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Abstract

T cell exhaustion is a state of T cell dysfunction during chronic infection and cancer. Anti-

body-targeting immune checkpoint inhibitors to reverse T cell exhaustion is a promising

approach for cancer immunotherapy. However, molecular mechanisms of T cell exhaustion

remain incompletely understood. Here, we performed a transcriptome analysis by integrat-

ing seven exhaustion datasets caused by multiple diseases in both humans and mice. In

this study, an overlap of 21 upregulated and 37 downregulated genes was identified in

human and mouse exhausted CD8+ T cells. These genes were significantly enriched in

exhaustion response-related pathways, such as signal transduction, immune system pro-

cesses, and regulation of cytokine production. Gene expression network analysis revealed

that the well-documented exhaustion genes were defined as hub genes in upregulated

genes. In addition, a weighted gene co-expression analysis identified 175 overlapping

genes that were significantly correlated with the exhaustion trait in both humans and

mice. This study found that overlapping six genes were significantly upregulated and

highly related to T cell exhaustion. Finally, we revealed that CD200R1 and ADGRG1, less

described previously in exhaustion, contributed to T cell exhaustion. Overall, our findings

reveal the mechanisms of T cell exhaustion and provide an important reference to the immu-

nology community.

Introduction

T cell exhaustion, a state of differentiation that may develop independently from normal mem-

ory and effector T cells during chronic infections, sepsis, and cancer, is antigen dependent and

usually exhibits both poor effector functions in a hierarchical manner and impaired memory T

cell potential [1–4]. Typically, (i) the robust proliferative and multiple cytokine production

capacities that include interferon-γ (IFNγ), tumor necrosis factor (TNF), and interleukin-2

(IL-2) are lost in exhausted cells; (ii) inhibitory checkpoint receptors are expressed in increas-

ing amounts and diversity, such as programmed cell death protein 1 (PD1), lymphocyte
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activation gene 3 protein (LAG3), hepatitis A virus cellular receptor 2 (HAVCR2/TIM3), cyto-

toxic T lymphocyte antigen 4 (CTLA4), CD160, 2B4, B- and T-lymphocyte attenuator (BTLA),

and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT); and (iii)

changes in transcriptional profiles and metabolic derangements [2, 3, 5–8]. Exhausted T cells

maintain their functional exhaustion after exposure to antigens [9]. They were initially identi-

fied in chronic viral infections in mice [10, 11], and similar dysfunctional features have been

observed in cancer [12–14].

Intriguingly, although exhausted T cells are often related to inefficient clearance of persis-

tent infections and tumors, immune responses may be reinvigorated in exhausted T cells by

targeting inhibitory checkpoint receptors [2]. For example, the function of exhausted CD8+ T

cells present in mice during persistent lymphocytic choriomeningitis virus (LCMV) infection

is restored by blocking the interaction of PD1 with its ligand PD-L1 [15]. Likewise, blockade of

the inhibitory receptor CTLA4 allows transient reprogramming and functional rescue of T cell

dysfunction due to the tumor microenvironment [12]. Of note, antibody blockade of immune

checkpoints is considered a promising approach for cancer immunotherapy and therapeutic

intervention of virus- or tumor-specific T cells during chronic viral infections or tumors [12,

16, 17]. Fortunately, certain antibodies have been developed with good clinical performance;

for example, the antibody ipilimumab, targeting the CTLA4 pathway, has achieved US Food

and Drug Administration approval as the first immunotherapy for the treatment of melanoma

[17]. Furthermore, PD-1 inhibitors nivolumab and pembrolizumab have been approved and

win the 2018 Nobel Prize [18, 19]. First LAG-3-blocking antibody combination, Opdualag

(nivolumab and relatlimab-rmbw), has also recently been approved as treatment for patients

with unresectable or metastatic melanoma on March 18, 2022 [20]. Checkpoint blockade has

revolutionized how cancer is treated. However, it is important to emphasize that immunother-

apeutics remain problematic. For example, exhausted T cells manifest heterogeneous popula-

tions, such as T-bethi PD1mid and eomesodermin (EOMES)hi PD1hi subsets, but only the T-

bethi PD1mid subset, rather than EOMEShi PD1hi, is reinvigorated by blockade of the PD1 path-

way [21, 22]. In addition, the effectiveness of the PD1 pathway blockade depends on the pre-

existing antitumor immune response in patients. Generally, targeting both PD1 and the

CTLA4 pathway leads to adverse immune-related toxicities in patients [23], but it has been

reported that this varies from individual to individual [24].

Therefore, here, virus- and tumor-specific exhausted CD8+ T cells were investigated to

uncover the molecular mechanisms of CD8+ T cell dysfunction and also provide an important

reference for therapeutic blockade in the treatment of exhausted T cells. Of particular note is

that in mice models with cancer, antitumor immunity is enhanced via blocking multiple

immune checkpoints [16, 25]; thus, it is possible to make large achievements in immunothera-

peutics if more targets are found. In this study, raw RNA-sequencing (RNA-seq) read datasets

were collected from human and mouse samples, representing either normal or exhausted T

cells. Eventually, we revealed that the CD200R1 and ADGRG1 played a vital role in under-

standing T cell dysfunction caused by chronic infections and other diseases.

Materials and methods

Acquisition of the RNA-seq datasets

Raw RNA-seq reads of CD8+ T cells were collected from Gene expression omnibus (GEO).

Three datasets were fromHomo sapiens studies [26–28], and four datasets were fromMus
musculus [29–32]. Regarding the datasets, CD8+ T cell exhaustion occurs during non-small-

cell lung cancer, hepatocellular carcinoma, type 1 diabetes (T1D), or chronic infection. Sam-

ples were further filtered using the following criteria: (i) CD8+ T cell samples were used; (ii)
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transgenic and PD1 blockade samples were excluded; (iii) in the T1D study, T cell immunore-

ceptor with Ig and ITIM domains (TIGIT)+ killer cell lectin like receptor G1 (KLRG1)+ [dou-

ble high (DH)] and TIGIT-KLRG1- [double low (DL)] CD8+ T cells were used after 6 months

of teplizumab antibody treatment, since the authors investigated that DH cells exhibited an

exhaustion phenotype compared to DL cells. Moreover, DH cells treated with poliovirus

receptor-Fc (a ligand for TIGIT) were excluded because they were downregulated. The acces-

sion numbers reported in this paper were GSE99531, GSE111389, GSE85530, GSE93006,

GSE84820, GSE83978, and GSE86881.

RNA-seq pipeline analysis

The raw RNA-seq reads were filtered using the FASTX-Toolkit fastq_quality_filter [33] by set-

ting the parameters -q 20 (minimum quality score to keep) and -p 80 (minimum percent of

bases that must have [-q] quality). Duplications caused by polymerase chain reaction amplifi-

cation were removed such that paired- and single-end reads used fastuniq [33] and the

clumpify.sh program from BBMap suite v38.32 [34], respectively. In particular, arbitrarily dis-

ordered files were repaired using the repair.sh program from BBMap. Pre-processed reads of

humans and mice were then aligned to the GRCh38.94 (release 94) or GRCm38 (release 94)

reference genome using STAR [35] and subsequently, expression was calculated using RNA-

Seq by Expectation Maximization v1.3.1 [36]. Transcripts per kilobase per million (TPM) val-

ues were used.

Identification and analysis of differentially expressed genes (DEGs)

between exhausted and non-exhausted CD8+ T cells

The TPM values in each sample were normalized using the up-quartile normalization method.

The R package limma was used to remove batch effects. Principal component analysis (PCA)

was performed before and after removing the batch effect via FactoMineR and factoextra pack-

ages in R. The RP function in the RankProd R package was used to analyze DEGs [37]. The

topGene function in the package was used to identify DEGs that were required to pass a False

discovery rate (FDR) threshold of 0.05, and a linear fold change threshold of 1.5. Gene ontol-

ogy (GO) analysis based on the biological process and construction of protein-protein associa-

tion networks was performed using the Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING, https://string-db.org/) database [38]. A process or pathway was considered

to be significantly enriched if the FDR value was < 0.05. The protein-protein interaction files

obtained from STRING were then used to identify hub genes in the network. The hub genes

with the top interaction degrees were extracted and analyzed using Cytoscape software version

3.7.2 [39] and its cytoHubba [40] plugin.

Co-expression based on weighted correlation network analysis (WGCNA)

WGCNA [41] is an R package that is used to study clusters (modules) of highly correlated

genes, the relationship between clinical traits and gene expression profiles, as well as calculat-

ing the correlation values within each module or module-trait relationships. The main

WGCNA workflow was as follows: (i) The gene expression matrix and clinical traits were pre-

pared and normalized TPM values were used. (ii) The soft thresholding power was determined

by calling the network topology analysis pickSoftThreshold function. The set of candidate soft-

thresholding powers ranged from 1–30. Then, the scale independence and mean connectivity

for each power were calculated. A suitable power was selected if the degree of independence

was more than 0.9 (human 11, mouse: 12). (iii) A co-expression network (unsigned network)

was constructed and modules were identified. Modules are defined as clusters of highly
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correlated genes. Unsupervised clustering is used to identify modules, while here the default

method is hierarchical clustering by using the standard R function hclust. All genes were

assigned to dozens of modules via hierarchical clustering and dynamic tree cutting. These

modules were represented using unique color labels. (iv) Modules were related to external

information, such as clinical traits. First, the Module eigengene (ME) values were recalculated.

An eigengene was the first principal component of a module expression matrix and thus was

considered representative information for all genes in each module. Second, these eigengenes

were correlated with clinical traits to obtain significant associations using the Pearson coeffi-

cient. Finally, the module-trait relationships were visualized using the labeledHeatmap func-

tion. (v) The weight was added to the existing module eigengenes and the relationships among

eigengenes and the exhaustion trait were plotted using the plotEigengeneNetworks function,

including a heatmap and dendrogram. (vi) The module membership (MM) was examined and

the key drivers in interesting modules were identified. First, a matrix of Pearson correlation

coefficients was obtained among genes and modules. Second, a similar matrix among genes

and exhaustion traits was obtained. Third, the two matrices were combined and the interesting

modules were analyzed and visualized using the verboseScatterplot function.

Gene set enrichment analysis (GSEA)

GSEA was performed using the GSEA software version 4.0.2 [42]. Eighty gene sets associated

with T cell exhaustion traits were collected from the molecular signatures database v7

(MSigDB 7.0) and used for GSEA. Kyoto encyclopedia of genes and genomes (KEGG) path-

way enrichment analysis was performed using GSEA. The gene set used was c2.cp.kegg.v7.0.

symbols.gmt. The normalized enrichment score and FDR values were calculated using permu-

tation testing.

Statistical analysis

Statistical analyses were performed using R software, version 3.5.2. Statistical analysis was per-

formed using an unpaired two-tailed Student’s t-test (�P< 0.05, �� P< 0.01, ��� P< 0.001).

Results

Human and mouse samples were characterized using RNA-seq datasets

The analysis procedure used in this study is shown in Fig 1. Raw RNA-seq reads were collected

from seven studies, including threeHomo sapiens and fourMus musculus studies. CD8+ T cell

samples with exhausted or non-exhausted traits were selected according to rigid criteria (see

the Materials and Methods). A total of 88 human and 35 mouse samples showing either

exhausted or non-exhausted traits were used to comprehensively uncover the molecular mech-

anisms of CD8+ T cell dysfunction and identify highly efficient targets for the treatment of

cancer and chronic infections (Table 1). Detailed information of the 123 samples is shown in

S1 Table.

In this study, virus- and tumor-specific CD8+ T cells became exhausted within infections,

cancer, or other disease microenvironments, such as LCMV infection, non-small-cell lung

cancer, hepatocellular carcinoma, and T1D. Raw reads were then aligned to human or mouse

reference genomes separately and TPM values were calculated (see the Materials and Methods

section for more information). To compare gene expression profiles of exhausted and non-

exhausted CD8+ T cells that were collected from different studies and diseases, batch effects

were removed after TPM value normalization. PCA analysis was further performed to com-

pare overall profiles before and after batch effect removal and normalization (S1 Fig). Original
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datasets with different resources were classified into different clusters for humans and mice;

however, there were no obvious clusters after batch effect removal and normalization. Samples

with different exhausted and non-exhausted traits were divided into different clusters after

batch effect removal and normalization, indicating that the gene expression profiles showed

differences due to these traits.

DEGs of exhausted and non-exhausted CD8+ T cells

Having characterized the exhausted and non-exhausted CD8+ T cells, DEGs associated with

exhausted CD8+ T cells were identified using normalized TPM values. Genes showing signifi-

cantly different expression were defined as fold change > 1.5, and FDR < 0.05. A total of 199

upregulated and 441 downregulated genes were identified in exhausted CD8+ T cells in

humans (S2 Table). Distinct expression profiles of these DEGs in both exhausted and non-

exhausted CD8+ T cells were displayed and showed distinct patterns between exhausted and

Fig 1. A schematic diagram of the workflow. GEO, Gene expression omnibus; RSEM, RNA-Seq by Expectation–Maximization; DEGs, Differentially

expressed genes; GO, Gene ontology; WGCNA, Weighted correlation network analysis; GSEA, Gene set enrichment analysis.

https://doi.org/10.1371/journal.pone.0274494.g001
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non-exhausted samples (Fig 2A). Compared to humans, 546 upregulated and 575 downregu-

lated genes were identified in exhausted CD8+ T cells of mice (S2 Table). Subsequently, a heat-

map of the 1,121 DEGs was constructed and showed obvious gene signatures in exhausted

datasets, which were markedly distinct from non-exhausted datasets (S2A Fig).

Next, the DEGs in exhausted CD8+ T cells were used to identify enriched GO terms (bio-

logical processes) and KEGG pathways (Fig 2B–2E, S2B and S2C Fig, and S2 Table). Upregu-

lated genes were involved in several GO biological processes and KEGG pathways, such as

inflammatory response, regulation of cytokine production, immune system process, and lym-

phocyte proliferation. Specifically, several cytokines, immune-related molecules, and chemo-

kines were upregulated in exhausted T cells and involved in the processes or pathways, such as

CCL3 (also known as MIP-1a), CCL4L1, TNF (tumor necrosis factor) and receptor family

genes (TNFSF4 and TNFRSF9), CXCL13 (also known as C-X-C motif chemokine ligand-13),

IL13. Of particular note, the inhibitory receptors PD1, CTLA4, HAVCR2 (also known as T-

cell immunoglobulin, and mucin-domain containing-3 [TIM3]), and TIGIT were also among

the most upregulated genes in exhausted T cells. Downregulated genes were enriched in sig-

naling, cell migration, cell adhesion, and regulation of phosphorylation. We found that CXCL

chemokine family, such as CXCL1, CXCL2, CXCL3, CXCL8, and CXCL16, were enriched,

which might imply their roles in T cell exhaustion. In particular, exhausted CD8+ T cells dis-

play suppressed IFN-γ production [2, 43], whereas here, its receptor, IFN-γ receptor 2

(IFNGR2), was expressed at a low level among exhausted samples, which might affect the IFN-

γ signaling activation. In contract, it has been reported that some exhausted subsets expressed

a decent amount of IFNg [44], thus we hypothesized that this might be due to the severity of T

cell exhaustion as the impairment of IFN-γ production occurs in the later stage of exhaustion

[45, 46]. Functional enriched KEGG pathway analysis indicates that human DEGs are

enriched in several pathways, as shown in Fig 2D and 2E. Among the total enriched pathways

of upregulated genes, cytokine-cytokine receptor interaction, rheumatoid arthritis, and che-

mokine signaling pathways were also enriched in downregulated genes. Cell adhesion mole-

cules, autoimmune thyroid disease, and Toll-like receptor signaling pathways were unique to

upregulated genes. Intriguingly, the IL-17 signaling pathway is predominantly enriched in

downregulated genes. In detail, we found that the CXCL chemokine family (CXCL1, CXCL2,

CXCL3, CXCL8), FOS, CCL2, IL1B, MMP9, S100A9, and TRAF4 were enriched in this

Table 1. Homo sapiens and Mus musculus sample category information.

Species Status Sample size Reference

Homo sapiens Exhausted 11 Thommen et al. (2018)

Non-exhausted 26

Exhausted 6 Kim et al. (2018) [27]

Non-exhausted 12

Exhausted 16 Long et al. (2016)

Non-exhausted 17

Mus musculus Exhausted 6 Mognol et al. (2017)

Non-exhausted 12

Exhausted 2 Man et al. (2017)

Non-exhausted 4

Exhausted 3 Utzschneider et al. (2016)

Non-exhausted 3

Exhausted 5 Pauken et al. (2016)

Non-exhausted 0

https://doi.org/10.1371/journal.pone.0274494.t001
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pathway, but most of them were associated with chemokines and cell proliferation rather than

the IL-17 production.

We further analyzed protein association network of upregulated genes by using the

STRING website [38]. To identify the key drivers of the networks, the Cytoscape Cytohubba

plugin [39, 40] was used to identify hub genes with the top 10 or 75 interaction degrees by ana-

lyzing interactions files obtained from the STRING database (Fig 2F and 2G, S2D and S2E

Fig). Among the hub genes, three of the key driver genes, programmed cell death protein 1

(PDCD1),HAVCR2, and TNFRSF9 (its alternative name is CD137), were simultaneously iden-

tified in both humans and mice. In addition, two main networks were observed in mice (S2D

Fig). One network was related to the immune system process, containing genes, such as PD1,

TIGIT, HAVCR2, and TNF superfamily member 4 (TNFSF4). Another main network, which

contained interactions supported by experiments (shown in magenta), was associated with the

mitotic cell cycle process and cell population proliferation, such as maternal embryonic leucine

zipper kinase (MELK) and mitotic checkpoint serine/threonine-protein kinase BUB1 beta

(BUB1B), encoded byMELK and BUB1B, respectively. Of note, some genes that may play

important roles in exhaustion were not connected to the identified networks because only the

Fig 2. Human differentially expressed gene (DEG) analysis. (A) Heatmap constructed using 199 upregulated and 441 downregulated genes in

exhausted T-cells. Significant changes are determined as fold change> 1.5 and False discovery rate (FDR)< 0.05. (B–C) Gene ontology (GO) and (D–

E) Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for human DEGs. Selected key biological processes in (B)

upregulated and (C) downregulated genes. GO analysis is performed based on biological process. (D) All six enriched KEGG pathways in upregulated

genes. (E) The top six enriched KEGG pathways in downregulated genes. GO terms and KEGG pathway remain when the FDR is< 0.05. (F–G)

Functional protein association networks of upregulated genes. (F) Cytoscape software and Cytohubba plugin have been used to identify hub genes with

top 10 interaction degrees via analyzing interactions files obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)

database. Red to yellow represents interaction degrees from top to bottom. (G) Interaction degrees of the hub genes. X-axis represents the number of

adjacent genes.

https://doi.org/10.1371/journal.pone.0274494.g002
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hub genes with top 10 or 75 interaction degrees were shown, such as adhesion G protein-cou-

pled receptor G1 (ADGRG1), thymocyte selection associated high mobility group box (TOX/

TOX2), and CD200R/CD200R1.

Identification of key genes in exhausted CD8+ T cells based on WGCNA

WGCNA is an effective method to detect co-expressed modules and hub genes in many

aspects [47]. To investigate the relationship between the modules and clinical traits and iden-

tify potential prognostic markers of exhausted T cells, co-expressed modules were constructed

with WGCNA using the gene expression profiles of exhausted and non-exhausted CD8+ T

cells in humans (Fig 3) and mice (S3A–S3D Fig). A total of 11,499 genes from 88 human sam-

ples were used for WGCNA. A suitable power of 11 was selected for the co-expression analysis

(Fig 3A). Genes with common biological functions and associations were assigned into 24 co-

expressed modules (clusters), including the gray module, which contained the genes that were

not classified into any of the other 23 modules. Subsequently, the correlation values between

the modules and clinical traits (exhausted or non-exhausted) were calculated based on the cor-

relations between module eigengenes (MEs) and clinical traits, demonstrating that the red

module was most positively correlated with exhaustion and that the correlation value was 0.52

(Fig 3B). To detect groups of correlated eigengenes and exhaustion, the existing 23 modules

(except the gray module) were further analyzed using eigengene dendrogram and eigengene

adjacency heatmap (Fig 3C). The dendrogram also suggested that the red module was highly

related to T cell exhaustion. In addition, the eigengene dendrogram showed a certain correla-

tion between the black module and exhaustion, but its correlation value (0.32) was less than

the red module (Fig 3B). Taken together, the genes in the red modules, including 263 genes,

might play a critical role in T cell exhaustion (S3 Table) and need further studies. Next, to mea-

sure the importance of each gene within a specific module and their contributions to the phe-

notype, the module membership (MM) vs. gene significance (GS) of the interesting red

module was calculated (Fig 3D). The MM correlates the MEs with gene expression values and

implies how close a gene is to a given module, while the GS represents the correlation between

individual genes and trait (T cell exhaustion) [41]. Generally, if a gene exhibit high levels of

MM and GS values, it may represent an important membership for the module and is signifi-

cantly related to the trait. Notably, the well-studied inhibitory receptors, PD1, CTLA4,

HAVCR2, TIGIT, and CD27 (a member of the tumor necrosis factor receptor superfamily),

showed a high level of MM vs. GS, indicating that they were highly correlated with T cell

exhaustion and key components of the underlying biological function.

Genes in the red module were further used for GO (biological process) and KEGG pathway

enrichment analyses (Fig 4). Metabolic derangements occur in exhausted T cells [2]. Here, the

GO and KEGG pathway analyses demonstrated that these genes were particularly enriched in

metabolic pathways (such as pyrimidine metabolism and glycine, serine, and threonine metab-

olism), cell cycle, DNA replication, phosphorylation, and p53 signaling pathway, which may

shed light on T cell exhaustion mechanisms.

Upregulations of CD200R1 and ADGRG1 in exhausted CD8+ T cells

Next, to investigate the novel and robust driver genes in T cell exhaustion that caused by

chronic infection or other diseases, the above findings from the upregulated genes and co-

expression analyses (Fig 5A) were integrated to discover the underlying molecular mecha-

nisms. First, 21 overlapping upregulated genes were identified between humans and mice. Sec-

ond, 175 overlapping genes were identified from the most exhausted-correlated modules

(human, red module; mouse, turquoise module) based on co-expression analysis. Eventually,
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nine overlapping genes were obtained by combining the upregulated genes and co-expression

analyses between humans and mice. The nine overlapping genes were further used to con-

struct protein-protein association networks using the STRING database. Six of the nine pro-

teins [PD1 (encoded by PDCD1), TIGIT, HAVCR2, TNFSF4 (also known as CD134 or

Fig 3. Co-expression analysis in human exhausted T-cells. (A) Analysis of a set of soft thresholding powers. The left panel is the scale free fit index as

a function of soft thresholding power. The right panel is mean connectivity as a function of the soft thresholding power. (B) Heatmap of module and

trait correlation. Module is marked by unique color labels. ME: module eigengene. (C) Eigengene dendrogram and heatmap between modules and the

exhaustion trait. The top figure represents the hierarchical clustering dendrogram of MEs and exhaustion trait. The bottom figure shows the eigengene

network heatmap plot of the adjacencies including exhaustion trait. Each row and column corresponds to one ME or exhaustion trait. Red color

represents positive correlation, while blue represents negative correlation. (D) Scatterplot of gene significance for exhaustion trait (y-axis) vs.

membership in a selected module (x-axis).

https://doi.org/10.1371/journal.pone.0274494.g003
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OX40L), TOX, and CD200R1] were associated with the regulation of immune system pro-

cesses. In particular, the well-studied PD1, TIGIT, HAVCR2, and TNFSF4 were classified into

one of the main networks, while TOX and CD200R1 belonged to neither of the main networks.

Of particular note, TOX and CD200R1 showed a high level of MM vs. GS, suggesting that these

two genes were most important during T cell exhaustion (Fig 3D). In addition, the expression

profiles of the six genes were confirmed at the mRNA level (Fig 5B and 5C). Compared to

non-exhausted CD8+ T cells, the expression of TOX and CD200R1 was similar to that of the

well-studied inhibitory receptors, which showed distinctly high levels of expression in

exhausted CD8+ T cells.

However, many recent studies have reported TOX as a promoting factor for T cell exhaus-

tion [29, 30, 48, 49], while CD200R1 is a favorable prognostic factor [50], suggesting that those

samples may show less exhaustion presumably. To further demonstrate that the CD200R1,

TOX, and other well-studied genes indeed contribute to T cell exhaustion rather than due to

certain diseases and technique factors, we reconducted the WGCNA analysis by removing the

T1D dataset (anti-CD3 therapy) (S4 Fig) and confirmed the expressions of corresponding

genes in each dataset (S5 Fig). In detail, the WGCNA analysis revealed the highest positive cor-

relation between exhaustion and the brown module. Most importantly, all the six overlapping

genes of interest in Fig 5 were also identified in the brown module, suggesting that those

genes’ contributions to T cell exhaustion may not be affected by the T1D datasets. Further

visualization of the six gene expressions showed that CD200R1 and other genes were consider-

ably upregulated in each dataset, respectively, demonstrating that the gene upregulations were

not driven by any specific dataset.

Furthermore, we found that ADGRG1 was also considerably upregulated in both human

and mouse exhausted T cells (S6 Fig), but was only co-expressed in the selected mouse tur-

quoise module, and not in the human red module. G protein-coupled receptor 56 (GPR56) is

encoded by ADGRG1 [51] and is expressed in all human cytotoxic lymphocytes [52].

Collectively, the transcriptome analysis of human and mouse exhausted CD8+ T cells

revealed that the six genes played important roles in CD8+ T cell exhaustion. Of particular

Fig 4. GO and KEGG pathway enrichment analysis for human red module genes. (A) Selected key biological processes. (B) All enriched KEGG

pathways. GO terms and KEGG pathway remain when the FDR is< 0.05.

https://doi.org/10.1371/journal.pone.0274494.g004
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note, most of their contributions to exhaustion are well known, but the roles of CD200R1 and

ADGRG1 are lesser described in previous studies. Those two targets that we identified may

shed light on well understanding of T cell exhaustion by further in vitro tests.

Predefined exhaustion gene sets were enriched in exhausted CD8+ T cells

Additionally, to interpret genome-wide transcriptional profiles of the exhausted T cell samples

in this study and further examine the molecular mechanisms of T cell exhaustion, GSEA was

Fig 5. Overlap genes between human and mouse sets. (A) Overlap of upregulated genes in exhausted T-cells and most correlative modules with

exhaustion between human and mouse, as well as protein associated network of nine proteins in both the overlap of upregulated genes and selected

modules. Red colored nodes: regulation of immune system process (GO:0002682). (B) and (C) show the expression of selected genes at the mRNA level

in human and mouse datasets from exhausted (red) and non-exhausted (blue) T cells, respectively. Median values are indicated by lines in the box and

whisker plot. Hinge values and whisker 1.5� interquartile range (IQR) values have been calculated using Tukey. Statistical analysis has been performed

using an unpaired two-tailed Student’s t-test (�P< 0.05, �� P< 0.01, ��� P< 0.001).

https://doi.org/10.1371/journal.pone.0274494.g005
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performed using the 80 predefined gene sets collected from MSigDB that contained informa-

tion on immunologic signatures, and gene sets from the biomedical literature. The 80 gene

sets were associated with CD8+ T cell exhaustion during chronic infection or cancer. Com-

pared to 17 gene sets in mice, 12 of 80 gene sets were significantly enriched in exhausted CD8

+ T cells in humans (P< 0.05) (S4 Table). The gene members of the majority of those enriched

gene sets were either upregulated or downregulated in comparison to exhausted or PD1 high

CD8+ T cells versus effector, naïve, PD1 low, or memory CD8+ T cells. Four enriched gene

sets in the exhausted CD8+ T cells were shared between humans and mice (Fig 6 and S3E–

S3H Fig), including gene sets GSE9650_effector_VS_exhausted_CD8_TCELL_DN (genes

downregulated in comparison to effector CD8 T cells versus exhausted CD8 T cells),

GSE9650_naïve_VS_exhausted_CD8_TCELL_DN (genes downregulated in comparison to

naive CD8 T cells versus exhausted CD8 T cells), GSE9650_effector_VS_memory_CD8_T-

CELL_UP (genes upregulated in comparison to effector CD8 T cells versus memory CD8 T

cells), GSE9650_exhausted_VS_memory_CD8_TCELL_UP (genes upregulated in comparison

to exhausted CD8 T cells versus memory CD8 T cells). These gene sets were obtained from the

MSigDB C7 immunologic signatures [21]. Most of the genes in the four gene sets were catego-

rized as transcription factors, cell differentiation markers, oncogenes, cytokines, and growth

factors. Additionally, during CD8+ T cell exhaustion caused by either chronic infection or

other diseases in this study, some DEGs of human were particularly identified in the four

enriched gene sets (S5 Table). These findings may provide insight into understanding the con-

sistent mechanisms of T cell exhaustion caused by multiple factors between human and mice.

Discussion

Immunotherapies that reactivate exhausted T cells by targeting immune checkpoint inhibitors

have emerged as promising treatment options [16, 17, 53, 54]. Understanding the features of

and pathways to T cell exhaustion has crucial implications for successfully blocking immune

checkpoint inhibitors and immunotherapies. However, T cell exhaustion mechanisms and

checkpoint immunotherapy are yet to be fully described. As T cell exhaustion has been sepa-

rately described in humans and mice during chronic infection, cancer, HIV, or hepatitis C

virus infection [10–12, 55], in this study, both human and mouse exhausted CD8+ T cells were

comprehensively analyzed. As exhaustion may display potential differences between cancer

and chronic infection, the exhausted T cells used in this study were developed during multiple

microenvironments, such as non-small-cell lung cancer, hepatocellular carcinoma, T1D, or

chronic infections with seven origins. Above all, these data might be able to shed light on the

mechanisms of exhaustion.

The independent transcriptome analyses of humans and mice indicated that several genes,

especially CD200R1 and TOX, were significantly upregulated in exhausted CD8+ T cells

and were key drivers of the modules that contributed to the exhaustion trait based on the

WGCNA. Recent studies have also highlighted the important role of the TOX transcriptional

regulator in driving T cell exhaustion and diminishing anti-tumor or anti-viral functions [56–

58]. In this study, we found that CD200R1 showed important role in exhaustion. Previous

study has been reported that it was considered a viable therapeutic target in cancer by blocking

CD200R in the CD200R1 pathway [54]. Compared to CD200R1 and TOX, GPR56 might also

be a candidate target, even though its robustness is weaker (not detected in the human red

module).

The mechanisms underlying T cell exhaustion were uncovered. Hallmarks of exhausted T

cells include overexpression of inhibitory receptors, loss of proliferative potential and cyto-

kine production, markedly different transcriptional profiles, metabolic derangement, and
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Fig 6. GSEA of exhausted versus non-exhausted CD8+ T-cells. (A–D) The four shared enriched gene sets in human exhausted T-cells with a P-

value< 0.05. ES, enrichment score; NES, normalized enrichment score.

https://doi.org/10.1371/journal.pone.0274494.g006
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the use of key transcription factors [2, 12, 21, 55, 59, 60]. These findings might explain and

demonstrate the formation of these key characteristics. First, the inhibitory receptors, PD1,

CTLA4, TIGIT, HAVCR2, and TNFSF4 were upregulated. Second, several biological path-

ways were modulated via either significantly upregulated or downregulated genes, which

potentially indicated impaired T cell capacity to proliferate and secrete cytokines. Specifi-

cally, the GO and KEGG pathway enrichment analyses suggested that DEGs were enriched

in cytokine-cytokine receptor interaction, immune system process, cell cycle, phosphoryla-

tion, and the IL-17 signaling pathway. Of note, only one pathway, cytokine-cytokine recep-

tor interaction, was enriched in mouse upregulated genes. In addition, the enriched IL-17

signaling pathway in human downregulated genes might provide a novel way to understand

T cell exhaustion. Third, co-expressed genes based on WGCNA demonstrated altered

metabolism in exhausted T cells. Only protein-protein interaction network and KEGG

enrichment analyses of selected human red modules were performed, as there were too

many genes in the mouse turquoise module (5748 genes). Thus, genes in the human red

module were enriched in metabolic pathways, such as pyrimidine metabolism and glycine,

serine, and threonine metabolism. In fact, cell cycle, DNA replication, nucleotide excision

repair, and p53 signaling pathways were enriched in genes in the red module. Moreover,

genes associated with cell cycle regulation and mitotic checkpoint, including cyclin depen-

dent kinase 1, cyclin B1, budding uninhibited by benzimidazoles 1 (BUB1), cyclin A2,

mitotic arrest deficient 2 like 1, BUB1B, cell division cycle 20, and cyclin B2 were the hub

genes of the protein interaction network. Among the eight hub genes, only BUB1 and

BUB1B were significantly upregulated.

Additionally, according to the GSEA, a minority of the considerably upregulated or down-

regulated genes identified in this study were observed in the gene members of the four shared

gene sets (S5 Table). Specifically, to our surprise, upregulated ADGRG1 was identified from

two shared gene sets, effector_VS_exhausted_CD8_TCELL_DN and exhausted_VS_memor-

y_CD8_TCELL_UP, which supported our previous hypothesis that ADGRG1 was a potential

target for treatment. The downregulated genes, annexin A1 (ANXA1) and interleukin 12

receptor, beta 2 subunit (IL12RB2) were observed in the gene set effector_VS_memor-

y_CD8_TCELL_UP. ANXA1 and IL12RB2 play important roles in Th1 cell differentiation and

are thought to contribute to inflammatory responses and host defense [61, 62]. The legumain

gene is downregulated in exhausted_VS_memory_CD8_TCELL_UP and may be involved in

endogenous proteins for major histocompatibility class II presentation in the lysosomal/endo-

somal system [63–65].

Taken together, by taking advantage of the transcriptome analyses between humans and

mice, a novel way to understand the mechanisms of T cell exhaustion was revealed. For exam-

ple, we found the important roles of CD200R1 and ADGRG1 in exhaustion. The full gene lists,

such as DEGs, may be served as a reference to the immunology community. Although T cell

exhaustion has been identified in humans and mice, it may show differences to some degree,

such as altered transcriptional profiles and transcriptional factors. Thus, to fully understand

molecular mechanisms of T cell exhaustion and immunotherapy using mice as models, further

comprehensive transcriptome analyses of multiple datasets that include humans and mice will

be required in the future.

Supporting information

S1 Fig. Principal component analysis (PCA) ofHomo sapiens (A–C) andMus musculus (D–

F). (A, D) and (B, E) display clustering based on the dataset source before and after batch effect
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removal and normalization, respectively. (C, F) shows the clustering of non-exhausted and

exhausted traits after batch effect removal.

(TIF)

S2 Fig. Mouse gene expression profile of differentially expressed genes (DEGs). (A) Heat-

map constructed using 546 upregulated and 575 downregulated genes in exhausted T-cells.

(B–C) Gene ontology (GO) enrichment analysis for mouse DEGs. Selected key biological pro-

cesses in (B) upregulated and (C) downregulated genes. (D–E) Functional protein association

networks of upregulated genes. Top 10 and 75 interaction degrees of hub genes are displayed.

Red to yellow represents interaction degrees from top to bottom.

(TIF)

S3 Fig. Co-expression and Gene set enrichment analysis (GSEA) of mouse. (A–D) Co-

expression analysis of mouse exhausted T-cells. (A) Analysis of a set of soft thresholding pow-

ers. (B) Heatmap of module and trait correlation. (C) Eigengene dendrogram and heatmap

between modules and the exhaustion trait. (D) Scatterplot of gene significance for exhaustion

trait (y-axis) vs. membership in a selected module (x-axis). (E–H) Gene set enrichment analy-

sis (GSEA) of exhausted versus non-exhausted CD8+ T-cells. The four shared enriched gene

sets in mouse exhausted T-cells with a P-value< 0.05. ES, enrichment score; NES, normalized

enrichment score.

(TIF)

S4 Fig. WGCNA analysis by removing the T1D dataset in human. PCA analysis of the two

datasets was performed before (A) and after removing batch effects. (C) Heatmap of modules

and trait correction. (D) Eigengene dendrogram and heatmap between modules and the

exhaustion trait. (E) Scatterplot of gene significance for exhaustion trait (y-axis) vs. member-

ship in a selected module (x-axis).

(TIF)

S5 Fig. Expression level of selected genes in each human dataset, respectively. Median val-

ues are indicated by lines in the box and whisker plot. Hinge values and whisker 1.5� inter-

quartile range (IQR) values have been calculated. �P< 0.05, �� P< 0.01, ��� P< 0.001.

(TIF)

S6 Fig. Expression level of ADGRG1. (A) and (B) show the expression of ADGRG1 at the

mRNA level in human and mouse datasets, respectively. �P< 0.05, �� P< 0.01, ��� P< 0.001.

(TIF)

S1 Table. The RNA-seq datasets for Homo sapiens and Mus musculus.
(DOCX)

S2 Table. DEGs and their matched genes for each enriched process and pathway in Fig 2

and S2 Fig.

(DOCX)

S3 Table. Gene list of the red module in Fig 3.

(DOCX)

S4 Table. Enriched gene sets of Homo sapiens and Mus musculus.
(DOCX)

S5 Table. Overlap genes between the four enriched gene sets in Fig 6 and human DEGs.

(DOCX)
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