2–5] 1.6 (1.1–2.2) 0.005

Clinical risk score>3 (univariate) 5 (16.7) 8 (40.0) 7.5 (2.0–27.9) 0.003

LC3B level and clinical risk score as independent variables (multivariate)

Age (OR, 95% CI) 1.0 (0.9–1.0) 0.151
Male (OR, 95% CI) 1.0 (0.2–4.5) 0.986
LC3<5.5 ng/ml (OR, 95% CI) 4.6 (1.1–22.0) 0.042

Clinical risk score>3 (OR, 95% CI) 7.9 (1.9–41.0) 0.007

aMedian [IQR].
p-values < 0.05 are marked in bold.

Discussion
By transcriptome analysis, we first showed that DEGs in the
PBMCs isolated from COVID-19 patients were significantly
enriched in cell cycle, cholesterol metabolism and the lysosome
pathway. Our study revealed that most of the lysosome genes
were strongly upregulated, suggesting an aberrant activation
of lysosome function in PBMCs. Using clinical samples for
validation, we further demonstrated that circulating level
of LC3B, whose degradation is lysosome-dependent, was

reduced, and such reduction was associated with important
clinical outcomes in patients with COVID-19. A decrease in
LC3B level<5.5 ng/ml, within 10 days of the symptom onset,
independently predicted the development of moderate-to-
severe disease, requiring supplemental oxygen or ventilatory
support.

Aside from the lysosome pathway, altered cholesterol
biosynthesis and distribution are critical for the pathogenesis
of viral infection by modulating viral entry and assembly as
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well as the type I interferon response [15]. Our transcriptome
analysis revealed eight upregulated genes important for
cholesterol metabolism. Voltage-dependent anion-selective
channel 1 (VDAC1) and translocator protein (TSPO) are localized
on the mitochondrial membrane and are involved in trans-
porting cholesterol into the mitochondria [16, 17], whereas
Lipase A (LIPA) and Niemann-Pick disease type C2 (NPC2)
function in the production and egress of cholesterol from the
lysosome compartment [18, 19]. Another upregulated gene,
CD36, is involved in the cellular uptake of cholesterol [20].
This transcriptomic signature suggests a possible increase in
the cellular uptake and utilization of cholesterol in the PBMCs
during COVID-19. This finding is consistent with a recent
study showing increased cholesterol consumption during SARS-
CoV-2 exocytosis in the PBMCs of COVID-19 patients triggered
SREBP-2 activation, which leads to cytokine storm [21]. The 5,7-
conjugated diene sterol 7-dehydrocholesterol (7-DHC), which
is a substrate of 7-dehydrocholesterol reductase (DHCR7) for
cholesterol biogenesis, has also been shown to regulate type I
interferon production upon viral infection [22]. It is therefore
worthwhile to further investigate how the 7-DHC/interferon
signaling is altered in relation to the cytoplasmic cholesterol
level in COVID-19.

PBMCs are a diverse mixture of lymphocytes (T cells, B
cells and natural killer cells) and monocytes. In this regard,
activation of primary T lymphocytes has been shown to trigger
the lysosome development in CD4+ and CD8+ subsets [23].
Degradation of the immune checkpoint cytotoxic T lymphocyte
antigen-4 (CTLA-4) was also shown to be dependent on
lysosome, whose inhibition by chloroquine resulted in the
attenuation of transplant rejection [24, 25]. In addition, lysosome
is fundamentally involved in the antigen and autoantigen
processing in B cells [26]. Target-cell stimulation of the natural
killer cells also resulted in the rapid biogenesis of lysosomes
[27]. Therefore, our finding that the lysosome pathway is
activated in PBMCs is consistent with the immune activation
and the possible autoimmune pathogenesis of COVID-19 [28–
30]. In this study, lower concentrations of LC3B, a protein
degraded by lysosome, could discriminate moderate-to-severe
and asymptomatic/mild COVID-19 patients. Although the
exact nature of the underlying mechanisms that regulate
lysosome function during COVID-19 are still being elucidated,
these observations provide evidence that reduced serum LC3B
level could serve as a surrogate marker of excessive PBMC
activation and thus prognostication. Nevertheless, further
research is needed to clarify the detailed function of lysosome
in immunity/autoimmunity during COVID-19 pathogenesis.

This study has two major limitations. First, we used circu-
lating proteins as surrogate markers of the autophagosome–
lysosome system, and they may not reflect the precise mag-
nitude of lysosome function/dysfunction in the originating tis-
sue(s), which are presumably PBMCs. In future studies, it would
be interesting to explore the associations between disease sever-
ity and the LC3B and p62 levels in PBMCs. Second, this study was
conducted at a single center with few patients. A larger cohort
study of patients with COVID-19 from other areas is required
to validate the predictive capability of these two circulating
proteins.

Conclusion

Lysosome is excessively activated in the PBMCs isolated from
COVID-19 patients. Circulating LC3B (a protein degraded through
lysosome) could serve as an independent prognostic biomarker

for important clinical outcomes in patients with COVID-19. This
preliminary finding provides evidence supporting the rationale
for LC3B levels to stratify COVID-19 patients so that patientswith
lower LC3B will require early hospital admission for potential
supplemental oxygen therapy and other respiratory support.

Key Points

• Transcriptome analysis revealed excessive activa-
tion of lysosome in PBMCs isolated from COVID-19
patients.

• Reduced circulating levels of LC3B (a protein degraded
through the lysosome pathway) were associated with
moderate-to-severe COVID-19.

• Circulating LC3B might serve as a prognostic marker
for COVID-19.
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Supplementary data are available online at Briefings in Bioin-

formatics.
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