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Abstract
Purpose of Review This perspective is motivated by the need
to question dogma that does not work: that the problem is
insulin resistance (IR). We highlight the need to investigate
potential environmental obesogens and toxins.
Recent Findings The prequel to severe metabolic disease in-
cludes three interacting components that are abnormal: (a) IR,
(b) elevated lipids and (c) elevated basal insulin (HI). HI is
more common than IR and is a significant independent pre-
dictor of diabetes.
Summary We hypothesize that (1) the initiating defect is HI
that increases nutrient consumption and hyperlipidemia (HL);
(2) the cause of HI may include food additives, environmental
obesogens or toxins that have entered our food supply since
1980; and (3) HI is sustained by HL derived from increased
adipose mass and leads to IR. We suggest that HI and HL are
early indicators of metabolic dysfunction and treating and re-
versing these abnormalities may prevent the development of
more serious metabolic disease.
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Abbreviations
HI Hyperinsulinemia
HL Hyperlipidemia
IR Insulin resistance
PI3K Phosphoinositide 3-kinase
VMH Ventromedial hypothalamus
PI Proinsulin

Introduction: Research has Failed to Explain
Obesity

Current guidelines attribute obesity to overeating and inactiv-
ity based on the thermodynamic principle that change in
mass = (input – output). Implementation of the NIH health
guidelines from 1980: “avoid too much fat, saturated fat and
cholesterol; eat foods with adequate starch and fiber”…coin-
cided with a sharp rise in obesity. Unfortunately, the recom-
mended therapy of dieting and exercise has not led to any
amelioration of the high incidence of obesity.

Inadequacy of our conceptual understanding of obesity is
documented by randomized clinical trial data showing the
following:

& Overeating causes short-term weight gain but is often not
sustained [1, 2••].

& Dieting leads to weight loss but is rarely sustained [1, 2••].
& Inactivity does not cause obesity.
& Exercise improves health but does not cure obesity [3••].

Some interesting observations indicate that there are differ-
ences among people who successfully defend their weight
compared with those that gain weight more easily. Further
evaluation of these extremes may lead to a greater understand-
ing of obesity.Wewould suggest that such evaluations include
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the hormone and hormone response profiles, particularly to
insulin.

Obesity is Accompanied by Hyperinsulinemia,
Hyperlipidemia and Insulin Resistance and is Often
Presumed to Cause All Three but Could This be
Incorrect?

Prior to the development of a severe metabolic disease, three
interacting components are abnormal: (a) lipids are elevated,
(b) basal or fasting insulin is elevated (HI) and (c) IR is present
[4–6]. HI is more common than IR [7] and is a significant
independent predictor of type 2 diabetes [8].

Insulin serves as the principal anabolic hormone responsi-
ble for proper storage of nutrients following ingestion of a
meal. Many years of research have documented a positive
relationship between obesity status and insulin levels in ani-
mal models and humans. Current dogma stipulates that ele-
vated fasting and postprandial insulin levels serve to maintain
proper glucose homeostasis in the face of systemic IR. Due to
the glucocentric nature of research encompassing insulin se-
cretion and signaling pervasive within the field, a coordinated
effort has been made to enhance both effects [9]. The recent
emergence of the concept of selective insulin resistance, in
which tissues become resistant to insulin’s effect on glucose
transport but remain sensitive to its lipogenic effect, has
reinvigorated the hypothesis that HI may be a primary cause
of weight gain that leads to obesity and type 2 diabetes [10].
Indeed, IR may be compensatory in the body’s response to
prevent the metabolic syndrome. This section will examine
the viability of the hypothesis that HI plays a primary role in
the etiology of obesity based on cellular, clinical and epide-
miological evidence.

Body Weight is Maintained in the Short Term
Despite Variation in Intake and Activity

The regulation of body weight involves many factors of vary-
ing degrees of importance but nevertheless appears to be sta-
ble in the short term despite dramatic variations in daily calo-
ric intake and energy expenditure [11]. In the long term, body
weight in humans follows an upward trajectory that averages
1–2 lb/year between the ages of 20 and 60 [12]. However,
these averages do not explain the increasing incidence of ex-
treme obesity and obesity in children or the fact that a minority
of individuals maintain a stable weight throughout their life
span. Differences have been noted among individuals during
over- and underfeeding such that individuals who exhibit the
greatest increase in energy expenditure during overfeeding are
most resistant to weight gain [1] whereas those that decrease
energy expenditure most during deprivation are most likely to

gain weight [2••]. Thus, factors that regulate the ability to
adapt in a way that maintains the weight trajectory may deter-
mine susceptibility to obesity. The role of insulin or HI in
these responses is unknown. In particular, the sequence of
changes in response to excess nutrients and during active
weight gain have not been determined, nor have the differ-
ences among signals generated when overeating does not
cause sustained weight gain.

Alternative Testable Hypotheses Relevant to HI

KO Animal Models Rodents have two insulin genes: Ins1,
the expression of which is mostly restricted to the pancreas,
and Ins2, which displays expression in both the pancreas and
the brain. Complete knockout of either gene does not alter
circulating insulin nor impart any metabolic phenotype, likely
due to compensation by the other gene [13]. Using mice
completely lacking Ins2 and heterozygous for Ins1, re-
searchers showed that these mice do not become
hyperinsulinemic or obese on a high-fat diet [14].
Additionally, britening of white adipose depots was observed
inmicewith genetically reducedHI. Interestingly, suppression
of HI via this genetic manipulation was found to provide life-
long protection against obesity despite the eventual manifes-
tation of an equivalent degree of HI [15]. These data imply
that suppression of HI could provide protection against obe-
sity later in life. Genetic prevention of HI also greatly blunts
weight gain and adiposity in leptin-deficient ob/ob mice [16].
These data support the notion that prevention of initial weight
gain by reduction of HI may be favorable to reduction of HI as
a treatment for obesity. This topic has just been reviewed by
the group of Johnson [17••].

A secondary approach to determining the role of HI in the
manifestation of obesity is to inhibit insulin signaling. Use of
the LoxP/Cre system allowed for the characterization of re-
duction of insulin signaling in specific tissues [18]. Several
interesting and unexpected findings were observed [19].
Knockout of the insulin receptor in adipose tissue results in
a severe reduction in fat pad mass and whole body triglyceride
content [20]. Additionally, these mice are resistant to weight
gain following ventromedial hypothalamus (VMH) lesion or
as the result of normal aging and do not develop glucose
intolerance even on a high-fat diet [20]. Wild-type mice on a
high-fat diet have increased level of basal insulin signaling in
peripheral tissues as assessed by Akt phosphorylation status
[21]. Increased insulin signaling is a result of HI and is imper-
ative for the accumulation of lipid within insulin-sensitive
tissues. This concept is not restricted to peripheral tissues.
Intracerebroventricular insulin administration increases fat
mass and fat cell size, indicating that central insulin signaling
can regulate peripheral lipid metabolism [22]. Increased insu-
lin signaling in steroidogenic factor 1-expressing neurons of
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the VMH during obesity has been shown to regulate adiposity
in mice on a high-fat diet [23]. In contrast to neurons of the
arcuate nucleus, which become insulin resistant on a high-fat
diet, those of the VMH remain sensitive to insulin thus
allowing HI to drive peripheral lipid accumulation [24].
Lipid accumulation can be prevented through use of an inhib-
itor of phosphoinositide 3-kinase (PI3K), a kinase down-
stream of the insulin receptor [25]. Inhibition of PI3K also
prevents the manifestation of IR within these tissues,
supporting the hypothesis that lipid metabolites play an inte-
gral role in the manifestation of IR in obesity and is secondary
to increased insulin signaling and HI. Importantly, inhibition
of PI3K has been shown to reduce adiposity while sparing
lean body mass [26]. The reduction in body weight and adi-
posity during treatment with inhibitors of PI3K is not due to a
reduction in food intake but rather is due to increased energy
expenditure, in part due to browning of white adipose tissue.
These results in mice have also been translated to rhesus mon-
keys [26]. Daily administration of a PI3K inhibitor reduced
adiposity and improved levels of glucose in serum in the ab-
sence of any detectable toxicity.

Alternative hypotheses involving specific proteins can be
tested in animals using modern molecular and pharmacologi-
cal techniques. It is critical in these studies to identify only
physiologically relevant targets by using heterozygotes that
exhibit a phenotype since homozygous phenotypes are analo-
gous to rare monogeneic defects.

Energy Efficiency, ROS and Redox Response to Altered
Nutrient Supply Modifying genes in many metabolically
sensitive tissues can induce obesity and metabolic disease.
Although IR has been assumed to reflect the key relevant
pathosis [27, 28], evidence exists to also implicate signal
transduction pathways of other tissues including pancreatic
islets [29], liver [30], adipose tissue, brain, gut, vasculature,
and muscle [31] that are sensitive to HI. Evidence supports an
important role for each in metabolic homeostasis and thus a
potential causative role in obesity. The possibility should be
considered that pathosis results from contributions of many
relevant tissues via a circulating redox communication system
that coordinates responses and reflects shared control and reg-
ulation [32]. Such a master metabolic regulatory system
would impact all organs in communication with the
bloodstream.

& Pancreatic ß-cells to regulate insulin secretion.
& Adipose tissue to control lipid synthesis/breakdown, re-

lease of fatty acid and secretion of adipokines [33].
& Liver for gluconeogenesis and ketogenesis as well as lipid

packaging and secretion [34–36].
& Gut and brain to control and integrate food consumption

and satiety [37].

Elegant studies by Dean Jones and colleagues [38] and
recent studies by our group [39••, 40•] are consistent with a
role for circulating redox regulation of tissue-specific metab-
olism. However, it is not known how physiological HI im-
pacts circulating redox since both anti- and pro-oxidant effects
have been reported at different insulin concentrations [41].
Additional studies are also needed to differentiate cause from
consequence. The possibility has not been tested that impos-
ing a redox change, in vivo, will alter metabolism.

Insulin Inhibits FA Oxidation and Lipolysis A major func-
tion of insulin is inhibition of lipolysis, an appropriate re-
sponse to food ingestion and the need to promote fat storage.
Although increased oxidation of fat might be beneficial in
obesity, the opposite is observed. Free fatty acid release from
adipose depots (per gram of fat tissue) decreases in obesity
[42]. In response to overeating, glucose is preferentially
burned and fat is stored [11, 43]. Interestingly, one of the
important changes induced by bariatric surgery is an increase
in fatty acid oxidation [33, 34]. The potential benefit of stim-
ulating fat oxidation through wasteful cycling or induction of
rate-limiting enzymes of fat oxidation needs to be tested.

Effects of HI on Neural Pathways Insulin signaling is criti-
cal in both central and peripheral mechanisms of nutrient han-
dling [35]. This concept is supported by the observation that
overnutrition and obesity induce IR in specific brain regions
[36]. In addition, increased fatty acid uptake has been docu-
mented in patients with metabolic syndrome that correlates
with BMI and HI and reverses with weight loss [37] and
bariatric surgery [44•]. Although the detailed molecular mech-
anisms and feedback circuitry are not fully established, it ap-
pears likely that neural pathways are major contributors to the
adverse effects of HI. Future studies promise to provide great-
er detail on the specific roles of specific neurons and deter-
mine whether neural systems actually control body weight or
rather serve as integrators of many signals.

How Does HI Cause Obesity?

Insulin is a potent storage signal to fat, brain, liver and
muscle: Evidence for a causative role for HI in animal
model obesity The discovery of insulin by Best et al. in
1921 led to life-saving treatments for diabetics [45]. Early
research demonstrated that injection of insulin into fat pads
caused a dramatic expansion in tissue volume due largely to
an increase in lipid storage [46]. It was quickly recognized that
administration of insulin in rodents leads to expansion of total
fat mass [47]. It was determined that this model of obesity
resulted mainly from increased consumption of calories [48,
49]. However, enlargement of fat pads directly at the site of
injection seemed to imply the possibility of a direct effect of
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insulin on lipid accumulation [50]. A second model of obesity
popularized during this period was disruption of the VMH by
chemical or electrolytic lesion. It was observed that this pro-
cedure induces HI and hyperphagia and quickly leads to obe-
sity and increased fat mass. The HI and obesity observed
following this procedure were initially believed to result solely
from hyperphagia [51]. However, this belief was subsequently
contradicted by multiple findings. First, destruction of ß-cells
with the drug streptozotocin reverses hyperphagia and weight
gain following the VMH lesion [52]. Exogenous administra-
tion of insulin recovers both the hyperphagia and weight gain,
suggesting that HI is required for the manifestation of obesity
following the VMH lesion. Second, prevention of hyperpha-
gia following the VMH lesion is achieved by limiting caloric
intake to that of sham-operated controls. This does not prevent
the induction of HI or accumulation of fat [53, 54]. Lastly,
VMH lesions in weanling rats do not induce hyperphagia
but still result in HI and accumulation of fat [55]. Multiple
groups noted a direct correlation between the change in body
weight and the degree of HI following VMH lesion [56, 57].
Pharmacological reduction of insulin alleviates the hyperpha-
gia and weight gain in multiple species [58, 59]. Indeed,
hypothalamic-related obesity induced by VMH injury in chil-
dren undergoing cancer therapy can be partially alleviated by
reducing insulin levels [60, 61].

Genetic and diet-induced models of obesity have largely
replaced the VMH lesioned model. The most common genetic
models of obesity are the ob/ob mouse and Zucker fatty rat,
both of which harbor mutations in the leptin or leptin receptor
gene rendering the hormone nonfunctional. These animals
display extreme HI, hyperphagia and obesity. At least part of
the HI in this model can be attributed to the fact that leptin
normally acts to suppress insulin synthesis and secretion in ß-
cells [62, 63]. Enhanced lipogenesis has been observed in
these animals as early as 15 days after birth and is accompa-
nied by HI [64]. The HI that arises in ob/ob mice precedes
insulin resistance and substantial weight gain [65].
Replacement of leptin in these animals completely normalizes
hyperphagia, HI and abnormal adiposity [66]. However, this is
not simply due to a normalization of caloric intake. Pair-fed
ob/obmice eating a normal caloric intake still display extreme
HI and increased adiposity compared to control mice [67].
Several drugs have been used to directly assess the role of
HI in the obesity of rodents with mutations in leptin.
Diazoxide, a KATP-channel agonist that inhibits membrane
depolarization, reduces nutrient-induced insulin secretion
from ß-cells. Supplementation with diazoxide reduces adipos-
ity and causes weight loss while simultaneously improving
lipid profiles [68]. Despite the reduction in insulin secretion,
these rodents have reduced glycemia and improved glucose
tolerance [69]. Diazoxide enhances both insulin sensitivity
and energy expenditure. As insulin levels decline, fatty acid
oxidation increases thus relieving the inhibition of insulin

signaling known to occur by certain fatty acid metabolites
[70]. Thus, in this model, it appears that HI precedes insulin
resistance and may in fact contribute to it by directly down-
regulating the insulin receptor or through inhibiting insulin
signaling by increasing lipid accumulation.

Documentation of HI in Humans Data supporting the HI-
induced obesity hypothesis is less available in humans.
However, certain racial ethnicities known to have very high
levels of circulating insulin are also known to be at increased
risk for the development of obesity. It was first recognized in
the 1950s that Pima Indians, a tribe in the American
Southwest, display abnormally high rates of obesity and dia-
betes [71]. It was subsequently determined that this population
displays abnormally high insulin response to nutrients induc-
ing HI [72]. Pima Indian children have significantly higher
fasting insulin levels, which is predictive of the risk for be-
coming obese [73, 74]. The ability of HI to predict obesity has
been repeated in ethnicities other than Pima Indians, including
a recent study in Chinese children [75, 76]. African American
children, an ethnicity with a particularly high rate of obesity,
are hyperinsulinemic compared to Caucasian children [77,
78]. It is important to note that this finding is less consistently
observed in adult populations, suggesting a key role for insu-
lin in determining weight gain in children but less so in adults
[76, 79, 80].

Effect of Reducing HI

Both pharmacological and nutritional approaches have
been used to reduce hypersecretion of insulin as a method
for weight loss Diazoxide promoted enhanced weight loss in
obese adults when combinedwith an 8-week energy-restricted
diet [81]. Compared to patients on placebo, those receiving
diazoxide lost more fat and maintained a higher fat-free:lean
mass ratio. Although there was no improvement in glucose
tolerance observed compared to that in placebo, there were
also no adverse effects despite a large reduction in postpran-
dial insulin secretion. In contrast, a second trial with a similar
design did not observe any significant additional weight loss
with diazoxide supplementation [82]. The basis for the dis-
crepancies between these two trials is currently unclear.
However, a much more profound effect of diazoxide on post-
prandial insulin secretion was observed in the trial in which
diazoxide induced weight loss. A trial testing the ability of 6-
month administration of a somatostatin mimetic to induce
weight loss in the obese noted a positive correlation between
dose and effectiveness [83].

Preventing or reversing HI via nutritional intervention as a
means to treat obesity has garnered interest in recent years.
The concept of glycemic index, a measure of rate of carbohy-
drate absorption, has been a popular area of research in the
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field of nutrition [84]. Following consumption of foods with a
high glycemic index (sugars), the resulting spike in glucose
leads to exaggerated insulin secretion and relative HI, as glu-
cose is the main secretagogue for insulin secretion.
Consumption of a diet high in simple carbohydrates has been
shown to consistently increase adiposity in rodents [85, 86].
These results have proven challenging to replicate in humans
and have resulted in variable results and conclusions as to the
ability of glycemic index tomodify bodyweight and adiposity
[87•]. It has been proposed that patients with high degrees of
relative HI may benefit the most from a low-glycemic index
diet [88]. Indeed, people exhibiting HI, after weight loss with
a hypocaloric diet, were most at risk for weight regain [89].
Despite this ambiguity, recommendations to reduce dietary
simple carbohydrates (sugars) make logical sense because
they serve no essential nutritional need.

HI may play a causative role not only in the development of
obesity but also in the ß-cell dysfunction that precedes type 2
diabetes. Obesity leads to HL that further exacerbates the HI via
the reduction of hepatic insulin clearance [90]. We have previ-
ously shown that the hypersecretion of insulin following chron-
ic exposure to elevated fatty acids impairs the ability of the ß-
cell to adequately respond to acute nutrient stimulation [91••].
ß-cells secreting a high percentage of maximal capacity at basal
glucose exhibit reduced glucose-stimulated insulin secretion
[34]. Additionally, HI is accompanied by altered insulin pro-
cessing. Figure 1 demonstrates that culture of clonal ß-cells,
under conditions that increased cellular lipid and induced HI,
also increased proinsulin (PI) secretion and exhibited an elevat-
ed PI:insulin ratio. Increased PI secretion may be due to im-
paired processing of PI or reduced time for processing due to a
high secretory rate. The ratio of circulating PI:insulin is also
increased in obesity and is predictive of the development of IR
and type 2 diabetes [92–94]. Interestingly, induction of over-
night ß-cell rest with somatostatin in type 2 diabetic patients
normalized the increased PI:insulin ratio [95].

Effect of Bariatric Surgery on HI Bariatric surgery is cur-
rently the only way to reliably induce sustained weight loss in
obese humans. Several different types of bariatric surgery are
currently being used including Roux-en-Y gastric bypass, ver-
tical sleeve gastrectomy and biliopancreatic diversion. All of
these procedures result in substantial weight loss and improve-
ment of the metabolic syndrome and type 2 diabetes. The
weight loss induced by bariatric surgery is not solely due to
the restrictive nature of the procedure. Recent evidence sug-
gests that the body weight “set point” defended is changed
following bariatric surgery [96]. Bariatric surgery induces a
number of seemingly diverse physiological changes from
gene expression to the palatability of certain foods to the
microbiome [97–99]. Hormonal changes also play an integral
role in metabolic changes resulting from the surgery. The ma-
jority of research has focused on changes in glucagon-like
peptide one and satiety hormones. However, another hormon-
al change that occurs rapidly following surgery is a sharp drop
in steady-state insulin. Resolution of hyperinsulinemia is one
of the earliest events following bariatric surgery and precedes
the recovery of peripheral insulin sensitivity [100]. Directly
testing the role of insulin reduction in the resolution of obesity
and type 2 diabetes following bariatric surgery will need to be
addressed in animal models.

Conclusion

Our goal in this brief perspective has been to question the
dogma explaining obesity and underpinning the therapeutic
guidelines for treatment that are largely unsuccessful.We offer
an alternative hypothesis that requires further testing and fur-
ther suggests that if indeed our hypothesis is correct, early
treatment of the HI and HL that precede metabolic dysfunc-
tion may successfully treat obesity and prevent complications.
Since the dramatic increase in obesity has occurred in the last

Fig. 1 Chronic exposure to excess glucose and oleate increases proinsulin
secretion. a INS-1 cells cultured in 4 mM glucose have lower proinsulin
secretion at both basal (2 mM) and stimulatory (8 mM) glucose compared
to those cultured at 11 mM glucose and 0.15 mM oleate for 48 h. b 4G cells

have a lower ratio of secreted PI/insulin ratio compared to cells cultured at
11 mM glucose and 0.15 mM oleate (n = 6 independent experiments). Data
are mean ± SEM. *p < 0.05 versus control (4G cells). Data are mean ± SEM.
*p < 0.05 versus respective control (Student’s t test)
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50 years, we suggest that a focus should include new elements
in our environment that may serve as potential obesogens
through effects on any of the communicating metabolically
sensitive organs: the brain, liver, adipose tissue, islets of
Langerhans, gut and cardiovascular system.
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