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Objective: The aim of this study was to investigate the correlations of plasma
neurodegenerative proteins and electroencephalography (EEG) dynamic functional
network (DFN) parameters with disease progression in early Parkinson’s disease (PD)
with different motor subtypes, including tremor-dominant (TD) and postural instability
and gait disorder (PIGD).

Methods: In our study, 33 patients with PD (21 TD and 12 PIGD) and 33 healthy controls
(HCs) were enrolled. Plasma neurofilament light chain (NfL), α-synuclein (α-syn), total-
tau (t-tau), β-amyloid 42 (Aβ42), and β-amyloid 40 (Aβ40) levels were measured using
an ultrasensitive single-molecule array (Simoa) immunoassay. All the patients with PD
underwent EEG quantified by DFN analysis. The motor and non-motor performances
were evaluated by a series of clinical assessments. Subsequently, a correlation analysis
of plasma biomarkers and EEG measures with clinical scales was conducted.

Results: In the TD group, plasma NfL exhibited a significant association with MDS-
UPDRS III and Montreal Cognitive Assessment (MoCA). A higher Aβ42/40 level was
significantly related to a decrease in Hamilton Depression Rating Scale (HAMD) and
Hamilton Anxiety Rating Scale (HAMA) in the PIGD group. In terms of the correlation
between EEG characteristic parameters and clinical outcomes, trapping time (TT ) delta
was positively correlated with MDS-UPDRS III and MoCA scores in the TD group,
especially in the prefrontal and frontal regions. For other non-motor symptoms, there
were significant direct associations of kPLI theta with HAMD and HAMA, especially in the
prefrontal region, and kPLI gamma was particularly correlated with Rapid Eye Movement
Sleep Behavior Disorder Screening Questionnaire (RBDSQ) scores in the prefrontal,
frontal, and parietal regions in the TD group. Furthermore, there was a significant positive
correlation between plasma t-tau and kPLI, and pairwise correlations were found among
plasma NfL, theta TT, and MoCA scores in the TD group.
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Conclusion: These results provide evidence that plasma neurodegenerative proteins
and EEG measures have great potential in predicting the disease progression of PD
subtypes, especially for the TD subtype. A combination of these two kinds of markers
may have a superposition effect on monitoring and estimating the prognosis of PD
subtypes and deserves further research in larger, follow-up PD cohorts.

Keywords: Parkinson’s disease, motor subtype, TD, PIGD, EEG, biomarker, plasma

INTRODUCTION

Parkinson’s disease (PD) is a common chronic progressive
neurodegenerative disease with a series of etiologies and clinical
manifestations, and it eventually has an adverse impact on
quality of life, with a range of physical, emotional, and economic
consequences. The prevalence of PD is gradually increasing
with age and tends toward the younger population, affecting
approximately 1% of the population aged over 60 (Tysnes and
Storstein, 2017). It is acknowledged that patients with PD are
classified into three subtypes: tremor-dominant (TD), postural
instability and gait disorder (PIGD), or indeterminate, derived
from the defined and universally recognized algorithms utilizing
the Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) (Stebbins et al., 2013). It is of vital
importance to identify and verify reliable biomarkers that could
mirror the preclinical and early stages of different PD motor
subtypes, providing a reference for their correct and timely
therapeutic management.

Parkinson’s disease comprises a clinically heterogeneous
group of motor subtypes with diverse progression patterns,
characterized by different motor symptoms and non-motor
symptoms (NMSs). NMSs precede motor dysfunction sometimes
by several years, including hyposmia, sleep disorders, depression,
bladder dysfunction, constipation, and even fatigue (Lee et al.,
2013; Pfeiffer, 2016), which virtually are more crushing and
crippling than motor symptoms. The utility of accessible and
objective blood-based biomarkers, particularly correlated with
motor or non-motor trajectories of PD phenotypes, could
achieve an appropriate and credible correspondence with clinical
consequences. Currently, several biomarkers associated with
neurodegeneration, such as neurofilament light chain (NfL),
α-synuclein (α-syn), total-tau (t-tau), and β-amyloid 42 (Aβ42)
and β-amyloid 40 (Aβ40), have been investigated as potential
predictors of disease progression. There is reliable evidence
that higher NfL was associated with significantly worse global
cognition and MDS-UPDRS motor scores in the PIGD group
(Ng et al., 2020), and the plasma concentration of Aβ42 was
significantly associated with the severity of PIGD score (Ding
et al., 2017). Accordingly, plasma biomarkers may be reliable
tools for predicting disease severity and progression in PD
subtypes.

It is acknowledged that brain activity and network vary in
different patients with PD with personalized motor symptoms
and NMSs. Complexity and dynamic functional connectivity
(dFC) within and between cerebral regions could mirror
motor and cognition organization and functional changes to
some extent (Chu et al., 2020; Yi et al., 2022). Accordingly,
resting-state electroencephalography (EEG) recording at the

scalp composed of electric potential discrepancy not only has
particular attractions compared to MRI or PET imaging, such
as non-invasiveness, low cost, and wide acceptability, but also
directly reflects cortical rhythms and imperceptible network
changes (Gratwicke et al., 2015). Previous studies implied that
different PD motor subtypes have different degeneration of
subcortical/cortical pathways and structures and influence the
activity of multiple cortical functional regions, such as motor,
cognition, emotions, and sleep (Jiang et al., 2016; Vervoort
et al., 2016b). Changes in active brain regions linked to
motor/sensorimotor areas have been exhibited in different PD
motor subtypes (Orcioli-Silva et al., 2021). Vervoort et al.
(2016a) have shown differential connectivity alterations in neural
networks and between motor and cognitive control loops that
correlated with the behavioral heterogeneity in patients with TD
and PIGD. Similar to plasma biomarkers mentioned above, utility
resting-state EEG for brain activity feature extraction is also a
reliable and easily achievable method. Hence, a combination of
blood-based and EEG measurements may have a synergistic effect
to explore the predictors of disease progression in early PD with
different motor subtypes.

The aim of this study was to investigate the association
of plasma neurodegenerative proteins (NfL, α-syn, t-tau,
Aβ42, and Aβ40) and EEG signature with disease progression
in early PD with different motor subtypes. In this study,
we used an ultrasensitive single-molecule array (Simoa)
immunoassay for plasma biomarker measurement and a
novel electroencephalographic analysis technique-dynamic
functional network (DFN) analysis for electroencephalographic
feature extraction.

MATERIALS AND METHODS

Study Participants
A total of 36 patients with PD were recruited from the
movement disorders outpatient clinics of the General Hospital of
Tianjin Medical University. All of the patients with PD fulfilled
the United Kingdom Parkinson’s Disease Society Brain Bank
(UKPDSBB) criteria (Hughes et al., 1992). Based on the MDS-
UPDRS classification method, the ratio of the mean UPDRS
tremor scores (11 items) to the mean UPDRS-PIGD scores
(5 items) was used to define patients with TD (ratio ≥1.15),
patients with PIGD (ratio ≤0.9), and “indeterminate” patients
(ratios >0.9 and <1.15) (Stebbins et al., 2013). Patients defined
as “indeterminate” were excluded from our study. Eventually,
33 patients with PD (21 TD and 12 PIGD) were enrolled in
our analysis. Simultaneously, 33 age-matched healthy controls
(HCs) who showed no sign of neuropsychiatric and systemic
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disorder were recruited from the local community during the
same period. The research protocols were approved by the
Ethics Committee of the General Hospital of Tianjin Medical
University. All subjects provided informed written consent before
entering the study.

Clinical Evaluation
The motor symptoms of patients with PD were evaluated
using the MDS-UPDRS (Goetz et al., 2008) and Hoehn
and Yahr (H&Y) staging scale (Hoehn and Yahr, 1967) as
measurements of clinical parkinsonian severity, which were
performed during off medication, more than 12 h after the
last dose of dopaminergic therapy. NMSs were examined
with a series of neuropsychological assessments, including
the Montreal Cognitive Assessment (MoCA), Hamilton
Depression Rating Scale (HAMD), Hamilton Anxiety Rating
Scale (HAMA), Non-motor Symptoms Questionnaire (NMSQ),
Rapid Eye Movement Sleep Behavior Disorder Screening
Questionnaire (RBDSQ), and Parkinson’s Disease Sleep
Scale-2 (PDSS-2).

Measurement of Plasma Biomarkers
A total of 10 ml of venous blood from all the participants
was collected in tubes containing ethylenediaminetetraacetic acid
(EDTA) and centrifuged (2,500 × g for 15 min) within 1 h after
collection according to the recommendation by the manufacturer
and previous reports. Plasma was stored in polypropylene
tubes at −80◦C until analysis. The Simoa NfL Advantage kits
(Quanterix, Lexington, MA, United States), Neurology 3-Plex
A Advantage Kit (Lot 502473), and α-syn discovery kit (Lot
502566) were used for measurement of plasma NfL, t-tau, Aβ42,
Aβ40, and α-syn concentrations assayed by researchers who were
blinded to the diagnosis based on manufacturer’s introductions
and standard procedures.

Electroencephalography Recording and
Preprocessing
Electroencephalography was recorded for all patients with PD
during off medication in an isolated low-light room at the
General Hospital of Tianjin Medical University. Patients were
requested to sit in a comfortable chair with their eyes closed
but not fall asleep. According to the international standard 10/20
system, 19 Ag/AgCl electrodes were placed on the scalp, including
channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, T6, Fz, Cz, and Pz. Meanwhile, electrooculogram (EOG),
electromyogram (EMG), and electrocardiogram (ECG) signals
were recorded through another four channels.

All of the EEG preprocessing was performed using the
EEGLab toolbox in MATLAB software (MathWorks Inc., Natick,
MA, United States). First, EEG signals were processed by
a 1–45 Hz band-pass zero-phase shift filter for filtering out
the 50 Hz power frequency interference to ensure that the
phase information of the original signal remained unchanged.
To eliminate artifacts, fast independent component analysis
(FastICA) (Hyvärinen, 1999) was then conducted. The FastICA
algorithm decomposed 19-channel EEG signals into ICs that

are statistically independent of each other through a hybrid
matrix. Subsequently, the correlation between the extracted ICs
and the EOG, EMG, and ECG signals was analyzed. The IC
whose absolute value of the correlation coefficient exceeds 0.5
was considered as the component that has a strong correlation
with a certain artifact signal. We then zeroed out these ICs and
multiplied them by the resulting mixture matrix to obtain the
EEG signals with the artifacts removed. The manual screen was
applied to remove noise interference signals. Finally, a band-pass
finite impulse response (FIR) filter was used to filter the signals
into five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

Construction of Dynamic Functional
Networks
The empirical mode decomposition (EMD) method could well
describe the local transient characteristics of time-varying non-
linear signals. EMD could divide different windows according
to the signal characteristics of different patients, facilitating
the finding of information with significant differences in time-
varying signals (Chen et al., 2010). The sliding window method
based on EMD could determine the dynamic window length
by the frequency of EEG signals of patients at different
times. A previous study reported that this adaptive window
method could obtain better dynamic information about cognitive
function and behavior (Zhuang et al., 2020). Hence, in this
study, we utilized the adaptive sliding window based on EMD
to seek out the local information on dynamic brain activity in
patients with PD.

Based on the data after dividing windows by the above
method, we used the phase lag index (PLI) to characterize
DFNs. The PLI method, proposed by Stam et al. (2007), could
estimate the phase synchronization between signals. We used
PLI to calculate the phase coupling degree by calculating the
instantaneous phase and the asymmetry of the phase difference
distribution between two time signals, and the calculation
formula is as follows:

PLI =
∣∣〈sign [1φ (tk)]

〉∣∣ , k = 1, 2, ..., N,

where 1φ(tk) represents phase differences calculated at different
times. PLI ranges from 0 to 1. The larger the PLI, the stronger the
coupling strength between signals.

Fluctuation Analysis of Dynamic
Functional Connectivity
The noise of EEG signals could also produce random fluctuations
of network connection, such that the existence of dFC could
not be proved only by the FC fluctuations of EEG signals
collected from patients. We used alternative data to observe if
the fluctuations in FC were representative of the real dFC. We
represented stationary processes by using suitable alternative data
to verify the authenticity of fluctuations and used the amplitude-
adjusted Fourier transform (AAFT) to construct alternative data
(Kugiumtzis, 2002). The AAFT method was used to generate
20 groups of alternative data corresponding to real data, and
then we used the window of real data selection to partition
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and constructed the dFN of alternative data. By calculating the
time-series standard deviations of each edge in DFN’s dynamic
process of real data and alternative data, we obtained the dynamic
fluctuation characteristics of brain connectivity for both. We
calculated the average fluctuation of 20 sets of alternative data
and the kPLI , which was the ratio of standard deviation between
fluctuations in real data and fluctuations in alternative data. The
formula is given as follows:

kPLI (v, w) =
σ (Dture (v, w))

1/M
∑M

i=1 σ (Drand (v, w))
,

where D represents the DFNs of real data and alternative data,
v and w are EEG channels, and M is the group number of
alternative data. As the ratio of fluctuation of real data to the
fluctuation of substitute data, if kPLI was greater than 1, then
there was a real fluctuation in dynamic brain FC, and kPLI could
represent the magnitude of fluctuation.

Network State Transition Analysis
Time-by-Time Graph
We used the form of the weighted DFNs to define time in
constructing the time-by-time graph (Medaglia et al., 2015).
Each node represented a different time window of DFNs,
and the different edges indicated the correlations between the
corresponding time windows of DFNs. We utilized the Frobenius
norm for distance measurement to calculate the similarity
between networks (Kurmukov et al., 2016), and the distance
measure was inversely proportional to similarity. The calculation
formula is as follows:

dF(P(t1), P(t2)) = ‖P(t1)− P(t2)‖F,

=

√√√√ N∑
i=1

N∑
j=1

(pij(t1)− pij(t2))2

where P represents DFNs of different patients, p represents the
edge of DFNs, i and j are the EEG channels, and N represents the
total number of EEG channels. The time-by-time graph T of each
patient was obtained, through which we could get the necessary
information on the same brain state during the evolution of
dynamic brain functional networks (Chen et al., 2017).

Recurrence Plot
Based on the time-by-time graph obtained from the patient, we
determined a threshold to define the upper limit of the distance
between similar networks. When the calculated distance was less
than a, we concluded that the two brain functional networks were
in the same state and set the edge of the time-by-time graph Tij to
1. On the contrary, we set it to 0. We could get the recurrence plot
(RP) using this method, and the recurrence matrix R of DFNs is
as follows:

Rij =

{
1, Tij < a
0, Tij > a

,

where i and j are the different times of the brain’s functional
network, and Tij is the distance measure of the functional
network at two moments.

Recurrence Quantification Analysis
We used the recurrence quantification analysis (RQA)
parameters, which were recurrence rate (RR) and trapping
time (TT), to evaluate the degree of network state transition of
DFNs (Marwan et al., 2007). RR indicated the number of times
that a network in the same state occurred in DFNs. The RR is
defined as follows:

RR =
1

N2

N∑
i,j=1

Rij,

where N represents the total number of brain functional networks
at different time windows. TT represents the average duration of
the same network state in DFNs. The larger the TT, the longer the
same state lasts on the network. The TT is defined as follows:

TT =

∑hmax
h=hmin

hP
(
h
)

∑hmax
h=hmin

P
(
h
) ,

where h was the length of the vertical line in RP, and P(h) is
the number of vertical lines whose length is h in RP. The P(h)
is calculated as follows:

P
(
h
)
=

N∑
i,j=1

(
1− Ri,j−1

) (
1− Ri,j+h

) h−1∏
k=0

Ri,j+k

Statistical Analysis
All data were analyzed using SPSS 22.0 (IBM, Inc., Armonk,
NK, United States) and GraphPad Prism 9 (La Jolla, CA,
United States). The Shapiro–Wilk test was used to examine the
Gaussian distribution of our data (p > 0.05). The demographic
and clinical characteristics were displayed as mean ± SD.
Comparisons of continuous variables among different diagnostic
groups were assessed using one-way analysis of variance
(ANOVA) and the Mann–Whitney U test. A Chi-square test
was used to compare categorical variables. Group comparisons
of clinical assessments and marker measures were made using
multiple linear regression analyses with sex, age, and disease
duration at testing as covariates. The correlation among plasma
neurodegenerative proteins, EEG characteristic parameters, and
clinical outcomes was accessed using Spearman’s rank correlation
analysis. Statistical significance was set at p < 0.05.

RESULTS

Demographic and Clinical
Characteristics
A total of 66 participants consisting of 33 patients with PD and 33
age- and sex-matched normal control subjects were enrolled in
this study. The demographic and clinical characteristics of study
participants are presented in Table 1. There were no significant
differences in gender and age between patients with PD and HC.
Similarly, in terms of disease duration, H&Y stage, MDS-UPDRS
II and III scores, global cognition status-MoCA, and other non-
motor scales, no statistical differences were found between the

Frontiers in Aging Neuroscience | www.frontiersin.org 4 July 2022 | Volume 14 | Article 911221

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-911221 July 6, 2022 Time: 19:3 # 5

Yang et al. Markers of PD Subtypes

TABLE 1 | Demographic and clinical characteristics of study participants.

Characteristics TD (n = 21) PIGD (n = 12) HC (n = 33) P-value

Male, % 47.62 50.00 51.52 0.96

Age, years 65.48 ± 6.83 63.92 ± 5.78 66.15 ± 4.75 0.74

Disease duration,
years

5.38 ± 2.52 5.00 ± 1.81 NA 0.99

Hoehn and Yahr
stage

1.24 ± 0.44 1.67 ± 0.49 NA 0.03

MDS-UPDRS I 2.00 ± 2.03 4.45 ± 2.70 NA <0.01**

MDS-UPDRS II 4.21 ± 3.99 5.09 ± 5.20 NA 0.87

MDS-UPDRS III 19.71 ± 11.71 18.58 ± 11.12 NA 0.90

MoCA 26.32 ± 2.96 25.73 ± 3.74 NA 0.93

NMSQ 5.62 ± 3.79 8.42 ± 4.33 NA 0.06

RBDSQ 2.79 ± 3.61 3.27 ± 3.80 NA 0.54

HAMD 2.58 ± 3.49 5.09 ± 4.04 NA 0.06

HAMA 1.47 ± 2.17 4.91 ± 7.35 NA 0.10

PDSS-2 4.84 ± 4.51 11.91 ± 8.87 NA 0.02

PD, Parkinson’s disease; TD, tremor-dominant; PIGD, postural instability and
gait disorder; HCs, healthy controls; MoCA, Montreal Cognitive Assessment;
NfL, neurofilament light chain; MDS-UPDRS, Movement Disorder Society
Unified Parkinson’s Disease Rating Scale; HAMD, Hamilton Depression Rating
Scale; HAMA, Hamilton Anxiety Rating Scale; NMSQ, Non-motor Symptoms
Questionnaire; RBDSQ, Rapid Eye Movement Sleep Behavior Disorder Screening
Questionnaire; PDSS-2, Parkinson’s Disease Sleep Scale-2; NA, not available.
Data are presented as mean ± SD. The p-values were obtained from comparisons
of variables between TD and PIGD using the Mann–Whitney U test. The Chi-square
test was used to compare categorical variables.
**p < 0.01.

two motor phenotypes. In the PIGD group, the score of MDS-
UPDRS I was significantly higher than the TD group (p < 0.01).

Plasma Biomarker Levels and
Electroencephalography Characteristic
Parameters in Different Groups
Plasma biomarkers and EEG characteristic parameters are
summarized in Table 2. The levels of plasma Aβ42, Aβ40,
Aβ42/40, and α-syn were significantly increased in patients with
PD when compared to controls (Aβ42: TD vs. HC: p < 0.0001,
PIGD vs. HC: p < 0.0001; Aβ40: TD vs. HC: p < 0.0001, PIGD
vs. HC: p < 0.001; Aβ42/40: TD vs. HC: p < 0.05, PIGD vs.
HC: p < 0.01; α-syn: TD vs. HC: p < 0.0001, PIGD vs. HC:
p < 0.001), while there was no significant difference between the
TD and PIGD groups, after adjustment for age, sex, and disease
duration. No differences were found in the concentrations of
plasma NfL and t-tau among the TD, PIGD, and control groups
(NfL, p= 0.65; t-tau, p= 0.39). Similarly, there was no difference
in EEG characteristic parameters (kPLI , TT, RR) between the TD
and PIGD groups (kPLI , p = 0.49; TT, p = 0.51; RR, p = 0.59,
Table 2).

Plasma Biomarker Correlations With
Clinical Outcomes
For clarifying whether there was any relationship between plasma
biomarkers and clinical features, we conducted the following
correlation analysis. In the TD group, plasma NfL exhibited
significant association with MDS-UPDRS III (r= 0.443, p < 0.05,

TABLE 2 | The levels of plasma biomarkers and EEG characteristic parameters in
patients with PD and HCs.

TD (n = 21) PIGD (n = 12) HC (n = 33) P-Value

Plasma biomarker

NfL (pg/ml) 18.01 ± 10.16 25.32 ± 22.10 15.99 ± 5.18 0.65

T-tau (pg/ml) 1.05 ± 0.57 0.87 ± 0.23 0.93 ± 0.63 0.39

Aβ42 (pg/ml) 9.93 ± 2.58 10.48 ± 2.58 5.26 ± 2.01 <0.01a,b

Aβ40 (pg/ml) 165.43 ± 48.40 162.37 ± 40.92 103.90 ± 31.00 <0.01a,b

Aβ42/40 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 <0.01a,b

α-Syn (pg/ml) 49.27 ± 41.06 41.39 ± 24.37 10.36 ± 6.51 <0.01a,b

EEG parameter

KPLI 1.91 ± 0.07 1.20 ± 0.10 NA 0.49

TT 16.85 ± 18.70 17.88 ± 23.77 NA 0.51

RR 0.34 ± 0.25 0.38 ± 0.30 NA 0.59

PD, Parkinson’s disease; TD, tremor-dominant; PIGD, postural instability and gait
disorder; HCs, healthy controls; NfL, neurofilament light chain; t-tau, total tau;
Aβ42, β-amyloid 42; Aβ40, β-amyloid 40; α-syn, α-synuclein; NA, not available.
aDifferences were found between TD vs. control.
bDifferences were found between PIGD vs. control.

Figure 1A) and MoCA (r = −0.555, p < 0.01, Figure 1B).
Higher Aβ42/40 level significantly related to a decrease in HAMD
(r = −0.590, p < 0.05, Figure 1C) and HAMA (r = −0.635,
p < 0.05, Figure 1D) in the PIGD group. No relationship was
found between any plasma biomarkers and NMSQ, RBDSQ,
and PDSS-2 scores.

Electroencephalography Correlations
With Clinical Outcomes
Correlations Between Electroencephalography
Signature and Motor Severity
We performed exploratory correlation analysis for the EEG
signature as a marker for clinical features and disease progression.
Meanwhile, EEG parameters were further refined into brain
regions to explore the brain regions with specific changes in
different motor subtypes of patients with PD with different
clinical manifestations. The results suggested that TT delta was
positively correlated with MDS-UPDRS III scores in the TD
group (r = 0.585, p < 0.05, Figure 2A), especially in prefrontal
(r = 0.638, p < 0.01, Figure 2B) and frontal (r = 0.685, p < 0.01)
regions. No such association was found between EEG parameters
and the H&Y stage.

Correlations Between Electroencephalography
Signature and Cognition
We next investigated the relevance between EEG parameters
and global cognitive status (MoCA). There were significant
direct associations between kPLI alpha (r = −0.466, p < 0.05,
Figure 3A) and TT theta (r = 0.571, p < 0.01, Figure 3B) with
MoCA scores, particularly in the prefrontal and frontal regions
(Figures 3C,D).

Correlations Between Electroencephalography
Signature and Other Non-motor Symptoms
In the TD group, both kPLI delta (r = 0.539, p < 0.05,
Figure 4A) and theta (r = 0.616, p < 0.01, Figure 4B)
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FIGURE 1 | Correlations between plasma biomarkers and clinical features in patients with PD. There were significant relationships between plasma NfL and
MDS-UPDRS III (A) and MoCA (B) in the TD group. Plasma Aβ42/40 level was negatively correlated with HAMD (C) and HAMA (D) in PIGD. Significant correlation
(p < 0.05) is marked in solid red line.

FIGURE 2 | Correlation between TT delta and MDS-UPDRS III scores in patients with PD. TT delta was positively associated with MDS-UPDRS III scores (A),
especially in the prefrontal and frontal regions (B). A significant correlation (p < 0.05) is marked in solid red and black lines.

were positively correlated with increases in HAMD, especially
in the prefrontal region (kPLI delta: r = 0.540, p < 0.05,
Figure 4E; kPLI theta: r = 0.476, p < 0.05, Figure 4F). Similarly,
a relationship was found between kPLI theta and HAMA in
the prefrontal region (r = 0.620, p < 0.01, Figures 4C,G).
We further analyzed the correlation between EEG and sleep
quality (RBDSQ and PDSS-2). KPLI gamma was particularly
associated with RBDSQ scores in the prefrontal (r = 0.625,
p < 0.01), frontal (r = 0.609, p < 0.01), and parietal
(r = 0.542, p < 0.05, Figures 4D,H) regions in the TD group.

No relationship was found between any of the EEG variables
with PDSS-2.

Correlations Between
Electroencephalography Characteristic
Parameters and Plasma Biomarkers
The relationship between plasma biomarkers and kPLI , TT, and
RR is presented in Tables 3–5, respectively. The level of NfL was
negatively correlated with TT in the theta band in the TD group
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FIGURE 3 | Scatter plot illustrating the correlation between EEG signature and cognition in patients with PD. Upper row: correlations of EEG frequency bands with
cognitive data (A,B). Lower row: correlations of EEG characteristic brain regions with cognitive data (C,D). A significant correlation (p < 0.05) is marked in solid red
and black lines.

FIGURE 4 | Scatter plot illustrating the correlation between EEG signature and other non-motor symptoms in patients with PD. Upper row: correlations of EEG
frequency bands HAMD (A,B), HAMA (C), and RBDSQ (D). Lower row: correlations of EEG characteristic brain regions with HAMD (E,F), HAMA (G), and RBDSQ
(H). A significant correlation (p < 0.05) is marked in solid red, black, and gray lines.

(r = −0.490, p < 0.05, Table 4) and with RR in the gamma band
in the PIGD group (r = −0.727, p < 0.01, Table 5). In terms of
plasma t-tau, there was a significant positive correlation with kPLI
in the delta (r = 0.571, p < 0.01), theta (r = 0.697, p < 0.001),
beta (r = 0.483, p < 0.05), and gamma (r = 0.442, p < 0.05)

frequency bands (Table 3), and a negative correlation with TT
in the delta band (r = −0.552, p < 0.05, Table 4) in the TD
group. Aβ42 showed an inverse association with RR delta in the
TD group (r = −0.491, p < 0.05, Table 5). A close relationship
of plasma α-syn with TT in the beta frequency band (r = 0.983,
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TABLE 3 | Correlation between plasma biomarkers and kPLI.

Plasma biomarker Frequency band TD PIGD

NfL Delta 0.207 0.245

Theta 0.347 0.132

Alpha 0.333 0.287

Beta 0.318 0.573

Gamma 0.187 0.552

T-tau Delta 0.571b 0.098

Theta 0.697c
−0.210

Alpha 0.100 0.308

Beta 0.483a 0.175

Gamma 0.442a
−0.203

Aβ42 Delta −0.097 −0.147

Theta 0.063 −0.275

Alpha −0.179 0.119

Beta 0.201 0.121

Gamma −0.167 0.115

Aβ40 Delta −0.222 −0.089

Theta 0.008 −0.241

Alpha −0.035 −0.101

Beta 0.218 0.049

Gamma 0.231 −0.252

Aβ42/40 Delta −0.227 0.298

Theta −0.024 0.475

Alpha 0.217 0.060

Beta −0.301 0.040

Gamma −0.253 0.313

α-Syn Delta 0.093 −0.115

Theta 0.096 −0.031

Alpha 0.353 −0.127

Beta −0.002 −0.094

Gamma −0.062 0.305

TD, tremor-dominant; PIGD, postural instability and gait disorder; NfL,
neurofilament light chain; t-tau, total tau; Aβ42, β-amyloid 42; Aβ40, β-amyloid 40;
α-syn, α-synuclein; r, Spearman’s rho.
ap < 0.05.
bp < 0.01.
cp < 0.001.

p < 0.001) was found in the PIGD group (Table 4). No statistically
significant correlation was found between Aβ42/40 level and EEG
measures in patients with PD.

DISCUSSION

In this study, we aimed to demonstrate the possible association
of plasma neurodegenerative proteins and EEG signature
with disease progression in early PD with different motor
subtypes and explore whether there was a link between
plasma biomarkers and EEG DFN signature. For this
purpose, we measured several plasma proteins (e.g., NfL,
α-syn, t-tau, Aβ42, and Aβ40) quantified by high-sensitivity
immunoassays and conducted characteristic DFN analysis for
electroencephalographic feature extraction. We performed a
correlation analysis between these two kinds of potential markers
and a comprehensive clinical assessment battery. Our results

TABLE 4 | Correlation between plasma biomarkers and TT.

Plasma biomarker Frequency band TD PIGD

NfL Delta 0.435 −0.350

Theta −0.490a
−0.442

Alpha 0.250 −0.190

Beta −0.120 −0.305

Gamma −0.183 −0.097

T-tau Delta −0.552a
−0.168

Theta −0.138 −0.277

Alpha −0.223 −0.433

Beta −0.078 −0.189

Gamma 0.081 −0.145

Aβ42 Delta −0.168 −0.147

Theta 0.050 0.006

Alpha −0.134 −0.005

Beta −0.044 −0.612

Gamma −0.131 −0.146

Aβ40 Delta −0.018 −0.237

Theta 0.048 −0.223

Alpha −0.161 −0.029

Beta −0.007 −0.302

Gamma −0.069 0.036

Aβ42/40 Delta −0.160 0.219

Theta −0.147 0.462

Alpha 0.203 0.084

Beta −0.169 −0.325

Gamma −0.076 0.026

α-Syn Delta 0.095 0.013

Theta 0.059 0.013

Alpha 0.380 −0.127

Beta −0.254 0.983b

Gamma 0.004 0.456

TD, tremor-dominant; PIGD, postural instability and gait disorder; NfL,
neurofilament light chain; t-tau, total tau; Aβ42, β-amyloid 42; Aβ40, β-amyloid 40;
α-syn, α-synuclein; r, Spearman’s rho.
ap < 0.05.
bp < 0.001.

suggested that plasma biomarkers and EEG parameters were
found to be related to motor severity, cognition, and some
NMS symptoms in patients with TD and PIGD. Furthermore,
we investigated the correlation between plasma biomarkers
and EEG characteristic parameters. Our findings indicated that
there was a significant positive correlation between plasma
t-tau and kPLI and pairwise correlations were found among
plasma NfL, theta TT, and MoCA scores in the TD group.
Therefore, plasma biomarkers and EEG measures are considered
to be potential tools to predict the disease progression of
PD subtypes.

Plasma Biomarkers and Disease Severity
Correlations
As the neural-specific cytoskeletal component and structural
component of axon and synapse, NfL plays an essential role
in neural electrical signal transmission and posttranslational
modification. It is highly expressed in large-caliber myelinated
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TABLE 5 | Correlation between plasma biomarkers and RR.

Plasma biomarker Frequency band TD PIGD

NfL Delta 0.091 −0.399

Theta −0.251 −0.259

Alpha −0.013 −0.546

Beta 0.048 0.228

Gamma 0.281 −0.727b

T-tau Delta 0.023 −0.064

Theta −0.279 0.280

Alpha −0.248 0.227

Beta 0.079 0.362

Gamma −0.012 −0.130

Aβ42 Delta −0.491a
−0.021

Theta 0.099 0.031

Alpha 0.037 −0.048

Beta 0.191 0.127

Gamma −0.100 −0.390

Aβ40 Delta −0.222 −0.089

Theta 0.008 −0.241

Alpha −0.035 −0.101

Beta 0.218 0.049

Gamma 0.231 −0.252

Aβ42/40 Delta −0.255 0.328

Theta −0.024 0.475

Alpha 0.217 0.060

Beta −0.301 0.040

Gamma −0.253 0.313

α-Syn Delta 0.093 −0.115

Theta 0.096 −0.031

Alpha 0.353 −0.127

Beta −0.002 −0.094

Gamma −0.062 0.305

TD, tremor-dominant; PIGD, postural instability and gait disorder; NfL,
neurofilament light chain; t-tau, total tau; Aβ42, β-amyloid 42; Aβ40, β-amyloid 40;
α-syn, α-synuclein; r, Spearman’s rho.
ap < 0.05.
bp < 0.01.

axons and is the main byproduct of neurodegeneration (Yuan
et al., 2017). There was a tendency that NfL levels increased
as the H&Y stage increased in our PD cohort. No differences
were found in the concentrations of NfL between the TD and
PIGD groups in our results, consistent with a previous study at
baseline (Ng et al., 2020), which suggested that NfL levels were
significantly increased in the PIGD group compared with the TD
group after a 2-year follow-up, however. Previous studies have
reported that NfL levels were significantly elevated in patients
with PIGD with worse cognition outcomes and were modestly
correlated with MDS-UPDRS III scores, indicating that there was
a relationship between NfL and disease severity and progression
in PIGD-PD (Ng et al., 2020; Ye et al., 2021). Nevertheless, our
results only showed that there was an association between plasma
NfL and MDS-UPDRS III, as well as MoCA scores in the TD
group, and the correlation was absent in the PIGD cohort. We
speculate these conflicting results might be due to the limited

number of early-stage patients with PD we enrolled and the lack
of follow-up.

It is considered that plasma and cerebrospinal fluid (CSF)
amyloid β are reflections of brain amyloidosis (Nakamura et al.,
2018; Schindler et al., 2019). Aβ peptides play a crucial role
in neuronal information processing and are key components
of amyloid plaques deposited in the brains of patients with
neurodegenerative diseases, especially common in Alzheimer’s
disease and PD dementia (Gomperts et al., 2013). In our cohort,
we found the levels of Aβ (Aβ42, Aβ40, and Aβ42/40) were higher
in patients with PD than HC, while there was no significant
difference between the two motor subtypes, in accordance with
another Chinese PD cohort (Ding et al., 2017). Moreover, we are
pleasantly surprised that a higher Aβ42/40 level was significantly
related to a decrease in HAMD and HAMA in the PIGD
group, that is, the lower the Aβ42/40 level is, the greater the
possibility of depression and anxiety the patients with PIGD have.
Previous studies have confirmed that the plasma Aβ42/40 level
was lower in older individuals with depression than in HCs,
and Aβ was more inclined to aggregation and polymerization in
depression and anxiety patients (Sun et al., 2007; Baba et al., 2012;
Nascimento et al., 2015; Johansson et al., 2020). Whether Aβ42/40
level is associated with anxiety and depression emotions in PD
subtypes deserves further research.

Electroencephalographic Features and
Disease Severity Correlations
The real relationship between electroencephalographic features
and disease severity in patients with PD is not yet definite. To
define and quantify brain dynamics and functional connectivity,
we conducted a DFN analysis. We extracted three EEG
characteristic parameters: TT, RR, and kPLI . As a symbol of the
average duration of the same network state in DFNs, the more the
TT increased, the longer the same state lasted on the network. RR
represented the number of times that a network in the same state
occurred in DFNs. Both TT and RR were used to evaluate the
degree of network state transition of DFNs (Marwan et al., 2007).
In contrast, the kPLI , which was the ratio of standard deviation
between fluctuations in real data and fluctuations in alternative
data, indicated the magnitude of dynamic fluctuation of brain
connectivity. According to our findings, EEG characteristic
parameters are proven to have correlations with motor, cognition,
and emotions in patients with TD.

Based on our results, TT in the delta band was positively
correlated with MDS-UPDRS III scores in the TD group,
especially in the prefrontal and frontal regions. That means the
longer the same state lasts on the network, the worse motor
performance the patients with TD have. A possible explanation
is that as the motor severity deteriorates, the maintenance of the
network state gets longer; that is, the slower the brain network
switches. Definitely, the supplementary motor area (SMA), the
dorsolateral prefrontal cortex (DLPFC), and the primary motor
cortex (M1) are the prime cortical motor regions in the frontal
lobe that have been extensively studied. Cortical motor region
dysfunction may interpret the pathogenesis of bradykinesia and
postural instability and gait disorder, which are the core motor
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manifestations of PD (Lefaucheur, 2005; Casarotto et al., 2019).
This phenomenon is consistent with our findings that delta TT
in the prefrontal and frontal areas were particularly relevant to
motor severity in patients with TD. However, the reason why this
correlation disappeared in the PIGD group may be the different
mechanisms of altered brain network state in patients with PIGD.

Generally, patients with PD have a slowing tendency of global
EEG activity observed to be significantly relevant to cognitive
processes, including attention and working memory, executive
function, emotion, and so on (Handojoseno et al., 2013). It has
already been confirmed that as the cognitive status deteriorates,
patients with PD have less stability and functional connectivity of
the brain neuronal network, possibly resulting from pathological
oscillations and dysregulation in the cortico-basal ganglia-
thalamic-cortical pathways and synaptic degeneration (Aarsland
et al., 2017; Wang et al., 2020). The frontal and prefrontal
cortex assist us to make better decisions. Recent research on
clarifying the definite role of neuronal oscillations in the frontal
cortex as measured by EEG indicated that frontal theta was an
essential integral mechanism in cognitive processes, especially
in cognitive control (Cavanagh and Frank, 2014). Similarly, our
study showed that TT in the theta band was positively correlated
with MoCA score in the TD group, particularly in the prefrontal
and frontal regions. In addition, alpha kPLI in the prefrontal and
frontal regions were significantly associated with global cognitive
function. It could be speculated that the faster the network state
switches and the greater the magnitude of dynamic fluctuation
of brain connectivity in the frontal cortex is, the worse cognitive
function the patients with TD have.

It is widely believed that dopamine (DA) system dysfunction
in the substantia nigra pars compacta (SNc) is a trigger for the
classical signs and symptoms in patients with PD (Wichmann,
2019). Recently, burgeoning data have connected dopamine
system dysfunction to the pathophysiology and pathogenesis of
depression and anxiety (Grace, 2016; Calipari, 2020), hence it
could be assumed that patients with PD have a greater likelihood
of suffering from mood disturbances. A neuroimaging meta-
analysis implied increased neural activity and structural changes
in the prefrontal regions in depressed and anxious patients with
PD (Wen et al., 2016). EEG studies suggested spatiotemporal
patterns of cortical activity and functional connectivity altered
in patients with PD with affective symptoms (Iyer et al., 2020).
Consistent with the above studies, our results suggested a positive
correlation between the Hamilton emotion scale with kPLI in the
theta band (especially in the prefrontal region) in patients with
TD, further confirming that patients with TD who develop mood
disturbances have a greater magnitude of dynamic fluctuation of
brain connectivity.

Idiopathic RBD (iRBD) is supposed to be a prodromal stage
of PD. Research on resting-state EEG functional connectivity to
examine the cerebral network subtle variations in patients with
iRBD pointed out that functional networks in iRBD were altered
at the early stage of the disease (Sunwoo et al., 2017). KPLI gamma
was particularly associated with RBDSQ scores in the prefrontal,
frontal, and parietal regions in the TD group, which have been
proved to be decreased regional cerebral blood flow in iRBD
in a single-photon emission computerized tomography (SPECT)

cerebral blood flow study (Vendette et al., 2011). Accordingly,
EEG characteristic parameters show promise to become potential
markers for disease progression in patients with TD.

Correlations Between
Electroencephalography Characteristic
Parameters and Plasma Biomarkers
In this study, it is the first time to explore the association between
EEG features and plasma neurodegenerative proteins in different
motor phenotypes of PD. One of the most crucial findings was the
relationship of increased kPLI (higher global dynamic fluctuation
magnitude of brain connectivity) with higher t-tau levels in the
TD group, which could be speculated that as tau pathology
accumulates, so does the discordance of the dynamic brain
network. In addition, plasma t-tau and Aβ42 were negatively
associated with TT and RR in the delta band, respectively, which
was especially involved in the slow-frequency band, speculating
that the more the tau and amyloid pathology deposits in patients
with TD, the faster the brain network state switches and the larger
fluctuation the brain network has. Similar network alternations
associated with biofluid markers have been put forward. For
example, increased CSF p- and t-tau levels were correlated with
EEG slowing and decreasing synchronization in patients with
cognitive impairment (Smailovic et al., 2018; Tanabe et al., 2020);
the combined p-tau/Aβ42 ratio exhibited a stronger correlation
with the slow-frequency band in elderly individuals (Stomrud
et al., 2010). Beyond plasma t-tau, we also found some specific
correlations between other plasma biomarkers (NfL and α-syn)
and EEG parameters in individual band power. Until now,
there is no clear evidence for the link between NfL and EEG
variables in PD, and our study first proposed and explored
the relationship between them. It is acknowledged that NfL is
a byproduct of neurodegeneration, and with the increase in
NfL, the severity of neuronal damage aggravates. Our study
showed that plasma NfL was negatively correlated with TT
theta in patients with TD and RR gamma in patients with
PIGD, speculating that as the plasma NfL increases and the
neurodegenerative changes exacerbate, the fluctuation of DFNs
becomes wilder. Particularly, pairwise correlations were found
among plasma NfL, theta TT, and MoCA scores in the TD group,
suggesting that an integrated measurement of plasma NfL and
theta TT may be a powerful predictor of cognitive impairment
in patients with TD. Furthermore, it is widely accepted that
α-syn accumulation leads to abnormal communication with
neuronal, synaptic, and/or dendritic membranes, resulting in
pathophysiological changes, which may explain its correlation
with network state abnormalities (Caviness et al., 2016).
Concurrently, we found α-syn correlated strongly with TT beta
in patients with PIGD, implying the anomalous network state
switching in PIGD. Numerous studies support the hypothesis
that positive correlation between blood α-syn and motor severity
in patients with PD (Chang et al., 2020; Fan et al., 2020)
and our finding that the TT in the delta band was positively
correlated with MDS-UPDRS III scores and plasma α-syn in
the TD group strengthened the hypothesis, implying that motor
function impairment might lead to the abnormal slowing of
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brain state transition. A seemingly contradictory finding was
that TT was positively correlated with motor impairment and
α-syn level while negatively correlated with the levels of NfL and
tau. We speculate the probable cause is that the nerve damage
characteristics represented by NfL and tau are different from syn
since the NFL level mainly reflexes CNS axonal damage severity
and tau itself may also have specific CNS damage pathology;
that is, the damage of brain functional areas reflected by the
accumulation of NfL and tau is different from that of α-syn.
Above all, our results support the close relationship between
plasma biomarkers and EEG measures. However, the definite
correlation between the two kinds of markers and whether
quantitative EEG could become an economic and alternative
method for the diagnosis and prognosis of PD subtypes require
further research and confirmation.

Limitations
This study has some limitations worth mentioning. First, due
to the relatively restricted number of patients and short of EEG
conducted among HCs, we cannot infer the definite correlation
of EEG characteristic parameters and plasma biomarkers with
disease severity in different motor subtypes and compare the
discrepancy of EEG variables between PD and controls. Second,
it is essential to track the dynamic changes in EEG and
plasma protein profiles within individuals and over time to
probe whether these could be potential instruments to monitor
disease progression. Therefore, much more longitudinal research
is badly needed. Finally, the detection of biomarkers in CSF
has been extensively studied, which seems to better reflect
the function of the central nervous system. In this study,
we selected a more convenient blood-based detection means
instead of CSF.

CONCLUSION

Our study highlighted the reliable relationship of EEG
characteristic parameters and plasma biomarkers with disease
severity in different motor subtypes of PD and simultaneously
explored the potential association between EEG characteristic
parameters and plasma biomarkers. Results confirmed that
an integrated measurement of plasma NfL and theta TT is
a powerful predictor of cognitive impairment in patients

with TD. As a consequence, these two promising detection
methods are expected to become potential markers to predict
disease progression of PD subtypes, especially for patients
with TD. A combination of these markers for monitoring and
prognosis of PD progression deserves further research in larger,
follow-up PD cohorts.
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