
REVIEW
published: 30 October 2020

doi: 10.3389/fped.2020.586061

Frontiers in Pediatrics | www.frontiersin.org 1 October 2020 | Volume 8 | Article 586061

Edited by:

Karel Allegaert,

University Hospitals Leuven, Belgium

Reviewed by:

Jonathan Michael Davis,

Tufts University, United States

Hercília Guimarães,

University of Porto, Portugal

*Correspondence:

Wes Onland

w.onland@amsterdamumc.nl

Specialty section:

This article was submitted to

Neonatology,

a section of the journal

Frontiers in Pediatrics

Received: 22 July 2020

Accepted: 08 October 2020

Published: 30 October 2020

Citation:

Onland W, Hutten J, Miedema M,

Bos LD, Brinkman P, Maitland-van der

Zee AH and van Kaam AH (2020)

Precision Medicine in Neonates:

Future Perspectives for the Lung.

Front. Pediatr. 8:586061.

doi: 10.3389/fped.2020.586061

Precision Medicine in Neonates:
Future Perspectives for the Lung

Wes Onland 1*, Jeroen Hutten 1, Martijn Miedema 1, Lieuwe D. Bos 2, Paul Brinkman 2,

Anke H. Maitland-van der Zee 2 and Anton H. van Kaam 1

1Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children’s

Hospital, University of Amsterdam, Amsterdam, Netherlands, 2Department of Respiratory Medicine, Amsterdam University

Medical Centers, University of Amsterdam, Amsterdam, Netherlands

Bronchopulmonary dysplasia (BPD) is the most common complication of pre-term birth

with long lasting sequelae. Since its first description more than 50 years ago, many

large randomized controlled trials have been conducted, aiming to improve evidence-

based knowledge on the optimal strategies to prevent and treat BPD. However, most

of these intervention studies have been performed on a population level without regard

for the variation in clinical and biological diversity (e.g., gestational age, ethnicity, gender,

or disease progression) between patients that is driven by the complex interaction of

genetic pre-disposition and environmental exposures. Nevertheless, clinicians provide

daily care such as lung protective interventions on an individual basis every day despite

the fact that research supporting individualized or precision medicine for monitoring

or treating pre-term lungs is immature. This narrative review summarizes four potential

developments in pulmonary research that might facilitate the process of individualizing

lung protective interventions to prevent development of BPD. Electrical impedance

tomography and electromyography of the diaphragm are bedside monitoring tools to

assess regional changes in lung volume and ventilation and spontaneous breathing

effort, respectively. These non-invasive tools allow a more individualized optimization of

invasive and non-invasive respiratory support. Investigation of the genomic variation in

caffeine metabolism in pre-term infants can be used to optimize and individualize caffeine

dosing regimens. Finally, volatile organic compound analysis in exhaled breath might

accurately predict BPD at an early stage of the disease, enabling clinicians to initiate

preventive strategies for BPD on an individual basis. Before these suggested diagnostic

or monitoring tools can be implemented in daily practice and improve individualized

patient care, future research should address and overcome their technical difficulties,

perform extensive external validation and show their additional value in preventing BPD.

Keywords: individualized medicine, targeted treatment, personalized medicine, newborn, neonatal intensive care

INTRODUCTION

Improvements in neonatal care have led to an increased survival of very low birth weight (VLBW)
infants over the past decades (1, 2). Evidence based intervention aiming to improve the pulmonary
condition, such as exogenous surfactant treatment, antenatal corticosteroids, more gentle modes
and restrictive use of invasive ventilation have greatly contributed to this improved survival
(3–5). However, many of the VLBW infants will be at high risk of developing bronchopulmonary
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dysplasia (BPD), which is considered the most common
complication after pre-term birth (6). BPD is histologically
characterized by an arrest in normal lung development,
resulting in a prolonged need for respiratory support and
(re)hospitalization (7). Although studies have consistently shown
the independent association between BPD and increased risk
for repeated respiratory infections (bacterial and viral), asthma,
and a compromised lung function lasting into adolescence (7,
8), not every infants with the diagnosis BPD will suffer from
these pulmonary sequelae. However, there is also a general
concern that pre-term infants with BPD have more risk of
developing chronic obstructive pulmonary disease in later life
(9). In addition to pulmonary sequelae, BPD is also associated
with an increased risk of cerebral palsy and developmental delay
(10). BPD is considered a multifactorial disease with genetic
susceptibility, intrauterine growth restriction, nutritional deficits,
oxygen toxicity, pulmonary inflammation, and direct mechanical
injury caused by mechanical ventilation as the most important
risk factors (11–13).

Over the last decades, several interventions aiming to reduce
the incidence of BPD have been studied in large high quality
randomized controlled trails, but the results have so far been
disappointing. In contrast to other morbidities related to pre-
term birth, the incidence of BPD as not declined over time (2).
It is important to acknowledge that most intervention studies,
although restricting eligible participants to infants below 30
weeks of gestational age, used a population based approach,
targeting infants based on a single, often indirect, risk factor
for BPD, such as having a gestational age below 30 weeks
gestational age or treatment with invasivemechanical ventilation.
This approach does not account for the complexity of developing
BPD, and the individual diversity that is often present in infants
randomized in these studies. At an individual level, a pre-term
infant might have to be differentiated into different respiratory
disease phenotypes using for instance biomarkers, metabolomics,
and genomics (14). However, in order to prevent pre-mature
phenotyping based on clinical intuition, the hypothesis of
multiple BPD phenotypes needs to be investigated extensively
using large subgroups of datasets after external validation
before it can be used in neonatal precision medicine of the
lung (15). Using a similar line of reasoning, the intervention
applied should probably be tailored to the individual patient
and lung characteristics instead of using the “one size fits all”
approach routinely investigated in large randomized controlled
trials (16). This individualized approach using both prognostic
enrichment or predictive enrichment in randomized controlled
trials requires individual monitoring of the BPD risk profile, the
underlying respiratory phenotype, and the correct application of
the intervention (17, 18).

Precision medicine, also referred to as personalized or
individualized medicine has become an increasingly used
approach in adult and pediatric research (19). Prognostic
enrichment in precision medicine focusses on patient
stratification based on a combination of clinical (e.g., gestational
age, ethnicity, gender) information, genetic pre-disposition, and
individual biomarkers, enabling more precise differentiation of
different phenotypes within this group of pre-term infants (20),

whereas predictive enrichment identifies subgroups of patients
with a higher chance of responding to a specific therapy based
on a specific clinical or biological phenotype (18). However, a
literature search in MEDLINE combining the words “precision”
or “individualized” and “pulmonary” and “pre-term” results in
zero citations. This suggests that individualized risk profiling
and tailored intervention for BPD, are not part of daily practice
and/or research. This is largely caused by lack of appropriate
monitoring tools to assess the individual risk of developing BPD
and the successful and correct application of intervention to
reduce BPD. This narrative review highlights some promising
developments in neonatal pulmonary research enabling the
use of precision medicine in the search for more effective
interventions to prevent BPD.

ELECTRICAL IMPEDANCE TOMOGRAPHY

As previously mentioned, invasive mechanical ventilation is
one of the risk factors for developing BDP. Pre-clinical studies
have indicated that overdistension (volutrauma) and collapse
(atelectrauma) of alveoli play a major role in ventilator
induced lung injury and subsequent development of BPD.
Pre-term infants are prone to loss of lung volume due to
their immature lung physiology and underlying lung disease.
This leads to impaired lung function and respiratory failure
and the need for non-invasive or invasive respiratory support
to restore gas exchange. Ideally, respiratory support should
reverse atelectasis and avoid alveolar overdistention, resulting in
homogeneous aeration and ventilation of the lungs. Reaching
this goal requires an individual and dynamic approach, as
lung condition differs between patients and lung disease is
often heterogeneous in nature. This heterogeneity results in co-
existence of overdistended and collapsed lung regions in the
same lung (21, 22). It is clear that monitoring of regional
aeration and ventilation is essential to individualize respiratory
support in pre-term infants with respiratory failure and at risk
for developing BPD.

Monitoring regional ventilation distribution and end
expiratory lung volume in pre-term infants is challenging,
especially at the bedside. Currently available monitoring
tools such as chest X-ray, tracer gas wash-in/out methods, or
respiratory inductive plethysmography have serious limitations,
including lack of regional and online information, cumbersome
to perform at the bedside, and use of radiation. Electrical
Impedance Tomography (EIT) is a technique developed in
the early 1980’s that uses differences in tissue conductance in
response to an electrical currents to visualize changes in lung
aeration (23). EIT is non-invasive, radiation free, and generates
continuous bedside information on relative changes in regional
ventilation distribution and end expiratory lung volume, which
shows a high correlation to actual intra-thoracic changes in
air-content (24). Measurement requires placement of a belt
containing non-sticky electrodes placed around the chest at the
level of the nipple.

In pre-term infants, EIT research has mainly focused on the
pathophysiology of lung disease and the impact of interventions
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on (regional) lung aeration. Studies have shown that EIT is able
to detect and monitor changes in (regional) aeration caused by
pneumothoraces (25–27), postural changes (28, 29), atelectasis
(30), incorrect endotracheal tube placement (31), endotracheal
suctioning (32, 33), (minimal) invasive surfactant administration
(34, 35), changes in nasal continuous positive pressure levels
(36, 37), and lung recruitment procedures during conventional
and high frequency ventilation in pre-term infants (Figure 1)
(38, 39).

These observational studies show the potential of EIT to
individualize respiratory care in pre-term infants at high risk of
developing BPD. EIT can assist the clinician in the challenge to
optimize ventilator support at an individual level, and thereby
achieving the goal of homogeneous non-injurious ventilation.
Although EIT has important potential, there are still some
technical and practical issues that need to be resolved before
it can be implemented in clinical practice. First, results from
most studies are based on off-line EIT data analysis. Software
allowing continuous online analysis of EIT data is currently being
developed. Second, well-designed easily applicable equipment
for neonates is still lacking. A user-friendly textile electrode
belt, a well-tolerated skin conductance substance, and wireless
recording are needed for successful implementation in clinical
practice. These improvements will also allow testing of a longer
recording time than what was used in most observational
studies (1–2 h). Third, developmental and production costs of the
hardware need to be reduced in order to make implementation
feasible from an economic perspective. Finally, the effect of
EIT on important clinical outcomes needs to be investigated in
future studies.

Key Messages
• EIT can visualize regional lung volume and ventilation

changes at the bedside and individualize pulmonary treatment.
• Future development should focus on improvement in

EIT hardware and software so the final step to clinical
implementation can made.

ELECTROMYOGRAPHY OF THE
DIAPHRAGM

Respiratory failure is a common complication in pre-term
infants primarily caused by an impaired control of breathing
and a compromised lung function (40). Impaired control of
breathing leads to apnea of pre-maturity, which can lead to
hypoxemia and bradycardia, thereby increasing the risk of
adverse neurodevelopmental outcome (41). In an attempt to
stabilize the respiratory system and reduce the work of breathing,
pre-term infants often receive respiratory support. Non-invasive
support is the preferred modality, which can be applied via
continuous nasal positive airway pressure (nCPAP), heated
humidified high flow nasal cannula, and nasal intermittent
positive pressure ventilation (nIPPV) (42). If this is insufficient
to restore gas exchange and work of breathing, endotracheal
intubation and invasive mechanical ventilationmay be necessary.
Despite the frequent use of respiratory support, objective criteria

to select the optimal mode and setting are not well-established
(43, 44). Conventional parameters such as oxygen need and
blood gas analysis are not very specific and lack information
on work of breathing. As a result, respiratory support modes
are often selected and set according to general protocols and
timely individual titration is often lacking. This might have
important consequences, because both too little and too much
support may injure the lungs. In case non-invasive support is
adjusted, most clinicians use a “trial and error” strategy (43).
For example, the nCPAP pressure is lowered and if the patients’
respiratory condition deteriorates, the pressure is increased to
the previous setting. Ideally, selection and weaning off the
mode and level of respiratory support should be based on
bedside, continuous and quantitative individual information on
breathing activity or the work of breathing. As the diaphragm
is the main respiratory muscle in pre-term infants, retrieving
information on its activity might provide objective information
on breathing activity. Electrical activity of the diaphragm can
be with electromyography (dEMG) and there are currently two
methods to detect the electrical signal of the diaphragm; the
transcutaneous method in which sensors are placed on the skin
and the invasive transesophageal method in which sensors are
mounted on a catheter positioned in the esophagus. Recent
studies have shown that both techniques are feasible in pre-term
infants (45, 46), and are able to detect changes in diaphragmatic
activity (47, 48) (Figure 2). However, transesophageal dEMG is
relatively invasive, expensive and only available on one specific
ventilator. The transcutaneous method is less invasive, cheap,
and uses stand-alone equipment allowing its use during all
modes of respiratory support, independent of the ventilator.
Observational studies in pre-term infants have shown that
transcutaneous dEMG is able to detect changes in diaphragmatic
activity in response to weaning the mode of respiratory support
from nCPAP to low flow nasal cannula. Furthermore, the
diaphragmatic activity was significantly higher in those infants
that failed this transition compared to those in who weaning was
successful (49).

In addition to unloading the additional work of breathing,
the delivered respiratory support should be, if applicable,
synchronized to the individual breathing efforts of the infants.
Historically, changes in airway pressure or flow are used
for synchronization of invasive mechanical ventilation (50).
However, these parameters are not always accurate in the
presence of leak, either around the endotracheal tube or via
the upper airways during nasal positive pressure ventilation
(51). Being independent of airway flow or pressure, dEMG
might therefore also be an ideal candidate for triggering
respiratory support. Indeed, measuring the electrical activity of
the diaphragm by the transesophageal method can be used for
synchronizing the individual breaths with the ventilator (52).
A Cochrane review performed in 2017 identified one small
underpowered randomized control trial comparing conventional
ventilation to ventilation triggered by diaphragmatic activity with
no significant effects on the primary outcomes. However, the
conclusion of that review was that lower level evidence studies,
such as case series and non-randomized cross over studies are
suggesting a physiological benefit associated with diaphragma
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FIGURE 1 | Lung recruitment visualized by Electric Impedance Tomography. Change in functional electrical impedance tomography in end expiratory lung impedance

during an oxygenation guided lung recruitment procedure in a high frequency ventilated pre-term infant (945 grams). The impedance changes are referenced to the

starting pressure of 8 cm H2O. Row (A) shows the inflation and row (B) the deflation limb of the recruitment procedure (39). All images have the same scale where red

indicates a large change and blue a small change in impedance.

FIGURE 2 | Effect of caffeine on the amplitude of the diaphragm measured by electromyography. The transcutaneous electromyographic (EMG) analysis of the

diaphragm showed a significant increase in logarithm of the EMG Activity Ratio (logEMGAR) after a loading dose caffeine, compared to baseline. The logEMGAR

described the relative changes in EMG activity, either increasing or decreasing symmetrical around unity.

triggered ventilators, and that new high quality randomized
controlled studies are urgently needed (53).

Studies have also shown that (spontaneous) breath detection is
feasible and appropriate via transcutaneous dEMG (54). Optimal
triggering might also have clinical implications, as studies suggest
that synchronized nasal positive pressure ventilation reduces the
need for invasive mechanical ventilation (55).

It is clear that measuring diaphragmatic activity with dEMG
has the potential to individualize the application of respiratory
support in pre-term infants. However, more and larger studies are

needed to determine which dEMGoutput parameters provide the
best information on the individual patients’ needs. Furthermore,
transcutaneous dEMG triggering of non-invasive support still
needs to be tested in pre-term infants.

Key Messages
• Most clinicians use a “trial and error” strategy when selecting

and setting the mode of respiratory support. Furthermore,
synchronizing support to the individual spontaneous
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breathing effort is often not optimal, especially during
non-invasive support.

• The activity of the diaphragm can be measure with
electromyography and provides objective information on the
patients’ breathing effort. Furthermore, breath detection is
feasible and accurate with dEMG.

• dEMG can potentially be used to titrate and trigger the mode
and level of respiratory support but future studies are needed
to explore these potential indications in pre-term infants.

PHARMACOGENETICS AND CAFFEINE

Administration of caffeine to pre-term infants is standard of
care in all neonatal intensive care units. A large randomized
controlled trial provided solid evidence that besides reducing
apnea of pre-maturity (56), pre-term infants treated with
caffeine have a reduced risk of BPD (57), and an improved
neurodevelopmental outcome at 2 years corrected age (58, 59).
Despite this clear evidence, there are uncertainties regarding
the exact working mechanism of caffeine and the optimal
caffeine dose (60). Comparable to the adult population, effective
and safe dosing probably differs between pre-term infants
(61). Standardized regimens, i.e., the same dose to all infants,
lead to high variation of serum levels of caffeine and its
metabolites (62). This observation is important because it has
been shown that in some infants a high caffeine loading-
dose is associated with negative effects on pre-term infant
brain development (63). On the other hand, low caffeine
concentrations may lead to insufficient apnea treatment,
increased use of invasive mechanical ventilation posing a higher
risk for BPD and neurodevelopmental impairment (64). Since
most studies evaluated the effect of a standardized caffeine dosage
regimen on important neonatal outcomes at population level,
they were neither able to determine patient-specific risks and
benefits nor incorporate these in the evaluation of an optimal
dosing regimen. Heterogeneity due to genomic differences likely
contributes to the lack of a strong correlation between serum
caffeine levels and clinical effects. Precision medicine might help
to optimize caffeine dosing and treatment-associated outcomes.
Caffeine metabolism is limited in pre-term infants because
cytochrome P4501A2 (CYP1A2) enzyme activity is markedly
reduced relative to term neonates, leading to a prolonged half-
life and increased urinary excretion of unmetabolized caffeine.
Enzyme activity increases with increasing gestational age and
advancing post-natal age (65). Although the exact molecular
mechanisms underlying the benefits of caffeine administration
have not been elucidated (57), it is likely that genomic and
metabolomic heterogeneity influences optimal patient dose due
to infant-specific caffeine metabolism and risk susceptibility (66–
68). Several candidate genes have been suggested based on the
known genetic associations with caffeine (e.g., cytochrome P450
enzymes, adenosine receptors) (66, 69–72).

It is highly likely that there is a dose-specific response to
caffeine treatment in pre-term neonates. Individual genomic
variants are a potential indicator for its effectiveness but also the
risk to develop complications due to caffeine treatment. Genomic

variance probably explains why the correlation between caffeine
plasma concentrations and clinical outcome remains poor. An
observational cohort study including infants with a gestational
age ≤30-weeks and treated with caffeine should be conducted
to investigate to which extent genomic variation contributes to
this poor correlation, and to what extend adopting individualize
treatment in this population can improve outcome. In the future,
clinicians may be able to evaluate a genomic profile at birth which
they can then utilize to determine a personalized caffeine dose.

Key Messages
• Caffeine treatment is a well-established evidence-based

standard of care treatment for the prevention of BPD.
• Similar to adults, pre-term infants might need individual

dosing of caffeine based on their genomic profile.
• Future research should investigate the correlation between

genomic variation in caffeine metabolism to optimize and
individualize caffeine treatment in pre-term infants.

VOLATILE ORGANIC COMPOUNDS

Many interventions to reduce the risk of BPD have been tested
in randomized clinical trials, but to date few have shown to be
effective and safe. It has been suggested that these disappointing
results might be caused by failure of clinical variables or
biomarkers to accurately predict the risk of BPD at an early
stage in life. This is also called a lack of prognostic enrichment:
the study population has a low a-priori risk for the outcome of
interest and therefore many patients are exposed to the treatment
without any chance of a positive effect, limiting efficacy,
yet experiencing the side effects, increasing safety concerns
(73). Consistent with this assumption, a systematic review
summarizing all published clinical prediction models failed to
show accuracy in discriminating and calibrating performance
after external validation using a large individual patient database
(74). Therefore, clinical prediction models are infrequently used
in current clinical practice and research.

Besides prognostic enrichment, trials may further benefit
from predictive enrichment: increasing the likelihood of the
included patient for a beneficial treatment response. Although
BPD is multifactorial in nature, inflammation and growth
failure are considered important risk factors and mediators
in its development. Most BPD associated inflammatory and
growth factor biomarkers investigated, such as interleukin-6
or−8, monocyte chemoattractant protein-1, vascular endothelial
growth factor, keratinocyte growth factor, angiopoietin 2 and
interferon-γ failed as predictors of BPD development (75)
emphasizing the complex pathophysiology. Irrespective of this
underwhelming result for BPD prediction, a set of biomarkers
that identifies a homogeneous group of patients with a shared
pathogenesis might serve as a predictive tool for treatment
response. However, it is important to emphasize that most
evaluated biomarkers require sampling of urine, blood or saliva,
and need complicated laboratory analysis techniques. This may
hamper implementation in clinical practice as these techniques
are usually not available in every hospital. This means that
the search for better predictive indices with bedside availability,
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FIGURE 3 | Study design for developing BPD specific eNose. Volatile organic compounds (VOCs) are absorbed onto a stainless-steel tube containing Tenax GR

60/80 (Interscience, Breda, The Netherlands) for 5min at a flow rate of 50 ml/min. The captured VOCs in the tubes are released by re-heating the tubes after which

the fragment ions are detected using a quadrupole mass spectrometer (GCMS-GP2010; Shimadzu, Den Bosch, The Netherlands) with a scan range of 37–300 Da.

Ion fragment peaks were used for statistical analysis. GC-MS analysis will be performed in all infants.

without the need for complicated laboratory techniques, and
preferably without requiring blood needs to be continued.

Exhaled breath might be the medium that meets the
requirements for such a prognostic and predictive test in pre-
term infants. Collection is fully non-invasive and analysis may
be rapid when sensor technology is used. Hundreds to thousands
of volatile organic compounds (VOCs) have been described
in exhaled breath, which represent metabolic processes in the
host, bacterial metabolism, and organ function (76). VOCs
are reported to serve as potential biomarker in several adult
respiratory diseases, such as pleural mesothelioma, pulmonary
sarcoidosis, asthma, chronic obstructive pulmonary disease,
ventilator associated pneumonia and acute respiratory distress
syndrome (77–79).

There are several distinct technologies to analyze exhaled
breath of which gas chromatography-mass spectrometry (GC-
MS) and electronic nose analysis (eNose) are most frequently

used. VOCs can be separated, quantified and identified by GC-
MS, which remains the gold-standard for untargeted biomarker
analysis in exhaled breath. GC-MS analysis is a time-consuming
and off-line analysis, making it unpractical as a clinical prediction
instrument. However, it does enable researchers to measure a
broad range of compounds and identify unknown compounds
semi-quantitatively. A diagnostic study that uses GC-MS for
breath analysis will therefore result in a list of potential
biomarkers. These potential markers can be used to develop a
disease-specific measurement tool based on technologies that
can provide rapid, bedside results. One technique that has
gained substantial traction is the eNose, which relies of on
sensor technology (79). The eNose enables real-time analyses
of the patterns of selected VOCs in complex gas mixtures.
It does not allow measurement of individual VOCs, but uses
pattern recognition to capture composite VOC mixtures by
cross-reactive sensors, called a breath-print (80). This device is
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highly attractive in daily clinical practice since it can be used at
the bedside and because it provides instant results, which is so
highly needed in predicting BPD at an early age.

Given the multifactorial etiology of BPD, analysis of
exhaled breath of pre-term infants with GC-MS might enable
us to quantify the prognostic accuracy of individual and
combinations of VOCs in exhaled breath. As BPD has several
pathophysiological links to lung injury in adults, we expect that
the VOCs might also be equipped to detect markers of BPD.
One of the challenges will be the collection of breath in pre-term
infants. The minute volume ventilation is quite low and there
is a relatively high bias flow delivered by the devices used for
respiratory support.

A recent study suggested that the eNose can discriminate
pre-term infants developing BPD at an early age from those
who do not. However, this study only included mechanically
ventilated infants, using headspace analysis of tracheal aspirates
rather than exhaled breath (81). Nowadays, more and more
infants are initially managed without invasive ventilation and
tracheal aspirates are therefore not available in these infants
(4). We studied breaths of four pre-term infants on non-
invasive respiratory support in a pilot study. Several breath
collection techniques were investigated, but the introduction
of a suction catheter positioned under the nasal mask was
the only technique that provided positive results defined as
a range of known human VOCs above the detection limit.
We are currently collecting exhaled breaths at multiple time
points in 100 pre-term infants born <28 weeks of gestation,
treated with both invasive and non-invasive respiratory support
(Figure 3). The GC-MS analyses will be performed, allowing
us to determine which selected set of VOCs to focus on when
developing the eNose for identifying infants at risk of BPD
within the first week of life. Once the GC-MS analyses of exhaled
breath in pre-term infants show which selected VOCs predict
BPD, an eNose specific breath print for BPD can be developed
following an efficient translation from promising biomarker to
established bedside tool for predicting BPD as described in
the BEST (Biomarkers, EndpointS, and other Tools) Resource
(82). This has to be validated in a large population of pre-
term infants in a multicenter setting. After showing a good
external validation, the final step will be performing an impact
analysis showing the additional value of this prediction model.
Another potential application of exhaled breath analysis might
be discriminating between different (main) pathophysiological
causes of BPD. An appropriate grown pre-term infant born
after severe chorioamnionitis might develop a different BPD
phenotype than a pre-term infants born after severe intrauterine
growth retardation. If the development of the eNose shows

promising discrimination between infants with and without the
development of BPD, it might also be possible to differentiate in
infants with BPD what is the main pathophysiological pathway is
and select the optimal treatment accordingly.

Key Messages
• To date, there is no prediction model based on clinical

characteristics or biomarkers with accurate discriminating
ability to detect BPD at an early stage.

• Measuring VOCs is increasingly being used in adult
respiratory medicine.

• Observational cohort studies should investigate which VOCs
in exhaled breath accurately predict BPD at an early stage of
the disease.

LIMITATIONS

First, given the narrative nature of the article, this review
has the limitation that we did not identify systematically all
publications regarding precision medicine for pre-term lungs.
We have selected these four items on precision medicine because
the recent publication dates, and are deemed most promising
to have an important clinical impact. Second, every of these
promising technological, diagnostic or prognostic tools need
further development to go from bench to bedside tools, need
extensive internal and external validation before submitted to
impact analyses in daily practice.

CONCLUSION

These four presented potential developments in pulmonary
research might improve precision medicine in order to prevent
development of BPD. EIT and dEMG are bedside monitoring
tools with the potential to individualize invasive and non-
invasive respiratory support, whereas pharmacogenetic research
of caffeinemetabolism and VOC analysis of exhaled breathmight
optimize preventive drug therapy for BPD on an individual basis.
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