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Abstract

Background: The status of a disease can be reflected by specific transcriptional profiles resulting
from the induction or repression activity of a number of genes. Here, we proposed a time-
dependent diagnostic model to predict the treatment effects of interferon and ribavirin to HCV
infected patients by using time series microarray gene expression profiles of a published study.

Methods: In the published study, 33 African-American (AA) and 36 Caucasian American (CA)
patients with chronic HCV genotype | infection received pegylated interferon and ribavirin therapy
for 28 days. HG-UI33A GeneChip containing 22283 probes was used to analyze the global gene
expression in peripheral blood mononuclear cells (PBMC) of all the patients on day 0
(pretreatment), I, 2, 7, 14, and 28. According to the decrease of HCV RNA levels on day 28, two
categories of responses were defined: good and poor. A voting method based on Student's t test,
Wilcoxon test, empirical Bayes test and significance analysis of microarray was used to identify
differentially expressed genes. A time-dependent diagnostic model based on C4.5 decision tree was
constructed to predict the treatment outcome. This model not only utilized the gene expression
profiles before the treatment, but also during the treatment. Leave-one-out cross validation was
used to evaluate the performance of the model.

Results: The model could correctly predict all Caucasian American patients' treatment effects at
very early time point. The prediction accuracy of African-American patients achieved 85.7%. In
addition, thirty potential biomarkers which may play important roles in response to interferon and
ribavirin were identified.

Conclusion: Our method provides a way of using time series gene expression profiling to predict
the treatment effect of pegylated interferon and ribavirin therapy on HCV infected patients. Similar
experimental and bioinformatical strategies may be used to improve treatment decisions for other
chronic diseases.
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Background

Chronic diseases such as infectious disease, cancer, and
diabetes are among the most common and costly health
problems. The therapy of chronic diseases often lasts for a
long time, while the treatment effect may be questionable
and yet the side effects may be serious. Hepatitis C virus
(HCV) is one of the major causes of chronic hepatitis, cir-
rhosis, and hepatocellular carcinoma. The current recom-
mended treatment for chronic HCV infection is the
combination of pegylated alpha interferon (peginter-
feron) and the oral antiviral drug ribavirin given for 24 or
48 weeks, but the chance to induce a sustained response is
only 54%-56%][1]. Using interferon and ribavirin for a
long time may cause serious side effects, such as fever,
chills, body aches, headaches, myeloid disorders[2] and
neuropsychiatric symptoms[3]. The patients with poor
response should better give up such treatment in the early
stage. However the underlying mechanisms for different
responses are not fully understood and it is hard to foresee
treatment effects by conventional methods.

We analyzed a published time series microarray dataset of
a virological research in which the effects of pegylated
interferon and ribavirin on 33 African-American (AA) and
36 Caucasian American (CA) patients with chronic HCV
infection were studied[4]. We established a diagnostic
model to predict the outcome of pegylated interferon and
ribavirin therapy using time series microarray gene expres-
sion profiles for AA and CA patients separately.

Although the focus here is on how HCV infected patients
respond to pegylated interferon treatment, the model
described is generally applicable to other chronic diseases
undergoing long term treatment.

Methods

Original time-series microarray data applied in our study
The original time-series microarray data used in this work
is from a study of Milton W. Taylor which was published
on Journal of Virology last year[4], and publicly available
at GEO http://www.ncbi.nlm.nih.gov/geo under acces-
sion number GSE7123. The initial data set consists of the
gene expression profiles of 33 African-American and 36
Caucasian American patients with chronic HCV genotype
1 infection on day O (pretreatment), and 1, 2, 7, 14, and
28 of pegylated interferon and ribavirin therapy. HG-
U133A GeneChip containing 22283 probes was used to
analyze the global gene expression in peripheral blood
mononuclear cells (PBMC) of the patients at each time
point. For each patient the decrease of HCV RNA level was
calculated by subtracting baseline level (before treatment)
from the level on day 28. Good response was defined as a
decrease of more than 1.4 log,,IU/ml of HCV RNA level;
and poor response was defined as less than 1.4 log,, U/
ml decline from the base level. Only patients with all the
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gene expression data of 6 time points were involved in our
analysis, including 30 Caucasian Americans (CA) of
whom 17 were good responders and 13 were poor, 28
African-Americans (AA) of whom 19 were good respond-
ers and 9 were poor.

Data preprocessing

First, we normalized the data of total 348 microarrays
using quantile method and log,-trasformed them. Only
probes that were present in at least 75% microarrays with
log, intensities greater than 7 were kept for further analy-
sis. This resulted in a subset of approximately 13620
probesets representing 9100 different genes.

Statistical analysis to identify differentially expressed
genes

To avoid bias that may be created by single feature-select-
ing statistical method, we constructed a voting method
based on several methods including Student's t test[5],
Wilcoxon test[6], empirical Bayes test (eBayes) [7]and sig-
nificance analysis of microarray(SAM)[8] to identify dif-
ferentially expressed genes. Only genes that passed three
out of the four methods were regarded as differentially
expressed. The selection criterion was set at a defined P
value for all four statistical tests.

Time-dependent diagnostic model

The classifier used in our program at each time point was
C4.5-a decision tree classification method [9]. With leave-
one-out cross-validation, the model was trained and
tested at each time point. The framework is illustrated in
Figure 1 and detailed as follows:

Train the model

Each patient in the training set was regarded as an instance
and the class label for him was the outcome of the treat-
ment. At each time point, differentially expressed genes
between good and poor response group were identified
using the voting method described above as the marker
probe sets of this time point. At the first time point (time
point 0, before treatment), the features were that day's
gene expression values of the marker probe sets at that
time point; at the following time point during the treat-
ment, the features were the combination of that day's gene
expression values of marker probe sets at that time point
and features of previous time points. For example, the fea-
tures at day 1 are the expression values of differentially
expressed genes at day 1 and the expression values of dif-
ferentially expressed genes at day 0.

Every patient is assumed treatable until predicted as non-
treatable with sufficient differentially expressed genes at
that day. For each time point, if the number of differen-
tially expressed genes was equal or greater than 5, the C4.5
classifier will be constructed at this time point; otherwise,
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The framework of time-dependent diagnostic model. "nontreatable" means the patient was predicted to have a poor
response and should be eliminated from the treatment, "treatable" means the patient was predicted to have a good response

and should keep the treatment.
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differentially expressed gene number at this time point
will be set as null and no C4.5 classifier will be trained at
this time point. This check step helps to avoid false nega-
tive decision.

Test the model

At each time of leave-one-out cross-validation, we used
the data of N-1 patients to build a model and then applied
it on the one left patient to predict his treatment outcome.
If a patient was predicted as treatable by every time point's
classifier, this was a positive prediction. If the final out-
come according to the HCV RNA level decline was good
response for this patient, this was a true positive predic-
tion; otherwise, it was a false positive prediction.

If a patient was predicted as nontreatable by one of the six
classifiers (day 0, 1, 2, 7, 14 and 28), this was a negative
prediction. That means this patient should be eliminated
from the treatment and the workflow of this patient will
stop at that time point. If the real outcome was poor
response for this patient, this was a true negative predic-
tion; otherwise, this was a false negative prediction.

The prediction accuracy Q of leave-one-out cross-valida-
tion was calculated as follows:

tp+tn

=—— %100
tp+tn+ fp+ fn

tp, tn, fp and fn stand for true positive, true negative, false
positive and false negative, respectively. Detailed informa-
tion about this model, including processed microarray
data, R code and results, can be found in Additional file 1
and file 2.

Relevance and significance of candidate biomarkers

To assess the biological relevance of the identified candi-
date biomarkers which were important for CA response
prediction, we used PubGene to find relationships
between these candidate biomarkers and IFN (Inter-
feron)/HCV (Hepatitis C viruses). PubGene http://
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www.pubgene.org/ is a tool to carry out automated extrac-
tion of explicit and implicit biomedical knowledge from
publicly available gene and text databases to create a gene-
to-gene co-citation network by automated analysis of
titles and abstracts in MEDLINE records[10]. Moreover,
GO and KEGG category enrichment analyses were applied
to validate the functional and pathway relevance of
selected candidate biomarkers.

Results

Time-dependent diagnostic model

The true power of time series microarray analysis does not
come from the analysis of single time point, but rather,
from the analysis of a series of time points to identify a
biomarker chain. The main idea of our model is to fully
utilize gene expression profiles before and during treat-
ment to predict the final treatment outcome.

The time-dependent diagnostic results of all patients, AA
patients and CA patients are shown in Figure 2. It illus-
trates that true negative CA patients were all correctly
detected on day 1 and true negative AA patients were
mostly detected on day 1 and 7. The leave-one-out cross-
validation results of all patients, AA patients and CA
patients are given in Table 1. In the preliminary research,
we found that the numbers of differentially expressed
genes in all patients, AA patients and CA patients under
the same cut-off P value were quite different. To balance
the numbers of differentially expressed genes in different
groups, P values given to identify differentially expressed
genes in all patients, AA patients and CA patients were
0.00001, 0.001 and 0.0001, respectively.

Simplified Time-dependent diagnostic model

We have known that if only static gene expression profiles
before treatment were used the prediction accuracy was
rather low (data not shown). However from the above
results, it occurred to us that the seemingly complicated
models may actually be simplified to day 1 classifier —
depending only on gene expression profiles of very early
treatment time point. The leave-one-out cross-validation

Table I: The Leave-one-out cross-validation results of all patients, AA patients and CA patients.

All patients AA patients CA patients
Predicted Predicted Predicted Predicted Predicted Predicted
Good poor Good poor Good poor
2 x 2 Table Actual 28 8 Actual 16 3 Actual 17 0

Good Good Good

Actual 8 14 Actual | 8 Actual 0 13

poor poor poor

Accuracy 72.4% 85.7% 100%
* Good means good response, poor means poor response.
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The leave-one-out cross-validation results of time-dependent diagnostic models based on all patients, AA
patients and CA patients. On day one, most nontreatable patients could be detected correctly. "T" means true prediction;

"F" means false prediction.

accuracy based on day 1 classifier (including day 0 and
day 1 gene expression profiles) of CA patients could
achieve 100%, the same as the result using data of all the
time points. With AA patients, the accuracy dropped
some, but still much better than if only using pre-treat-
ment gene expression profile. The leave-one-out cross-val-

idation results of all patients, AA patients and CA patients
on day 1 are given in Table 2.

Identification of candidate biomarkers of CA patients
As stated above, CA patients of HCV infection are more
sensitive to the therapy of interferon and ribavirin, and
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Table 2: The leave-one-out cross-validation results of all patients, AA patients and CA patients on day |.

All patients AA patients CA patients
Predicted Predicted Predicted Predicted Predicted Predicted
Good poor Good poor Good Poor
2 x 2 Table Actual 28 8 Actual 16 3 Actual 17 0
Good Good Good
Actual 8 14 Actual 4 5 Actual 0 13
poor poor poor
Accuracy 72.4% 75% 100%

* Good means good response, poor means poor response.

after one day treatment the outcome could be one hun-
dred percent predicted. Using the feature selection meth-
ods described in Methods section, we identified 30
differentially expressed genes or probes on day one
between 17 good response CA patients and 13 poor
response CA patients as the candidate biomarkers relevant
to interferon therapy response. They are EIF3S5, HSPA9,
ABLIM1, RPL4 (201154 _x_at), MARCKS, HTRA2, SH2B3,
KIAA0999, LCK, C8orf70, TTLL1, CD86, TUFT1, KLRK1,
PARP1, KPNB1, NT5C2, RPL4 (211710_x_at), MRPS27,
AOF2, HSD17B8, RBMX, TNFSF10, SMARCA4,

214329 x_at TNFSF10
tumor necrosis factor (ligand) superfamily, member 10
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Figure 3

Cl4o0rf122, KIAA0748, PCID2, DNAPTP6, TLE2 and
CYFIP2. Their detailed probe information are provided in
Additional file 3.

The time series expression profiles of two representative
genes TNFSF10 (tumor necrosis factor (ligand) super-
family, member 10) and KLRK1 (killer cell lectin-like
receptor subfamily K, member 1) are shown in Figure 3.
In Figure 3A, at most of the time, the difference of
TNESF10 expression level between Good response CA and
Poor response CA is much greater than the difference

205821_at KLRK1
killer cell lectin-like receptor subfamily K, member 1

[Te}

s,_)' -
o 9
= ™ o
g - 3 T

- -

g [Te) = T 8
i S 0 E—
Qo
x
()
5 o
= o T
© R hi
[}
S

L

padl —o— Good CA

Poor CA
Good AA

- —e— Poor AA
T T T T T T
0 5 10 15 20 25

11.0

days

The time series expression of two representative genes TNFSF 10 (tumor necrosis factor (ligand) superfamily,
member 10) and KLRKI (killer cell lectin-like receptor subfamily K, member |). The horizontal axis depicts days
that the treatment has lasted, the vertical axis stands for expression mean values with error bar. Different colour indicates dif-

ferent groups of patients.
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between Good response AA and Poor response AA. More-
over, the difference between Good response CA and Poor
response CA increases with time, but the difference
between Good response AA and Poor response AA
decreases with time. In Figure 3B, the same phenomenon
can be observed on day 1 and 7. Many other genes showed
similar tendency at earlier time points. Maybe this partly
explains why the treatment of CA patients can be more
accurately predicted than AA patients. The dynamic
expression graphics of all thirty genes are provided in
Additional file 4.

To further evaluate whether these expression signatures
are associated with therapeutic outcome (good or poor
response), we conducted clustering of CA patients using
differentially expressed genes on day 1 between CA groups
of good and poor outcome (Figure 4C), and compared it
with the clustering result of all patients using differentially
expressed genes on day 1 between all patients of good and
poor outcome(Figure 4A), of AA patients using differen-
tially expressed genes on day 1 between AA groups of
good and poor outcome (Figure 4B).

It can be seen that Figure 4C best clustered its patients.
These thirty genes could classify the CA patients into good
responders and poor responders very well. Therefore the
simplified day 1 diagnostic model can clearly be applied
to CA patients.

Relevance and significance of candidate biomarkers
The relationship between those candidate biomarkers and
IFN (Interferon)/HCV (Hepatitis C viruses) were explored

[

202846_s_at
212111 at

212916 at

204573 at

212500_at

222064 s at

209392 at

213130_at

217529 at

2141675 at

=]
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by using PubGene. The two literature networks are shown
in Additional file 5, indicating six genes that have direct
connections with both IFN and HCV. They are LCK (lym-
phocyte-specific protein tyrosine kinase), NT5C2 (5'-
nucleotidase, cytosolic IT), KLRK1 (killer cell lectin-like
receptor subfamily K, member 1), CD86 (CD86 antigen
(CD28 antigen ligand 2, B7-2 antigen)), PARP1 (poly
(ADP-ribose) polymerase family, member 1) and
TNFSF10 (tumor necrosis factor (ligand) superfamily,
member 10). It has been reported that IFN-alpha can sig-
nificantly enhance CD86 expression on dendritic cells
from chronic hepatitis C patients[11,12]. The ligation of
tumor necrosis factor receptor (TNFR1) can initiate apop-
tosis or programmed cell death which is part of interferon
(IFN)-mediated anti-viral action[13].

GO category enrichment analysis results (see Additional
file 6) show that many of these candidate biomarkers are
involved in immunity, such as T cell differentiation and
positive regulation of T cell activation, which are con-
cerned with antivirus.

The KEGG category enrichment analysis (see Additional
file 6) illustrates that three candidate biomarkers (LCK,
lymphocyte-specific protein tyrosine kinase; KLRK1, killer
cell lectin-like receptor subfamily K, member 1; TNFSF10,
tumor necrosis factor (ligand) superfamily, member 10)
are components of the Natural killer cell mediated cyto-
toxicity pathway, which is important in antineoplastic,
antivirus and immune regulation. It has been reported
that impairment of natural killer cell activity is associated
with chronic hepatitis C virus infection[14].
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Unsupervised two-way hierarchical clustering based on expression profiles of differentially expressed genes of all patients on
day |(A), AA patients on day |(B), and CA patients on day |(C). P values given to identify differentially expressed genes in all
patients, AA patients and CA patients were 0.00001, 0.001 and 0.0001, respectively. The bar indicates the response status of

patients.
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Discussion

It is evident that the prediction accuracy of CA patients is
higher than AA patients. Constitutively different
responses of black and white hepatitis C patients to
pegylated interferon and ribavirin therapy had been
reported[15] before our study. It shows in our study as,
markers that may be important for predicting response
did not change as remarkably in AA patients as in CA
patients. Our diagnostic model did not perform well on
AA patients who did not demonstrate sufficient differen-
tially expressed genes at early time points.

Our results implied that if there is a sensitive change of
gene expression profile at early treatment time points, the
diagnostic model will be more sensitive and useful. This
was confirmed by the simplified diagnostic model. With
day 1 model CA patients with HCV infection who are
more responsive to interferon and ribavirin therapy can
already be predicted of their treatment outcome after 28
days. With less sensitive response the diagnostic model
may need to be stretched to include profiles after longer
time treatment, like in AA patients. Even with AA patients,
profiles of early time points are sufficient for making rea-
sonable predictions of outcome. This is good news for
clinical and experimental workers. It means that the strat-
egy of using early time-treatment gene expression profil-
ing to predict outcome for potential long-term treatment
is affordable and applicable.

Microarray gene expression analysis has been proved val-
uable in numerous applications including disease classifi-
cation, diagnosis, survival analysis, choice of therapy etc,
but rarely for more complex clinical problems such as the
dynamic prediction of treatment effects we addressed in
this paper. We tried several methods including traditional
statistical techniques and the latest computer-intensive
techniques to predict the final treatment effects based on
the static gene expression profiles before treatment and
the prediction results were unacceptable. Dynamic predic-
tion chains using time series gene expression profiles have
been proved to make more successful prediction model.
There were two outcome prediction studies based on 70-
gene expression dataset generated by kinetic reverse-tran-
scription PCR from 52 multiple sclerosis patients treated
with rIFNB[16,17]. They obtained good results but were
limited to the 70 genes. Our model directly applied on
large-scale microarray data, and may have found some
novel biomarkers. Our results justify further biological
studies to evaluate whether these candidate biomarkers
could truly predict the effect of interferon and ribavirian
therapy. Further investigations may shed light on the
mechanisms of different responses between CA patients
and AA patients of HCV infection to this kind of therapy.

http://www.translational-medicine.com/content/6/1/44

Conclusion

Our time-dependent diagnostic model suggests a way of
using time series gene expression profiling to predict the
treatment effect of pegylated interferon and ribavirin ther-
apy on HCV infected patients. Similar experimental and
bioinformatics strategies may be used to improve treat-
ment decisions for other chronic diseases. This may be an
important strategy in future personalized medicine.
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Additional material

Additional file 1

Processed microarray data, R code and results of time-dependent diagnos-
tic model (part 1). Additional file 1 and file 2 should be downloaded
together. R code is for the performance of model construction.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-S1.rar|

Additional file 2

Processed microarray data, R code and results of time-dependent diagnos-
tic model (part 2). Additional file 1 and file 2 should be downloaded
together. R code is for the performance of model construction.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-S2.rar|

Additional file 3

Detailed probe information of thirty candidate biomarkers. The probe
information comes from the original microarray probe set.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-S3 xls]

Additional file 4

Dynamic expression graphics of thirty candidate biomarkers. For each of
the thirty candidate biomarkers a graph of its expression levels in four
groups of patients (good CA, poor CA, good AA, poor AA) at all time
points is given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-54.pdf]

Additional file 5

Literature networks of thirty candidate biomarkers in relation to [IFN
(Interferon)/HCV (Hepatitis C viruses). The six genes that have direct
connections with both IFN and HCV are framed with blue boxes.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-S5.png|
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Additional file 6

GO and KEGG category enrichment analyses of thirty candidate biomar-
kers. Thirty-seven enriched GO biological processes and ten GO molecular
functions as well as one enriched KEGG pathway are shown (p < 0.01).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1479-
5876-6-44-56 xls]
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