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Background: Innate lymphoid cells (ILCs) exert tumor suppressive and tumor promoting effects. 
However, the prognostic significance of ILC-associated genes remains unclear in hepatocellular carcinoma 
(HCC). Hence, the aim of this research was to develop an innovative predictive risk classification system 
using bioinformatics examination.
Methods: We explored the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases to gather data pertaining to HCC and its clinical details. Significantly different ILC-associated 
genes were investigated by Seurat analysis. The number of signaling interactions of ILCs with other cells 
was discovered by CellPhoneDB analysis. ClusterProfiler and Metascape were utilized to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on ILC 
genes. In order to identify potential ILC predictors, we utilized univariate Cox regression and least absolute 
shrinkage and selection operator (LASSO) analyses, subsequently validating these predictors in TCGA 
and GEO groups. The multi-omics ILC signature model’s clinical predictive capabilities, along with drug 
sensitivity and immune factor relations, were assessed using Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts (CIBERSORT) and pRRophetic. We investigated the possible molecular 
pathways in our predictive ILC signature through the utilization of gene set enrichment analysis (GSEA) 
and gene set variation analysis (GSVA). Five key genes were screened out by constructing a competing 
endogenous RNA (ceRNA) network using Cytoscape and their values in clinical indexes were demonstrated. 
Immunohistochemistry (IHC) in HCC cases confirmed the expression of these genes.
Results: ILC cell subsets were identified, and cell-cell communication analysis revealed that the signaling 
pathways involving ILC cell subsets were mostly abundant in the HCC microenvironment. Subsequently, 
270 marker genes of the ILC clusters were subjected to GO and KEGG enrichment analysis. Furthermore, 
a total of 58 prognostically relevant genes were screened as features for prognostic prediction models. Next, 
the models were validated and clinically evaluated (P values of Kaplan-Meier survival curves below 0.05). 
Five key genes  (C2, STK4, CALM1, IL7R, and RORA) were further screened by multi omics analysis of 
immune cell and factor and drug sensitivity and correlation analysis of tumor regulatory genes in liver cancer. 
Furthermore, the potential clinical value of the 5 key genes was confirmed in HCC patients. Finally, the IHC 
results confirmed the expression of C2, STK4, CALM1, IL7R, and RORA in HCC. Our experimental results 
provided preliminary evidence supporting the oncogenic roles of STK4 and CALM1, as well as the tumor-
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Introduction

Globally, liver cancer ranks fourth in terms of type of cancer. 
The most common form of liver cancer, hepatocellular 
carcinoma (HCC), is the third leading cause of death 
from cancer. Approximately 80% of the 905,677 new liver 
cancer cases globally in 2020 were diagnosed as HCC (1). 
Chronic liver injury, inflammation, and fat accumulation in 
the hepatocytes caused by hepatitis B and C viruses lead to 
HCC (2). Despite notable progress in treatment, just 40% 
of cases of HCC are detected early, leading to unfavorable 
treatment results. Liver cancer deaths are projected to 
exceed 1 million in 2030 (3).

Enhanced identification and treatment strategies for 
HCC are urgently required. Despite the advancements 
in biological techniques like RNA sequencing (RNA-seq) 

and single cell RNA sequencing (scRNA-seq) that have 
enhanced our knowledge of tumors, there is a scarcity 
of available data concerning research conducted on the 
individual cell level of HCC. Pioneering scRNA-seq 
investigated the subpopulations of primary HCC cells 
versus immune cells in the formation of the shape of the 
HCC microenvironment (4). This atlas promotes the 
understanding of the HCC microenvironment.

Innate lymphoid cells (ILCs), a unique category of 
immune cells, play a key role in immune response regulation 
during disease states (5). They drive opposite responses such 
as tissue repair and promotion of tumorigenesis (6). Prior 
research indicated that ILCs possess anti-cancer properties, 
while some studies proposed that ILCs contribute to the 
promotion of tumor growth (7,8). The study examined 
the role of a specific ILC subgroup, but did not consider 
the intricate interactions within the ILC system and its 
controlling cytokines (9). Therefore, more analyses of 
tumor ILCs are needed to understand their role in the 
tumor microenvironment.

Patients diagnosed with HCC have a very poor 
prognosis, as their chances of surviving for 5 years are less 
than 18% (2). Diagnosis and screening in the early stages of 
cancer are extremely necessary for a successful treatment, 
and the genetic screening that is already available in clinical 
practice is insufficient (10). The prediction of the disease 
status and stage of patients by screening the risk factors for 
HCC facilitates its treatment and prolongs the survival time 
of patients.

Therefore, this study combined scRNA-seq and bulk 
RNA-seq data to thoroughly examine HCC, aiming to 
create a novel prognostic risk classification model through 
bioinformatics analysis. First, the high expressed genes 
in ILC cells were measured by scRNA-seq cohort. Risk 
assessment was conducted on these genetic markers, leading 
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to the establishment of a robust and dependable model in 
The Cancer Genome Atlas (TCGA) cohort, which was 
subsequently verified in cohorts from the Gene Expression 
Omnibus (GEO) and the International Cancer Genome 
Consortium (ICGC). Subsequently, the groups categorized 
as high- and low-risk were assessed for clinical predictive 
value, immune correlation, and competing endogenous 
RNA (ceRNA) network construction. Finally, five potential 
key genes were found as markers of HCC in our prognostic 
risk model. This research would provide a more thorough 
insight into HCC. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-24-725/rc).

Methods

Data gathering

Researchers have access to a range of data in the TCGA 
database (https://portal.gdc.cancer.gov/), such as DNA 
methylation, copy number variations, single nucleotide 
polymorphisms (SNPs), microRNA (miRNA), and gene 
expression profiles. For liver hepatocellular carcinoma 
(LIHC), messenger RNA (mRNA) expression data were 
gathered, encompassing both a control group (n=50) and a 
cancer group (n=374). Gene expression data are stored in the 
GEO database. Data related to liver cancer from the dataset 
GSE149614 were obtained from the publicly available GEO 
database for analysis of correlations at the single cell level. 
There were a collective of 18 samples, including 10 liver 
cancer samples and 8 control samples. The data file from the 
GSE14520 Series Matrix File was retrieved from the publicly 
accessible GEO database, using the GPL3921 annotation 
platform. Extracted were 221 comprehensive expression 
profiles along with survival information of patients diagnosed 
with LIHC. Furthermore, comprehensive expression profiles 
and survival data for 202 patients with LIHC were acquired 
from the ICGC database. There were 460 miRNA sets 
associated with HCC acquired from the Human microRNA 
Disease Database (HMDD) database (http://www.cuilab.cn/
hmdd).

Single cell analysis

Utilizing the Seurat tool (11), expression profiles were 
analyzed, excluding genes characterized by low expression 
levels (nFeature_RNA >50 and percent.mt <5). The 
information was standardized and homogenized in 

sequence, followed by principal component analysis (PCA) 
to determine the optimal number of principal component 
(PC) using ElbowPlot. t-Distributed Stochastic Neighbor 
Embedding (tSNE) analysis was used to group the cells, 
and the annotation file from the celldex package was used 
to determine the spatial relationship between each group. 
Cell marker genes sourced from the CellMarker website 
were employed for annotating these groups and infer the 
potential spatial relationships between cells (12). Cells that 
play an important role in disease progression are labeled 
in clusters. Following this, the FindAllMarkers function 
was utilized to identify marker genes corresponding to 
each cell subtype within the single-cell profiles, with a 
logfc.threshold of 1 and a min.pct of 0.1. Genes meeting 
the criteria of an adjusted P value less than 0.05 and an 
absolute average log2 fold change greater than 1 were 
determined to be distinctive marker genes specific to each 
cellular subtype.

Analysis of the interaction between ligand and receptor

The database CellPhoneDB contains information on 
receptors, ligands, and their interactions, as detailed in 
reference (13). This database, revealing heteromeric 
complexes in both ligands and receptors, houses information 
on 978 distinct protein varieties and integrates with other 
databases like International Union of Pharmacology 
(IUPHAR), Protein Data Bank (PDB), Ensembl, and 
Universal Protein (UniProt). It enables the examination 
of cellular communication and the thorough, methodical 
study of communication molecules between cells and the 
exploration of communication among various cell types. 
We used statistical tools from CellphoneDB to analyze the 
characteristics of single-cell expression profiles in order 
to assess the importance of ligand-receptor interactions. 
Cluster labels for every cell were randomly permuted 
1,000 times, and the average expression levels of receptors 
within clusters and ligands within interacting clusters were 
calculated. This results in a null distribution, commonly 
referred to as the Bernoulli distribution, for each receptor-
ligand pair in all pairwise comparisons between the two cell 
types. Ultimately, select ligand-receptor pairs, especially 
pertinent to our study, were highlighted to demonstrate 
their connection.

Gene function enrichment analysis

Gene sets pertinent to HCC were systematically annotated 
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for functional insights using clusterProfiler to delve into 
their functional significance (14). Functional categories were 
evaluated utilizing the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses. 
Pathways from GO and KEGG that had values for both P 
and Q below 0.05 were deemed significant. Furthermore, 
the functional annotation of pivotal gene sets was conducted 
using the Metascape database (www.metascape.org) to 
thoroughly elucidate their functional significance. GO 
analysis and KEGG pathway analysis were conducted on 
specific gene sets. Statistical significance was determined by 
requiring Min overlap ≥3 and P≤0.01.

Model construction and prognosis

Prognosis-associated genes were meticulously chosen, 
and a least absolute shrinkage and selection operator 
(LASSO) regression model was constructed using the 
“glmnet” package to further refine the prognostic model. 
The integration of the expression of individual genes 
resulted in the creation of a formula for calculating each 
patient’s risk score, which was further adjusted by its 
corresponding LASSO regression coefficient. The patients 
were stratified into low-risk and high-risk groups by 
applying this equation, with the median risk score serving 
as the dividing line. Kaplan-Meier analysis was employed to 
assess differences in survival across the various groups, with 
comparisons made using the log-rank test. Additionally, in 
order to assess the stability of the model, external datasets 
were employed for validation. Moreover, the predictive 
accuracy of the model was evaluated by generating a 
receiver operating characteristic (ROC) curve with the help 
of the “survivalROC” software.

Drug sensitivity analysis

Utilizing the R package “pRRophetic”, predictions 
were made for the sensitivity of specific tumor samples 
based on the Genomics of Drug Sensitivity in Cancer 
database (GDSC, https://www.cancerrxgene.org/) (15). 
This approach involved calculating each chemotherapy 
drug’s half maximal inhibitory concentration (IC50) value, 
followed by validation using 10-fold cross-validation 
with the GDSC training set to evaluate the accuracy 
of regression and prediction. Default parameters were 
employed for all settings, including the application of 
“combat” to mitigate batch effects and averaging replicate 
gene expressions.

Immune cell infiltration analysis

Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT) stands as one of the 
most prominently referenced tools for characterizing and 
inferring cellular composition in accordance with gene 
expression profiles. In our research, the CIBERSORT 
algorithm was employed to dissect RNA-seq data from 
different LIHC patient subgroups, facilitating the 
estimation of relative proportions for 22 distinct types 
of immune infiltrating cells (16). Overall, each sample’s 
estimated score for immune cells was 1. A Spearman 
correlation analysis was performed to investigate the 
connection between gene expression and the presence of 
immune cells, with a significance level of P<0.05.

Gene set enrichment analysis (GSEA) 

Differential gene expression analysis was conducted on 
LIHC expression data to pinpoint genes exhibiting disparate 
expression levels between high-risk and low-risk groups. 
Gene sets were filtered to include only those with sizes 
between 15 and 500 genes. After 1,000 permutations, gene 
sets were determined to be enriched using a significance 
threshold of P<0.05 and a false discovery rate (FDR) value 
of 0.25. Following that, there were notable enhancements 
in the GO and KEGG pathways that were revealed.

Gene set variation analysis (GSVA)

GSVA is a method used to measure the enrichment of 
transcriptome gene sets without supervision and without 
relying on parameters (17). GSVA facilitates the conversion 
of gene-level alterations into pathway-level variations by 
systematically scoring the gene sets of interest, thereby 
assessing the biological functionality of the sample. To 
mitigate the impact of redundant information within 
pathways, duplicate genes were eliminated from each gene 
set, along with genes featured in multiple pathways. During 
this study, a collection of 50 hallmark pathways genes was 
obtained from the Molecular Signatures Database (MSigDB). 
Following this, the GSVA algorithm from the “GSVA” 
package in R software was used to thoroughly evaluate each 
gene set, allowing for the examination of possible changes in 
biological function among various samples.

Immunohistochemistry (IHC)

Participants included four newly diagnosed HCC patients 
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at varying T stages (T1–T4) from the Second Affiliated 
Hospital of Wannan Medical College. We acquired 
four fresh HCC tissue samples from these individuals. 
Additionally, the expression levels of five crucial ILC 
genes across different T stages were confirmed using IHC. 
The IHC was conducted as previously described (18)  
on HCC clinical samples, utilizing rabbit polyclonal 
primary antibodies targeting C2 (1:100, DF14074, Affinity), 
STK4 (1:100, DF7691, Affinity), CALM1 (1:100, AF6353, 
Affinity), IL7R (1:100, DF6362, Affinity), and RORA (1:100, 
DF3161, Affinity). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was reviewed and approved by the Ethics Committee 
of The Second Affiliated Hospital of Wannan Medical 
College (Wuhu, China, WYEFYLS2023139). Informed 
consent was taken from all participants.

Statistical analysis

R software (version 4.1) was used to perform statistical 
analysis. Survival curves were created using Kaplan-Meier 
analysis and compared by log-rank. Multivariate analysis was 
conducted using Cox proportional hazards models. A value of 
P<0.05 was used to determine statistical significance.

Results

Pre-processing of single-cell expression profile data

In this study, a comprehensive analysis was conducted on 
63,101 cells from 18 liver samples to identify gene expression 
patterns. Out of these, only 47,640 cells, which adhered to 
specific expression criteria (percent.mt <5, nFeature_RNA 
>50), were selected for further examination. The analysis 
included these cells to determine the gene expression profile 
(Figure 1A,1B). The expressions of genes in the samples are 
shown in Figure 1C and the top 10 genes with the greatest 
standardized variance are indicated (Figure 1C).

Analyzing single-cell data for subtype clustering

PCA dimensionality reduction analysis was conducted 
on 20 genes, revealing varying scores across different 
dimensions (Figure 1D). Interestingly, this analysis identified 
no significant variation among the samples (Figure 1E). 
ElbowPlot analysis determined 17 as the best number of 
PCs (Figure 1F), while tSNE analysis identified 33 distinct 
subtypes (Figure 1G).

Annotation of clustered subtypes

HumanPrimaryCellAtlasData,  ImmGenData,  and 
BlueprintEncodeData served as annotation references to 
categorize each subtype using the R package “SingleR”. 
A total of 33 clusters were annotated to various cell types, 
including 11 cell categories such as endothelial cells, B 
cells, pro, natural killer T cell (NKT), stromal cells, ILC, 
fibroblasts, epithelial cells, neutrophils, macrophages, 
hepatocytes, and mast cells (Figure 2A,2B). Following that, 
FindAllMarkers was utilized to discover marker genes for 
every cell type by analyzing the single-cell expression profiles.

Comparative study of ligands and their receptors

The CellphoneDB software was used to analyze the 
interactions between ligands and receptors in the 
characteristics of the single-cell expression profile. 
Subsequently, specific ligand-receptor pairs were chosen 
and depicted (Figure 3A). Epithelial cells-fibroblasts, ILC-
mast cells interacted with CD74_APP, CD74_MIF with 
high interaction scores. Additionally, a significant number 
of possible ligand-receptor connections were found among 
mast cells, ILC, stromal cells, and various other cell types 
(Figure 3B). Following this, the count of ligand-receptor 
gene pairs linked to each cell cluster was calculated, 
revealing that ILC subtypes had the most potential 
interactions with other cell subtypes (Figure 3C).

Analysis of functional markers for significant subcategories

Pathway analysis was performed on 270 marker genes 
of the ILC subtypes. The analysis of GO enrichment 
showed that the marker genes were mainly enriched in 
pathways linked to the humoral immune response, blood 
particles, and binding to the major histocompatibility 
complex (MHC) protein complex (Figure 4A). The KEGG 
enrichment analysis revealed that the marker genes were 
predominantly enriched in pathways like Graft versus host 
disease and T helper cell 17 (Th17 cell) differentiation 
(Figure 4B). Additionally, further pathway analysis of the 
marker genes conducted using the Metascape database 
demonstrated enrichment in pathways such as blood 
microparticles, regulation of cell activation, and collagen-
containing extracellular matrix (Figure 4C). Moreover, 
the Cytoscape software was used to analyze the protein 
interaction network of the genes in these marker gene sets 
(Figure 4D).

http://percent.mt
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Figure 1 Characteristics of liver cancer scRNA-seq. (A) The left figure shows the relationship between cell sequencing depth and 
mitochondrial content, and the right figure shows the relationship between sequencing depth and gene quantity, and the two are positively 
correlated. (B) Single-cell quality control showing cell number, gene number, and sequencing depth for each sample. (C) We identified genes 
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Prognosis-related genes and prediction model

Clinical data from liver cancer patients were gathered 
to identify key genes within the modeling candidate 
gene set. Following this, the Cox univariate regression 
and LASSO regression algorithms were used to identify 
specific genes linked to liver cancer (Figure 5A-5C). The 
findings revealed a collective of 58 prognosis-related genes, 
which were the following: SPP1, DAB2, HSP90AA1, 
RHEB, CPS1, RBP4, TUBA4A, CYP3A5, SRSF7, STK4, 
HSPH1, S100A8, TREM2, KNG1, LEPROTL1, ADI1, 
UGDH, AGXT, APOC1, KLRB1, PDK4, ALDOB, NPC2, 
SERPING1, IER3, SULT2A1, HMGB2, PSAP, VTN, 
AMBP, FYN, CALM1, S100A6, PRDX6, APOC3, IL7R, 
C4BPB, APOE, RARRES2, SPINK1, GC, TTR, FTL, RORA, 
PCK1, PEBP1, TSC22D3, ALB, CD7, FCN3, LGMN, 
RBCK1, C2, CFH, CTSB, STAT4, GAMT, and CST3. 
Patients from the TCGA dataset were partitioned into two 
cohorts, comprising a training set and an internal validation 
set, with a randomized split ratio of 4:1. The datasets 

GSE14520 and ICGC served as an external validation 
set. Using LASSO regression analysis, each sample’s best 
risk score was determined (0.139578825433095 + PRDX6 
× 0.143823075246877 + SPP1 × 0.178012356322452), 
followed by correlation analysis. After stratifying patients 
based on their risk scores into high-risk and low-risk groups 
using the median as the threshold, they were evaluated with 
Kaplan-Meier curves. In both the training and test sets, the 
high-risk group showed a notably reduced overall survival 
(OS) in comparison to the low-risk group (Figure 5D,5E). 
Furthermore, analysis of the ROC curve showed that the 
area under the curve (AUC) values for both the training 
and test groups after 1, 3, and 5 years were all greater 
than 0.8 (Figure 5F,5G), demonstrating strong verification 
performance of the model.

Validation of the prognostic model’s robustness using 
external datasets

The preprocessed survival data of LIHC patients from public 

that were significantly different between cells and plotted the characteristic variance. (D,E) Display of PCA and distribution of PC, dots 
represent cells, and colors represent samples. (F) Variance ranking plot for each PC. (G) We divided cells into 33 clusters by tSNE algorithm 
according to the important components available in PCA; colors represent cell clusters. PC, principal component; tSNE, t-Distributed 
Stochastic Neighbor Embedding; scRNA-seq, single cell RNA sequencing; PCA, principal component analysis.

BA

Figure 2 Annotation of cell subtypes. (A) Cell annotation of 33 clusters, 33 clusters are annotated into 11 cell types, namely endothelial cells, 
B cells, pro, NKT, stromal cells, ILCs, fibroblasts, epithelial cells, neutrophils, macrophages, hepatocytes, and mast cells. (B) Differences 
in the proportions of 11 types of cells in the two groups of samples. tSNE, t-Distributed Stochastic Neighbor Embedding; ILCs, innate 
lymphoid cells; NKT, natural killer T cell. 
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Figure 3 CellPhoneDB locates communication between cells. (A) Bubble diagram of receptor and ligand information among 8 types of 
cells. Red and blue represent the strong and weak interaction of signal axis. (B) Cell interaction network among 11 types of cells, edge 
width indicates the probability and strength of communication between cells. (C) Comparison of the total number of interactions of the 
communication network between 11 types of cells, decreasing from left to right, the strongest being the ILC. ILC, innate lymphoid cell; 
NKT, natural killer T cell.
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Figure 4 Enrichment analysis of prognosis-related genes. (A,B) GO-KEGG enrichment analysis based on ClusterProfiler. (C) Metascape-
based GO-KEGG enrichment analysis, the figure above is a cluster network composed of enrichment pathways, where nodes sharing the 
same cluster are usually close to each other. (D) Protein interaction network, based on String database, visualized by Cytoscape software. 
MHC, major histocompatibility complex; BP, biological process; CC, cellular component; MF, molecular function; COVID-19, coronavirus 
disease 2019; Th17 cell, T helper cell 17; Th1 cell, T helper cell 1; Th2 cell, T helper cell 2; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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databases (GSE14520 and ICGC) were obtained. The model 
was utilized to forecast the clinical categorization of LIHC 
patients within the GEO database. Kaplan-Meier analysis 
was employed to assess survival disparities between the 
predicted groups, and the prediction model was examined for 
stability. The findings indicated a significant reduction in OS 

within the high-risk group as opposed to the low-risk group 
in both external validation datasets from the GEO and ICGC 
(Figure 5H,5I). Furthermore, the accuracy of the model in 
predicting patient outcomes was validated by analyzing ROC 
curves with external datasets, demonstrating its significant 
prognostic utility (Figure 5J,5K).



Pan et al. Prognostic feature of ILC in liver cancer5404

© AME Publishing Company.   Transl Cancer Res 2024;13(10):5395-5416 | https://dx.doi.org/10.21037/tcr-24-725

Figure 5 Prognosis-related genes and prediction model. (A) Ten-fold cross-validation of tuning parameter selection in the LASSO model 
to determine the minimum lambda value. (B) Distribution of LASSO coefficients of prognostic genes and the gene combination at the 
minimum lambda value. (C) Coefficients of LASSO genes. (D,E) Survival curves of TCGA training set and test set models. (F,G) ROC 
curves (1-, 3- and 5-year OS) of the TCGA training set and test set models. (H,I) Survival curves of GEO and ICGC models. (J,K) ROC 
curves (1-, 3- and 5-year OS) of GEO and ICGC models. HR, hazard ratio; TCGA, The Cancer Genome Atlas; AUC, area under the curve; 
TPR, true positive rate; FPR, false positive rate; LASSO, least absolute shrinkage and selection operator; GEO, Gene Expression Omnibus; 
ICGC, International Cancer Genome Consortium; ROC, receiver operating characteristic.
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An exploration of the clinical predictive value of the model 
using multi-omics

The tumor microenvironment consists of immune cells, 
tumor-associated fibroblasts, inflammatory factors, 
growth factors, cancer cells, and extracellular matrix, all of 
which play a vital role in the detection of tumors, patient 
prognosis, and treatment response. In order to explore the 
molecular mechanisms driving the progression of HCC, 
our analysis focused on the correlation between the risk 
score and the infiltration of immune cells within tumor 
tissues. The findings indicated that there was variability in 
the distribution of immune levels of various immune factors 
within the samples (Figure 6A). Additionally, significant 
correlations were observed among multiple immune 
factors (Figure 6B). It is worth mentioning that samples 
in the low-risk category showed increased levels of naive 
B cells and CD8 T cells, while having decreased levels of 
macrophages M0 and macrophages M2 (Figure 6C). The 
risk score demonstrated a significant positive association 
with macrophages M2, dendritic cells activated, T cells 
CD4 memory activated, neutrophils, eosinophils, and 
macrophages M0, while displaying a negative association 
with macrophages M1, plasma cells, T cells CD8, B 
cells naive and T cells CD4 memory resting (Figure 6D). 
Furthermore, combining surgery with chemotherapy for 
early liver cancer showed evident efficacy. We utilized 
the R package “pRRophetic” to forecast the sensitivity 
of chemotherapy for individual tumor samples based on 
GDSC database drug sensitivity data, revealing significant 
correlations between risk score levels and drug sensitivity 
to bexarotene, bleomycin, camptothecin, cisplatin, 
doxorubicin, and gemcitabine (Figure 6E). Furthermore, 
notable variances in microsatellite instability (MSI) 
levels were identified between the high-risk and low-risk 
groups, whereas no statistically significant distinctions 
in Neoantigen and tumor mutation burden (TMB) were 
evident between the aforementioned groups (Figure 6F-6H). 
Exploring the correlation between key genes and immune 
factors from the TISIDB database further elucidated 
immune factor distinctions between high- and low-risk 
groups (Figure 7A-7E).

Specific signaling mechanism related to the prognostic 
model

The research examined particular communication 
pathways linked to the high-low risk relationship model 

in order to reveal the molecular processes that explain 
how risk scores affect tumor advancement. GSEA analysis 
revealed significant enrichment of various pathways. 
GO analysis revealed pathways including CELLULAR_
A M I N O _ A C I D _  C ATA B O L I C _ P R O C E S S  a n d 
POSITIVE_REGULATION_OF_CELL_CYCLE_
PHASE _TRANSITION, whereas KEGG analysis 
pinpointed pathways such as COMPLEMENT_ AND_
COAGULATION_CASCADES and FATTY_ACID_
METABOLISM. Notably, certain highly significant 
pathways were separately clustered (Figure 8A,8B). 
Furthermore, GSVA analysis revealed that the two 
patient groups exhibited differential pathways that were 
predominantly enriched in UNFOLDED_PROTEIN_
RESPONSE,  MYC_TARGETS_V1,  MTORC1_
SIGNALING, BILE_ACID_METABOLISM, and 
COAGULATION (Figure 8C), suggesting that alterations 
in these signaling pathways among patients in high- and 
low-risk groups significantly impacted the prognosis of 
individuals with liver cancer.

Incidence risk and independent prognosis analysis

Patient clinical information and risk assessments from high- 
and low-risk groups were combined and used to create a 
nomogram illustrating the results of regression analysis. 
The results from logistic regression analysis indicated that 
different clinical markers of liver cancer in all samples, 
as well as the range of risk score values, played a role 
in several scoring procedures (Figure 9A). Additionally, 
predictive analysis on the 3- and 5-year OS of liver cancer 
was conducted, demonstrating a closer alignment between 
predicted and observed OS, underscoring the model’s 
robust predictive performance (Figure 9B).

Evaluation of model gene ceRNA networks

A collective of 460 microRNAs associated with liver 
cancer was identified through the HMDD database. By 
harnessing the miRWalk and The Encyclopedia of RNA 
Interactomes (ENCORI) databases, a comprehensive 
roster was compiled, encompassing potential miRNAs 
and long non-coding RNAs (lncRNAs) pertinent to 
19 genes featured in the model. Initially, the mRNA-
miRNA relationship pairs related to disease miRNAs 
were only retained (including 6 mRNAs and 17 miRNAs) 
using the miRWalk database to extract the targetScan 
or miRDB database detectable modeling gene-related 
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Figure 6 Multi-omics research explores the clinical predictive value of the model. (A) Relative percentages of 22 immune cell subsets in 
patients in high-risk and low-risk groups. The green bar represents the low-risk group, while the purple bar signifies the high-risk group. 
(B) Pearson correlation between 22 types of immune cells, red indicates positive correlation and purple indicates negative correlation. (C) 
Differences in immune cell content between high-risk and low-risk patients, blue indicates high-risk patients and yellow indicates low-
risk patients. (D) Correlation of risk score with immune cells. (E) Sensitivity analysis of risk score and common chemotherapeutic drugs.  
(F-H) Differences of TMB, MSI, neoantigen in high- and low-risk groups. Statistical significance was determined at the following 
thresholds: *, P<0.05; **, P<0.01; ***, P<0.001; and ****, P<0.0001. LRisk, low-risk group; HRisk, high-risk group; NK cells, natural killer 
cells; abs, absolute value; MSI, microsatellite instability; TMB, tumor mutation burden; IC50, half maximal inhibitory concentration.
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mRNA-miRNA relationship pairs (that acquired a total of  
470 miRNAs) (Figure 9C). Based on these miRNAs to 
predict the interaction of lncRNAs, a total of 3,477 pairs 
of interactions (including 10 miRNAs and 2,202 lncRNAs) 
were predicted. Finally, utilizing Cytoscape (v3.7), a 
ceRNA network was assembled, integrating 5 mRNAs, 10 
miRNAs, and 2,202 lncRNAs (Figure 9D).

CeRNA-network gene modeling

The GeneCards database (https //www.genecards.
org/) was used to identify a thorough collection of  
8,748 genes associated with l iver cancer.  Further 

investigations concentrated on analyzing the gene 
expression patterns of five important genes in the ceRNA 
network in addition to the top 20 genes ranked by their 
relevance score. The investigation revealed an important 
finding: a strong connection was found between the 
expression levels of these specific model genes and several 
genes linked to liver cancer (Figure 10A,10B).

Clinical experimental validation

The analysis in our findings investigates the relationship 
between the levels of expression of five particular 
genes and clinical indicators (Figure 11A-11G). This 

http://www.genecards.org/
http://www.genecards.org/
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examination unveiled statistically significant variations in 
the expression of STK4 and RORA, alongside other genes, 
across distinct grade and stage subgroups. Furthermore, 
the expression of the five key ILC genes was verified by 
IHC. Representative IHC images of STK4 and CALM1 
(Figure 12A), as well as C2, RORA, and IL7R (Figure 12B)  

in different T stages of HCC were showed. The IHC 
findings suggested a discernible trend: STK4  and 
CALM1 displayed a positive correlation with malignancy 
potential in HCC, contrasting with C2, RORA, and IL7R, 
which exhibited an inverse association with the disease’s 
malignancy potential.
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Discussion

The development of scRNA-seq technology has helped 
progress our knowledge of tumorigenesis and the 
microenvironment of tumors. Previous study (19) has 

hinted at the involvement of a subset of inducible T cell 

co-stimulators, ILC2 cells, in HCC’s poor prognosis. On 

the other hand, the presence of ILC3, a subset of helper 

ILCs, in the tumor tissues of patients with non-small 



Translational Cancer Research, Vol 13, No 10 October 2024 5411

© AME Publishing Company.   Transl Cancer Res 2024;13(10):5395-5416 | https://dx.doi.org/10.21037/tcr-24-725

Figure 11 Risk score and clinical relevance. The difference between risk score and age (A), gender (B), grade (C), M (D), N (E), stage (F), T (G), 
P<0.05 is considered to be statistically significant. H-age stands for the higher-age group, while L-age denotes the lower-age group. We define 
the higher-age group as individuals who are above 60 years, whereas the lower-age group consists of those who are 60 years or younger. 
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Figure 12 The expression of the five key ILC genes verified by IHC. Representative 100× IHC images of (A) STK4, CALM1, (B) C2, RORA, 
and IL7R in different T stages of HCC. ILC, innate lymphoid cell; IHC, immunohistochemistry; HCC, hepatocellular carcinoma.
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cell lung cancer is linked to a better prognosis, possibly 
because it aids in the formation and advancement of 
tertiary lymphoid structures (20). However, insights into 
ILCs in HCC patients remain limited. Recently, Song 
et al. developed a signature based on natural killer cell 
marker genes to assess its prognosis and immune response 
in lung adenocarcinoma (21), inspiring an exploration of 
ILC marker genes in HCC using scRNA analysis.

A prognostic model was created in our research utilizing 
the ILC signature in the TCGA group, which was then 
validated with external datasets from the GEO and ICGC 
groups. The ILC low-risk score was associated with 

substantial immune cell infiltration, MSI, and diversity 
levels. Moreover, individuals diagnosed with HCC in the 
high-risk category showed notably reduced IC50 levels 
for drug effectiveness compared to those in the low-risk 
category, indicating that drug treatment could be more 
advantageous for the high-risk HCC demographic.

The ILC prognostic model primarily comprised  
58 genes, with 5 key genes—C2, STK4, CALM1, IL7R, 
and RORA—playing pivotal roles. Among these, C2, 
a complement protein, has been linked to age-related 
macular degeneration and type 2 diabetes (22,23). STK4 
modulation has been associated with inhibiting pro-
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inflammatory cytokine secretion, potentially offering 
protective effects against chronic inflammation associated 
with HCC (24). The lncRNA GAS5 suppresses the 
epithelial-to-mesenchymal transition (EMT) and enhances 
the sensitivity to paclitaxel in prostate cancer through the 
regulation of the miR-18a-5p/STK4 axis, as evidenced 
in cancer stem cell study (25). CALM1 overexpression 
is observed in multiple cancers and is significantly 
upregulated in gastric cancer, correlating with poor OS (26).  
Additionally, it aids in the oncogenic advancement of 
esophageal squamous cell carcinoma by promoting EMT 
and reducing the sensitivity to EGFR inhibitors (27).  
IL7R is downregulated in primary cutaneous T-cell 
lymphoma, serving as a prognostic biomarker for disease  
progression (28). Additionally, it restrains tumor growth 
by modulating the composition of immune infiltrating 
cells within the tumor microenvironment in lung 
adenocarcinoma (29). Its expression level is inversely 
associated with the pathological stage of skin cutaneous 
melanoma (30). RORA transcription factor expression 
inhibits T cell maturation in early embryonic stages while 
promoting ILC2 development in the thymus (31). Moreover, 
Ma et al. reported that RORA overexpression effectively 
impedes the progression of gastric cancer by disrupting the 
interaction between circGSK3B’s partner regulator, EZH2, 
and the RORA promoter (32). Our findings indicated that the 
ILC signature might offer potential targets for laboratory 
and clinical therapies to elucidate HCC’s underlying 
molecular mechanisms, consistent with existing reports. 
Furthermore, our model demonstrated robust predictive 
power for patient outcomes across different cohorts, 
reflecting the underlying mechanisms of ILCs. Variances 
in immune cell infiltration and levels of inflammation 
were noted among high- and low-risk groups, which could 
impact the prognosis and response to treatment of HCC.

Initially, our developed model demonstrated strong 
predictive efficacy for patient outcomes within both 
the training set of the TCGA cohort and the external 
validation dataset from the GEO and ICGC cohort. 
The robust predictive capability of the ILC signatures 
spurred our exploration into their underlying mechanisms. 
CIBERSORT was employed to assess the extent of immune 
cell infiltration in cohorts categorized as high- and low-
risk. The group at high risk displayed increased presence 
of macrophages M0 and M2, whereas the group at low risk 
demonstrated higher levels of CD8 T cells, CD4 memory T 
cells, and activated natural killer cells. The results indicate a 
possible link between the make-up of immune cells and the 

prognosis, specifically emphasizing the connection between 
certain immune cell categories and the poorer prognosis 
seen in high-risk HCC individuals.

Further investigation into the expression of immunoregulatory 
factors was conducted to elucidate the association between 
our model and immune and inflammatory processes. 
Increased concentrations of the chemokine CXCL8 and 
its corresponding receptor CXCR2  were detected in 
the high-risk cohort. Prior research has emphasized the 
upregulation of CXCL8 in pancreatic cancer patients, who 
show elevated levels of CXCR2 on CD68 macrophages 
in both the periphery and tumor site, which is associated 
with later stage tumors and poor prognosis  (33).  
Furthermore, a variety of immunosuppressants such as 
TGFB1, VTCN1, HAVCR2, IL10, CTLA4, LGALS9, and 
CSF1R showed significant increases in expression in the high-
risk cohort. Targeting immunosuppressive checkpoints on 
tumor-associated macrophages and myeloid cells may enhance 
immune cell activity within the microenvironment (34).  
Our findings align with previous research and potentially 
contribute to the adverse prognosis observed in HCC patients 
with high-risk scores.

Additionally, the high-risk group showed enrichment 
of pathways like apoptosis, mTORC1 signaling, DNA 
repair, and the p53 pathway according to KEGG and 
GO analyses, highlighting important signaling pathways 
in the development and advancement of tumors. On the 
other hand, the group with low risk showed an increase in 
pathways related to interferon-gamma, interferon-alpha, 
and inflammatory reactions. The good prognosis seen in 
the low-risk category could be due to increased immune cell 
presence. As a result, the ILC signature model highlights a 
clear difference in immune landscapes between high- and 
low-risk groups in HCC, showing that the high-risk group 
has notably weaker immune profiles than the low-risk group.

Moreover, variations in immune infiltration and 
inflammatory activity across risk groups motivated our 
investigation into the potential of an ILC signature to predict 
drug sensitivity during patient treatment. Examining the 
response to chemotherapy in high- and low-risk categories 
based on GDSC data revealed increased IC50 levels for 
bleomycin, camptothecin, cisplatin, doxorubicin, and 
gemcitabine in the low-risk group, whereas bexarotene 
displayed higher IC50 values in the high-risk group. These 
medications are frequently employed in the treatment 
of different types of solid tumors, such as colorectal 
cancer, breast cancer, squamous cell carcinoma, malignant 
lymphoma, bladder cancer, and liver cancer (35-40). Except 
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for bexarotene, the group at high risk showed reduced 
sensitivity to these medications at the IC50 levels, indicating 
a possible improvement in chemotherapy effectiveness. 
Following this, analysis of MSI, neoantigen, and TMB 
findings among various risk categories revealed that the low-
risk category exhibited decreased MSI levels, with no notable 
variances in neoantigen and TMB levels, although there was 
a trend towards lower TMB levels in the low-risk category. 
The results indicate that low-risk HCC shows reduced 
immunogenicity, despite a significant rise in CD8 T cell 
infiltration in low-risk tumors compared to high-risk tumors.

The tumor immune response is influenced by numerous 
factors, and the ceRNA network, comprising lncRNA-
miRNA-mRNA interactions, plays a critical role in 
regulating tumor behavior and drug resistance. For instance, 
in bladder cancer, a ceRNA network orchestrated by 
lncRNAs governs cancer cell proliferation, invasion, and 
apoptosis (41). Additionally, the lncRNA-has-mir-222-3p-
XBP1 axis has been implicated in regulating benign prostatic 
hyperplasia through autophagy (42). Leveraging miRWalk 
and HMDD databases, we investigated the interconnections 
among ILC signature genes within a ceRNA network. 
Subsequently, we identified 5 hub nodes within this network 
as pivotal genes of our model (C2, STK4, CALM1, IL7R, and 
RORA). Analyzing the expression landscape of tumor-related 
genes, specifically the top 20 genes associated with HCC 
sourced from GeneCards, we found significant associations 
with our 5 key genes. Notably, a positive correlation was 
observed between STK4 and MSH2 (cor =0.729, P<0.001). 
MSH2, a key gene in the mismatch repair system, is crucial 
for HCC prognosis, with its mutations impacting patient  
outcomes (43). Conversely, a negative correlation was noted 
between C2 and PMS2 (cor =−0.479, P<0.001). PMS2 harbors 
mutations leading to systemic mismatch repair system 
deficiency syndrome and pediatric intestinal cancer (44).  
These findings from our model suggest a potential linkage 
between ILC signatures and the expression of HCC-related 
genes, which could partly underlie the unfavorable prognosis 
in HCC patients. Furthermore, we evaluated the association 
of the five key genes with various prognostic indicators in an 
HCC patient cohort. Notably, STK4 exhibited significant 
correlations with gender, grade, and stage of HCC patients. 
Additionally, our experimental results provided preliminary 
evidence supporting the oncogenic roles of STK4 and 
CALM1, as well as the tumor-suppressive roles of C2, RORA, 
and IL7R in HCC.

While our study has yielded valuable insights, several 
limitations should be acknowledged. Additional research 

is required to evaluate the gene expression and prognostic 
importance at different molecular levels, including protein 
expression and DNA methylation patterns. Secondly, 
our model primarily focused on ILC cell marker genes, 
neglecting the complexity of the heterogeneous tumor 
microenvironment, which may limit the prognostic efficacy 
of the model. Lastly, our analysis was conducted at a single 
level, highlighting the necessity for additional research to 
elucidate the underlying mechanisms linking the expression 
of ILC signatures and the prognosis of HCC.

Conclusions

Our study presents a validated 5-key gene signature based 
on ILC cell signature genes, offering a powerful tool for 
predicting HCC prognosis. This signature shows potential 
as a predictive biomarker for making clinical decisions, 
potentially leading to personalized treatments for better 
patient results.
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