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ABSTRACT Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC
21022 were sequenced. The phages all have relatively small genomes, ranging from
15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster
AN Arthrobacter phages.

Arthrobacter spp. are soil bacteria useful for bioremediation and their ability to
metabolize hydrocarbons (1, 2). The more than 40 bacteriophage genomes of

Arthrobacter hosts are diverse, forming 10 clusters (AK to AU) and 2 singletons (3). Ten
cluster AN phages previously described are of interest in that they each have a
relatively small genome (15.3 to 15.6 kbp) for phages with a siphoviral morphology (3).
They are closely related to each other at the nucleotide level, even though they were
isolated in geographically distinct locations (3).

We have isolated and characterized 12 bacteriophages that infect Arthrobacter sp.
strain ATCC 21022 (4). All the phages were isolated from soil samples by students in the
Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Sci-
ence (SEA-PHAGES) program (5) at nine different locations (Table 1) using an enrich-
ment procedure, except for phage Lore, which was isolated by direct plating. They have
a siphoviral morphology with a relatively small isometric head (39 � 7 nm diameter)
and a noncontractile tail (98 � 15 nm).

Phage genomes were sequenced using the Illumina MiSeq platform at either the
North Carolina State University Genomic Sciences Laboratory or the Pittsburgh Bacte-
riophage Institute using 150-bp unpaired reads. Sequences were assembled using
Newbler, generating major contigs with coverage from 2,032- to 12,826-fold. The
genomes are similarly sized (15.3 to 15.6 kbp) with similar G�C content (~60%), and
all have a defined end with 11-base 3= single-stranded DNA extensions (right end,
5=-CCCGCGCCACC) (Table 1). All of the phages are closely related to other cluster
AN phages (6), with �85% pairwise average nucleotide sequence identities, span-
ning �95% of their genome lengths. Genomes were annotated using DNA Master
(cobamide2.bio.pitt.edu) with coding sequences predicted by GeneMark (7) and Glim-
mer (8), and 26 to 27 protein-coding genes were identified (Table 1). No tRNA or
transfer-messenger RNA (tmRNA) genes were detected by Aragorn (9) or tRNAscan-SE
(10).

Except for a single leftward-transcribed gene in each genome (e.g., Courtney3 21),
all the genes are transcribed rightward. These include virion structure and assembly
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genes, including the terminase large subunit, portal, tape measure protein, minor tail
protein, and fused capsid-protease genes. These are followed by a lysis cassette in
which peptidase and amidase functions are encoded by two separate genes, and
four genes coding for predicted DNA binding proteins with predicted helix-turn-
helix DNA binding motifs, and an HNH endonuclease. We did not identify genes
coding for DNA replication or DNA metabolism functions, and it is unclear how
replication is initiated or regulated. The primary difference in gene content among
the 12 phage genomes is a small gene (e.g., Courtney3 2) located near the genome
left end that is absent from phages KylieMac, Seume, and Taj14. None of the phages
encode integrases or partitioning systems, and there is no evidence that any form
stable lysogens. Although we predict that a programed translational frameshift
plays a role in expression of the tail assembly chaperones—a well conserved feature
of the Siphoviridae (11)—the position of the putative frameshift is not readily
apparent from bioinformatic analyses.

Accession number(s). GenBank accession numbers are provided in Table 1.
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