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KEY POINTS

� In the first year of life, preterm infants are rehospitalized twofold to fivefold times more
frequently than infants born at term, primarily for respiratory symptoms.

� Mediators of inflammation tend to enhance lung maturation but impair alveolar septation
and developmental vascular remodeling.

� The developmental age of the immune system at birth, and at early-age infections, may
significantly alter the acute response, and the sequelae, to inflammatory stimuli.

� Prenatal and postnatal infection and immune responses contribute to the severity of
chronic lung disease of prematurity.
INTRODUCTION

Each year, approximately 1 in 9 infants in the United States, more than 440,000 infants
yearly, are born prematurely (<37 weeks gestation).1 These infants suffer from compli-
cations of exposure to a diverse environment at a time in development when the
respiratory tract and immune system are intended to be protected and maintained
in a relatively naı̈ve intrauterine state. During infancy and early childhood, premature
infants suffer significant inflammatory and infectious respiratory morbidities with
extended negative consequences for health, quality of life, and health care costs.
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As compared with approximately 8% of full-term newborns, 17% of late-preterm (LPT,
born at 34 0/7–36 6/7 weeks) and 30% to 40% of early preterm infants (EPT, born at
<32 weeks) are rehospitalized within the first year of life, most commonly for viral res-
piratory infections.2–4 Respiratory infections that are less severe, not requiring hospi-
talization, are even more common, recurrent and, in total, costly in the very young.5

The incidence and severity of respiratory tract infections in infants younger than
1 year is attributed at least in part to immune immaturity, a problem magnified by pre-
term birth and influenced by genetic traits and environmental exposures. Differences
in gastrointestinal tract colonization patterns and the development and balance of the
intestinal microbiome have been shown to influence immunologic development in full-
term infants, and have begun to be evaluated in the premature.6–8 Viral infections,
either subclinical or severe, may also alter immunologic development both directly
and by altering the bacterial microflora. Preterm infants are exposed to maternal
and hospital-based flora, frequently with additional pressures of antibiotics, indwelling
catheters, and tubes, that alter the establishment of diverse, health-promoting micro-
biota on the skin and respiratory mucosa, as well as in the gastrointestinal tract, and
increase the risk of invasive disease with predominant organisms.
Recurrence of respiratory symptoms in the first year of life correlates inversely with

gestational age at birth, directly with in utero exposure to inflammation (chorioamnioni-
tis), and with non-white race. The pathogenesis of chronic lung disease of prematurity,
bronchopulmonary dysplasia (BPD), has been recently reviewed and is closely corre-
lated with in utero inflammation, oxygen toxicity, ventilator-induced trauma, and preal-
veolar lung development at birth (Fig. 1).9–11 Premature birth induces a slowing or arrest
of lung development that underlies BPD and likely occurs in a spectrum of severity in all
prematurely born infants. Perinatal therapeutic and environmental exposures, most
notably oxygen exposure and environmental tobacco smoke, have been reproducibly
related to chronic respiratory morbidity, independent of mechanical ventilation and
Fig. 1. Factors implicated in the pathogenesis of chronic lung disease of prematurity.
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the diagnosis of BPD. A recent study of very low birth weight (VLBW) infants without
BPD demonstrated significant relationships between an integrated estimate of oxygen
exposure in the first 3 to 14 days of life and symptomatic respiratory disease (SRD) over
the first year of life.12 Lower gestational age, non-white race, greater oxygen exposure,
and chorioamnionitis significantly increased the odds ratio of infants having SRD. A
recent murine model demonstrated that early neonatal exposure to hyperoxia dramat-
ically increases, in a dose-responsive manner, the severity of influenza infection when
induced in adulthood, with markedly enhanced inflammation and fibrotic repair.9,10

These observations, and an increasing understanding of thepreterm infant immune sys-
tem, as well as their exposures, colonization, and infections with microorganisms, sug-
gest that interventions to modify the immunologic response may significantly improve
respiratory and general outcome for these children. This article reviews prenatal and
postnatal exposures that induce lung inflammation in preterm infants in the context of
unique susceptibility factors that occur because of premature delivery.

INFLAMMATION AS A MECHANISM FOR RESPIRATORY MORBIDITY

Several lines of evidence suggest that the inflammatory response of the fetal or prema-
ture lung to injury or infection, if not causative of disease, exacerbates the severity of
chronic lung disease in infants at risk.11,13 Recent reviews highlight the current under-
standing of the role of inflammatory mediators and the immunobiology of BPD.14–16

Increased levels of proinflammatory mediators in amniotic fluid,17,18 early tracheal efflu-
ents,19–24 lung tissue,23 and serum25,26 of at-risk premature infants support a role for both
intrauterine and extrauterine inflammation in the development and severity of BPD.
Airway and bronchoalveolar lavage samples demonstrate increased inflammatory cells
andmultiple proinflammatorymediators in ventilated, oxygen-exposed infantsprogress-
ing towardBPD.19–23Genome-wide expressionprofilingofBPD lungs, ascomparedwith
gestational age–matched controls, identified 159 differentially expressed genes.27

Pathway analysis identified cell cycle, immunodeficiency signaling, and B-cell develop-
ment pathways associated with BPD. In addition, of the top 25 differentially expressed
gene sets, 9 were related to chymase-expressing mast cells, the presence of which
was confirmed by polymerase chain reaction (PCR) and immunohistochemistry. Consis-
tent with active inflammation, the transcription factor, NF-kB, a prototypical regulator of
inflammation and cell survival, was elevated in neutrophils and macrophages in preterm
infant airways, correlating with the presence of Ureaplasma urealyticum and need for
prolongedmechanical ventilation.28 Interestingly, NF-kB activation in fetal lung and fetal
lungmacrophages has been shown to inhibit airwaymorphogenesis and activity of fibro-
blast growth factor 10, a critical factor in lung development, linking inflammation to the
growth arrest of the preterm lung.29,30 Several animal models demonstrate that media-
tors of inflammation, including endotoxins, tumor necrosis factor a (TNF-a), and trans-
forming growth factor a, enhance lung maturation but also impair alveolar septation
and vascular remodeling, and thus contribute to the development of BPD even without
frank tissue destruction.31–33

Proinflammatory stimuli come from multiple sources in the premature infant both
prenatally and after birth. The most common causes are considered next.

PRENATAL INDUCTION OF INFLAMMATION AND RESPIRATORY MORBIDITY
Chorioamnionitis

Once thought to be sterile, modern molecular techniques independent of
culture demonstrated that amniotic fluid and placental tissues frequently contain mi-
crobes.34–40 Maternal-fetal inflammation is clinically identified as chorioamnionitis by
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maternal fever with one or more of maternal/fetal tachycardia, maternal leukocytosis,
uterine tenderness, and/or foul amniotic fluid. A recent study, using amniocentesis to
sample amniotic fluid of 46 mothers with signs and symptoms of clinical chorioamnio-
nitis, detected microorganisms by culture and/or PCR/mass spectrometry, frequently
more than one microbe, in 61%.41 Fifteen percent had neither inflammation nor infec-
tion and 24% had amniotic fluid evidence of inflammation without detectable microor-
ganisms, suggesting other noninfectious causes of clinical symptoms. Of those with
clinical chorioamnionitis, 51% to 62% also have histologic evidence of placental
inflammation.41,42 Severity of acute histologic chorioamnionitis has been correlated
with amniotic fluid matrix-metalloproteinase-8 and interleukin (IL)-6 levels supporting
the presence of active inflammation.43,44 It is not uncommon, however, to have evi-
dence of acute histologic chorioamnionitis without detectable microorganisms,
ranging from 30% to more than 50%. The cause of “sterile inflammation” of the
fetal-placental tissues may be noninfectious disease or lack of sensitivity for microbial
detection. Inflammatory placental lesions of a more chronic form, characterized by
lymphocytes, plasma cells, and macrophages, sometimes eosinophils, also occur in
association with preterm birth and recurrent placental failure. Most frequently, these
lesions are of unknown etiology.45

Chorioamnionitis has been associated with chronic lung disease of prematurity in
multiple small series46 and in focused studies of specific organisms, such as Urea-
plasma.47 In experimental models, chorioamnionitis caused by intra-amniotic injec-
tions of endotoxin or Ureaplasma initially cause fetal lung inflammation followed by
persistent low-grade inflammation and evidence of enhanced lung maturation.48–50

A more aggressive inflammatory response to oxygen or mechanical ventilation in new-
borns with a history of chorioamnionitis has been suggested in animal models51 and
some clinical reports.52 The severity of the fetal inflammatory response to infection,
as indicated by amniotic fluid IL-6, is inversely related to gestational age, suggesting
that more premature infants are at greater risk of inflammatory injury.44

The most common organisms isolated from infected amniotic fluid and placentas
areUreaplasma parvum andU urealyticum. Likewise, it is relatively common to identify
these organisms in the bodily fluids of preterm infants. Compelling evidence for an as-
sociation between pulmonary Ureaplasma colonization and BPD in preterm infants
has been recently reviewed.53,54 Further details and discussion of clinical trials for
treatment of Ureaplasma found in respiratory secretions of preterm infants are
reviewed by Viscardi and Kallapur.55

However, the role of chorioamnionitis as a risk factor for BPD remains controversial
and recently debated.56,57 Several large studies question the relationship of in utero
infection to chronic lung disease. As part of the Extremely Low Gestational Age New-
borns (ELGAN) Study, exhaustive placental bacterial cultures were done from deliv-
eries at 23 to 27 weeks of gestation.58 There was no correlation between placental
culture results and the phenotypes of the infants assessed by oxygen need at day
of life 14 or the development of BPD. The Canadian Neonatal Network also reported
that 3094 infants born at less than 33 weeks’ gestation exposed to clinical chorioam-
nionitis had no increase in the incidence of BPD.59 Further, Lahra and colleagues60 re-
ported, using a 13-year experience from Sydney, that a fetal inflammatory response
was protective for BPD.
These and other similar studies demonstrate that clinical or culture-proven cho-

rioamnionitis are not good predictors of BPD. Chorioamnionitis/infection has a major
association with preterm premature rupture of membranes and preterm labor at early
gestations.61,62 Also, chorioamnionitis is associated with inflammation in lungs of pre-
term infants soon after birth63 and causes lung inflammation and altered immune
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modulation in animal models where the type and duration of fetal exposures can be
controlled.64 Clinically, variation in detection and virulence of causative organisms,
as well as in the duration of infection and the maternal-fetal inflammatory response,
complicates the determination of effect on outcomes. The assessment of influence
on preterm infant chronic lung disease is further confounded by the imprecise diag-
nosis of BPD.65

Other Prenatal Proinflammatory Exposures

As outlined in Fig. 1, there are a number of other maternal-fetal-placental abnormal-
ities that alter lung growth and/or induce fetal inflammation. The association of
maternal preeclampsia, placental insufficiency, and associated intrauterine growth
restriction with BPD, however, remains controversial, with some studies suggesting
increased and others decreased or no effect.66–72 Antenatal corticosteroids enhance
fetal lung maturation and likely reduce inflammation but, although one study sug-
gested that corticosteroids reduced BPD in those with histologic chorioamnionitis,
overall they have had little effect on rates of BPD.73

POSTNATAL INDUCTION OF INFLAMMATION AND RESPIRATORY MORBIDITY

Many exposures in the postnatal period promote inflammation.52

Oxygen and Mechanical Ventilation

Both oxygen and mechanical ventilation, together and independently, induce inflam-
mation via direct cellular injury, induction of cytokines and chemokines, recruitment
of neutrophils and macrophages, and oxidation of DNA, lipids, and proteins. Oxygen
toxicity and barotrauma or volutrauma are important hazards of mechanical ventilation
that are associated with the release of inflammatory cytokines and chemokines that
cause pulmonary injury.74 Higher levels of cytokines correlate with more prolonged
duration of ventilation.74 Supplemental oxygen also contributes to inflammation
through biochemical pathways of oxidant stress.75–77

Bacterial Infection and Sepsis

Sepsis beyond the first days of life is frequent in extremely low birthweight (ELBW)
infants at risk of BPD and often presents with respiratory instability.60 Both early
and late microbial presence in neonatal lung fluid samples was significantly associ-
ated with the development of chronic lung disease, suggesting that both antenatal
and postnatal infection play a role in the development of disease.24 Numerous
studies associate postnatal sepsis, both early-onset and late-onset and typically
with common infectious agents, such as coagulase-negative Staphylococcus and
gram-negative bacteria, with BPD, suggesting that sepsis-induced inflammation
compromises lung development and healing.52,78–82 Administration of intravenous
immunoglobulin, however, although associated with a small reduction in sepsis,
was not shown by meta-analysis of randomized controlled trials to reduce the inci-
dence of BPD.83

Viral Infections

Broad respiratory virus surveillance in the neonatal intensive care unit (NICU) is a
relatively new approach augmented by more readily available culture-independent
methods of detection. Previous NICU viral studies targeted patients with threshold
symptoms.With this approach, small pandemics of viral infection, such as with adeno-
virus or respiratory syncytial virus (RSV) were detected, but the overall infection rate in
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NICUs appeared relatively low.84 As example, using a symptom-based testing strat-
egy, viral infection was confirmed in 51 (1%) of 5396 infants admitted to the NICU;
of these, 20 (39%) had an enterovirus/Parechovirus infection, 15 (29%) RSV, 5
(10%) rotavirus, 3 (6%) cytomegalovirus (CMV), 2 (4%) adenovirus, 2 (4%) parain-
fluenza virus, 2 (4%) herpes simplex virus, 1 (2%) rhinovirus, and 1 (2%) rubella virus.85

Recent data, including that from our collection of expedited autopsy human
neonatal distal lung tissue, suggest a relatively high prevalence of lung viral infections
in those who succumb to respiratory failure in the NICU; 21 of 63 samples tested were
virus positive (Ref.86 and data not shown). Coronavirus, rhinovirus, parainfluenza, and
CMV were detected by reverse-transcriptase PCR (RT-PCR). Interestingly, in this
small postmortem sample, RSV, influenza A and B, parainfluenza type 1, and meta-
pneumovirus were not detected.
Surveillance studies using PCR and genomic sequencing for detection have begun

to report a closer to true incidence of nosocomial viral respiratory infections (NVRI) in
neonates and children hospitalized in pediatric intensive care units and NICUs. In a
NICU surveillance study, nasal brush samples were taken weekly from all neonates
(age �28 days) and children (age >28 days) hospitalized through a winter viral sea-
son. Of a total of 120 patients enrolled (64 neonates and 56 children), 20 patients
were virus positive by PCR (incidence 16.7%). Seven positive samples for human
coronaviruses were detected (incidence 11%). Risk factors for NVRI in the neonates
were duration of hospitalization, antibiotic treatment, and duration of parenteral nutri-
tion (P<.01).87

A 1-year NICU surveillance study of infants born at less than 33 weeks’ gestation,
using PCR detection of 17 viral subtypes, identified at least one positive respiratory
virus during the hospitalization in 26 of 50 subjects, most asymptomatic. Testing pos-
itive was associated with longer length of stay and length of mechanical ventilation, as
well as diagnosis of BPD. Similar ongoing studies should determine if viral infection is
such a common occurrence in the NICU as to warrant more frequent surveillance and
development of interventions to reduce exposure and illness.

Neonatal Cytomegalovirus

Human CMV, a Betaherpesvirinae virus, latent in leukocytes, is highly prevalent in the
human population; approximately 50% of adults are CMV seropositive and 60% of
mothers of preterm infants. Congenital, in utero, infection of the fetus occurs in
0.1% to 2.0% of all pregnancies and may arise through primary infection of the
mother, reactivation during pregnancy of a latent infection or reinfection with a
different strain of CMV. Postnatal, the virus is spread even more efficiently from
mother to the newborn via breastmilk. Because it reactivates in 95% or more of
CMV-seropositive women in the postpartum period and can be detected in breast-
milk as early as 3.5 days after delivery, CMV is a relatively common viral infection
of the newborn period.88 Transmission to full-term newborns is reported in approxi-
mately 40%, whereas in preterm infants it varies from 6% to 55%, potentially due to
differing strains, use of fresh/frozen milk, and maternal factors affecting viral shed-
ding.88 A surveillance study of 175 NICU neonates, testing serum CMV-titers and
CMV-DNA, demonstrated an overall prevalence of CMV of 12.6%. Ten (5.71%) of
the infants had congenital infection, whereas 12 cases (6.86%) had perinatal infec-
tion.89 Postnatal infection in the newborn can be detected by molecular diagnostics
as early as 12 days of life. Infection remains clinically silent in most, but 9% to 12% of
postnatally infected low birth weight preterm infants have been reported to demon-
strate severe, sepsislike infection.90 Although infants at lower gestational age are
at increased risk of developing symptoms with postnatal infection and are also at
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greatest risk of BPD, there remains relatively little evidence of cause and effect.
Prosch and colleagues91 found approximately 29% of VLBW infants with BPD to
be CMV positive, but 12% of those without BPD. This study and others have found
postnatal infection symptoms in preterms to be transient and to have no effect
on neonatal outcome including BPD or necrotizing enterocolitis.92,93 A review of
PubMed articles describing CMV pneumonitis, however, concludes that CMV infec-
tion can be protracted with diffuse interstitial pneumonitis associated with fibrosis
and BPD.94 It would appear that more surveillance and outcome studies are needed
to determine if a causative relationship exists and if anti-CMV therapy or methods to
reduce transmission of CMV to the fetus and neonates could effectively reduce
disease.
Interestingly, CMV has a notable influence on the human immune system inducing

a substantial cytolytic CD81 T-cell population.95 CMV infection in infants induces the
differentiation of not only phenotypically mature cells, but also functionally active
cells that produce interferon gamma (IFN-g) on restimulation.96 Serum cytokine con-
centrations measured in CMV congenitally infected infants show evidence of a strong
Th1 bias with a predominance of IFN-g, IL-2, IL-12, and IL-8 production and dimin-
ished IL-4.97 Because the generation of IFN-g secreting T cells and CD81 effector
cells is associated with successful recovery from viral infections in general and
RSV in particular, such data suggest that CMV infection in infancy could be beneficial.
There is, however, concern that CMV-induced immuno-ageing of lymphocytes may
ultimately result in immunosuppression suggested by poor vaccine response in the
elderly.98

Respiratory Syncytial Virus and Other Common Viruses

Recurrent wheezing in later childhood has been associated with infections with RSV,
metapneumovirus (hMPV), parainfluenza (PIV), rhinovirus, and human coronavirus
NL63.99–103 RSV infections have best demonstrated that effects of viral respiratory
tract infections in infancy may be long-lived. In premature infants born at less than
32 weeks’ gestation, with and without BPD, those with a history of RSV lower respi-
ratory tract infection (LRTI) were found to have more days of cough and wheeze at
1 year of age than those without RSV LRTI.104 Additionally, those with RSV LRTI
and hMPV LRTI were found to have increased airway resistance at 1 year of age
on pulmonary function testing.102 In some infants, airway function has been shown
to deteriorate during the first years of life.105 When the group with BPD was followed
up at school entry, those who had been hospitalized with RSV LRTI or another respi-
ratory illness within the first 2 years of life had a greater cumulative number of outpa-
tient visits and costs of care compared with former premature infants with BPD
without a respiratory hospitalization.106 A subset of these children with pulmonary
function testing at 8 to 10 years of age demonstrated significantly reduced lung func-
tion (lower forced expiratory volume in 0.75 s [FEV0.75], FEV0.75/forced vital capac-
ity, and flows at 50% and 75% of vital capacity) in those with an RSV LRTI compared
with children without. Whether viral LRTIs cause subsequent airway disease or are
merely markers for preexisting abnormal lung function has not been definitively deter-
mined.101 The role of atopy, predisposition to asthma, and postinfection airway
remodeling in relationship to LRTI and subsequent wheezing in childhood is also
not clear.101,107 A combination of viral factors and innate and adaptive immune re-
sponses, in the setting of a susceptible genetic background and a young or elderly
host appear to drive clinical outcome.108,109 An ongoing study of premature infants
and viral LRTIs, including baseline pulmonary function testing, seeks to determine
if the viral respiratory infection is causal of the increased long-term morbidity or
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merely a marker for children with more severe preexisting lung disease, as has been
suggested for term infants (ClinicalTrials.gov NCT01789268). This question is impor-
tant when evaluating selective vaccine strategies to prevent severe LRTI and chronic
disease.

SUSCEPTIBILITY FACTORS FOR ENHANCED INFLAMMATION

The immune system is a double-edged sword: too little response andmicrobes invade
and injure, too robust a host response may result in bystander injury and disease. In
addition to exposure to infectious agents, there appear to be certain intrinsic factors
that result in enhanced inflammatory responses in some individuals as adult, child,
or preterm infant, when compared with others. There is evidence to suggest that pre-
term infants may be affected by both relative immunosuppression and more robust
immune responses than full-term infants. We conclude this article with a review of sus-
ceptibility factors identified or suggested to enhance inflammation in the prematurely
born.

Genetics

Genetics that predispose to shortened pregnancy, especially if related to increased
inflammation, naturally increase the risk of inflammatory lung disease of prematu-
rity. For example, elevated mid-trimester vaginal IL-1b is associated with increased
risk for spontaneous preterm birth. Homozygous carriers of IL1RN*1, a single
nucleotide polymorphism (SNP) in the IL-1 receptor antagonist (IL-1ra) gene, a
genotype associated with elevated IL-1b, are at increased risk for preterm birth
and an example of genetic polymorphisms that affect the innate immune system
and risks of prematurity.110 In women who had a preterm birth, the combination
of clinical chorioamnionitis and IL-10 (-1082)*G allele was associated with an
increased risk for delivery before 29 weeks’ gestation, suggesting a gene-
environment interaction.111

In infants, twin studies suggest significant genetic susceptibility to BPD.112 Relative
to inflammation, genotype analysis, after multiple comparisons correction, revealed 2
significant SNPs, rs3771150 (IL-18RAP) and rs3771171 (IL-18R1), in African Amer-
ican individuals with BPD (vs African American individuals without BPD; q <0.05).
No associations with Caucasian BPD, African American or Caucasian respiratory
distress syndrome (RDS), or prematurity in either African American or Caucasian in-
dividuals were identified with these SNPs.113 Functional polymorphisms in the pro-
moter of NFKBIA that encodes IkBa, a negative regulator of NF-kB, is associated
with differential susceptibility to severe bronchopulmonary dysplasia, as well as other
common inflammatory diseases of infant lung.114 A number of additional studies,
evaluating exome sequencing in extremes of disease, epigenomic regulation, tran-
scriptome responses to exposures such as hyperoxia, and pathway analyses are
ongoing to identify gene and gene regulatory susceptibility factors involved in path-
ogenesis of BPD.115–125

Alterations in Immune Responses Due to Developmental Window of Preterm Delivery

Recent developments in miniaturization of technologies, including assays based on
polychromatic flow cytometry, multiplexed protein assays, and low-input transcrip-
tional analyses, have begun to advance the field of neonatal immunology. Dowling
and Levy126 provide a recent review of both in vivo and in vitro approaches to studying
early-life immuno-development, as well as a summary of unique characteristics of the
preterm and term innate and adaptive immune systems.

http://ClinicalTrials.gov
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The innate immune responses of full-term infants, including the function and recruit-
ment of granulocytes, natural killer (NK) cells, and antigen-presenting cells are charac-
terized as immature and functionally suppressed.126 Innate immune responses in
human preterm infants have been less well characterized.127,128 Fetal cells, including
NK cells, have enhanced sensitivity to the immuno-suppressive effects of transform-
ing growth factor beta.129 Early-life antigen-presenting cells tend to produce more
IL-6, IL-10, and IL-27, predominantly immunosuppressive cytokines. Intriguingly, a
recent study has in addition suggested that CD711 nucleated red blood cells
(erythroid precursor cells) that are typically increased in fetal blood, especially in preg-
nancies complicated by placental insufficiency, appear to suppress phagocyte and
antigen-presenting cell stimulus-induced TNF-a production suggesting an immuno-
suppressive function.127

Lymphocytes and the adaptive immune system provide a critical defense against
intracellular, including viral, infections. Reduced CD41 T cells result in impaired
immune response to pathogens. CD81 T cells and NK cells provide protection from
viral infection but also contribute to immunopathology by contact-dependent effector
functions (eg, perforin and FasL). IFN-g and, particularly, TNF-a are thought to be pri-
mary perpetrators of T-cell–mediated lung injury, yet are also important for antimicro-
bial defense.130

The fetal and neonatal periods are unique immune developmental stages in which
adaptive responses are highly plastic and dependent on gestational age.131,132

Although relatively little literature refers to detailed phenotyping of lymphocytic
maturation in the prematurely born infant, investigators have numerically evaluated
classes of lymphocytes in the human fetus and young child. The total circulating
white cell counts increase through the latter half of gestation until term delivery
and then decrease slightly to adult levels. The percentage of lymphocytes decreases
from approximately 80% at 18 to 36 weeks (median 26 weeks) to 40% at term
delivery to 21% in the adult human, based on cord blood sampling at delivery or
cordocentesis.133,134 The proportion of CD31 cells, however, increases with gesta-
tional age and in the presence of an infection. In normal pregnancies, circulating
CD41 T-cell numbers are inversely related to gestational age and the fetal percent-
age of CD81 T cells was reduced, increasing before term (9.5%–15.7%) such that
CD41/CD81 ratios also vary inversely with gestational age, higher in VLBW infants
than full-term.135,136 Maternal disease may alter fetal lymphocytes. Preeclampsia
had a significant effect on T-cell distribution associating with fewer CD41 cells
and CD41CD81 double-positive cells, decreased CD41/CD81 ratios, reduced
Th2 and regulatory T-cell subsets in cord blood, whereas maternal betamethasone
therapy also associates with higher CD31 cell proportion and a lower proportion of
NK cells.137,138

Evidence for Lymphocytic Abnormalities in Premature Infants with Lung Disease

Several lines of investigation suggest a role for dysregulation of CD41 responses in
BPD. In animal models, T cells accumulate in the lungs of preterm lambs exposed
to lipopolysaccharide in utero139 and preterm baboons that develop BPD were found
to have abundant CD41 T cells in the lung parenchyma.140 Significant infiltrates of T
cells were noted in distal lung of infants who died with BPD as compared with gesta-
tional age–matched infants without lung disease.141 In serial blood samples from pre-
mature infants with RDS born 1200 g and less than 30 weeks’ gestation, Ballabh and
colleagues142 demonstrated a reduction in absolute lymphocyte count, as well as the
percentage and the absolute number of CD41 T cells, in those who progressed to
BPD (P<.03), significant even on day 1 of life. More activated T cells in those who
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go on to develop BPD may reflect sequestration and activation of cells within the
lung.142,143 CD41 T-cell percentage continued to decrease with postnatal age. Ber-
rington and colleagues144 measured lymphocyte subclasses in premature infants
just before first immunizations. At 7 to 8 weeks of age, prematurely born infants had
lower absolute lymphocyte, T-cell, B-cell, and T-helper cell counts, and lower
CD41/CD81 T-cell ratio, than term infants, as well as increased proportion of T-
regulatory (Treg) (CD41CD251) cells and decreased CD45RA 1 naı̈ve cells. By
6 months, the B-cell population had numerically normalized but T-cell abnormalities
persisted.
Recent studies have challenged the concept that CD31 T-cell responses are

uniformly impaired in neonates, especially in preterm infants. Although most of the
newborn CD41 T cells are naı̈ve, activation markers like CD25, CD69, and
CD45RO1 are enhanced on CD41 cells of prematurely born infants.145 Likewise,
the proportion of cord blood CD81 T cells that are CD45RO1, suggesting activation,
is also higher at lower gestational age.146 Several reports now demonstrate a corre-
lation between T-cell activation, as measured by CD45RO expression, and premature
infants’ adverse outcomes, such as BPD, necrotizing enterocolitis, and periventricu-
lar leukomalacia.25,142,147 CD41 and CD81 T cells at lower gestational age are also
shown to have enhanced cytokine production with in vitro stimulation, suggesting
that enhanced CD45RO expression in preterms is accompanied by inducible effector
functions that may contribute to the severity of lung disease.146,148 A report that reg-
ulatory CD41 T cells (CD41CD25hiFoxP31CD127Dim) were significantly reduced in
cord blood of preterm infants who developed BPD further raises the potential for
enhanced inflammation due to reduced inhibitory control.148 It has been suggested
that the relatively activated CD41 and CD81 T-cell phenotype at early gestational
ages is reminiscent of recovery from bone marrow ablation in adults and represents
rapid homeostatic expansion in a lymphopenic host.147 Further, intra-amniotic
administration of IL-1beta to rhesus monkeys at 80% gestation resulted in reduction
in frequency of Treg cells in lymphoid organs, whereas Th17, IL-17A-producing, cells
were increased, potentially linking in utero innate immune activity to inflammatory
lymphocyte-mediated injury.149

Some insight into potential T-cell immunopathology in BPDmay be gained from an-
imal and adult models of inflammatory lung disease. In a baboon model of BPD,
thymic involution, increased peripheral T cells carrying markers of maturation, robust
nonspecific cytokine secretion, and increased autoreactive CD41 T cells in the lung
interstitium, were associated with an increase in bombesin-like peptides (BLP).140,150

Treatment with a neutralizing antibody to BLP corrected the thymic and lung pathol-
ogy seen in preterm baboons treated with 100% oxygen.140 BLP is also elevated in
preterm human infants with BPD,151 suggesting a mechanism linking lymphocyte
dysregulation and BPD.

Age at First Infection

The degree of lung and immune system maturation at the time of infection influences
cytopathogenic responses to virus and perhaps bacteria but also appears to set a
trajectory of immune response to subsequent challenge. Newborn mice infected
with RSV have, compared with mice infected at a slightly later age, increased bron-
choalveolar lavage fluid numbers of Th2 type CD41IL-41 cells and fewer CD41IFN-
g1 cells when reinfected in adulthood.152 Likewise, mice infected with influenza A
within 1 week of birth showed enhanced airway hyperreactivity, chronic pulmonary
inflammation, and diffuse emphysematous-type lesions as adults. An adaptive im-
mune insufficiency was most apparent in the neonatal CD81 T cells. Newborn
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infection was associated with reduced and delayed IFN-g responses as compared
with infection in older animals. RSV-infected neonatal mice recruited CD81
T cells defective in IFN-g production in association with mild symptoms. Reinfection
as adults, however, resulted in limited viral replication but enhanced inflammation
and T-cell recruitment, including Th2 cells and eosinophils.153,154 Depletion of
CD81 T cells (but not CD4) cells during the primary neonatal infection was protec-
tive against the adult challenge. Recall responses from neonatal-primed and adult-
primed mice were associated with IFN-g secretion, indicative of a Th1 response.
However, IL-4 and IL-5 secretion were enhanced only in neonatal-primed mice.
Rechallenge of these mice, primed as newborns, was also associated with
increased concentrations of monocyte chemoattractant protein-1 (MCP-1), macro-
phage inflammatory protein-1a (MIP-1a), and RANTES in the lung. It is suggested
then that neonatal T cells, in particular IFN-g–deficient CD81 T cells, play a crucial
role in regulation of immune responses after neonatal infection. In these neonatal an-
imal models, adoptive transfer of naive CD81 cells, from wild-type but not from IFN-
g–deficient donors, significantly lowered pulmonary viral titers and greatly improved
pulmonary function as adults, supporting the importance of IFN-g secreting CD81 T
cells in determining disease outcome.155

A strong argument has now been advanced that childhood wheezing and atopy
are related to reduced cord blood IFN-g. In a study of infants predisposed to
asthma and atopy, less robust mitogen-induced or specific antigen-induced IFN-
g and IL-13 responses from cord blood cells were associated with more wheezing
episodes in the first year of life in children infected with RSV and rhinovirus.156 In the
Childhood Origins of Asthma (COAST) Project, cytokine-response profiles of cord
blood and 1-year mononuclear cells stimulated in vitro identified that cord blood
IFN-g responses were inversely related to the frequency of viral respiratory infec-
tions and wheezing in infancy while enhanced IFN-g responses at 1 year correlated
positively with the frequency of preceding viral infections.157 Severity of asthma has
been associated with excessive IFN-g production, particularly by CD81 T cells,
potentially reflecting the cytotoxic effect of the cytokine. These data suggest that
neonatal IFN-g responses influence subsequent antiviral activity. Conversely, the
frequency of viral infections in infancy can influence IFN-g responses.
Neutralizing antibodies provide important antiviral protection in infants. Higher

RSV neutralizing antibody titers in both premature and term infants are associated
with protection from infection and LRTI, an effect also supported by the success of
palivizumab in preventing severe RSV disease in premature infants.158 Transpla-
cental transfer of maternal antibodies is inversely related to length of gestation
such that the more preterm infants have relatively less humoral protection contrib-
uting to disease risk. Because viral loads of RSV, hMPV, PIV, and rhinovirus corre-
late with the severity of clinical disease,159–162 it is suggested that infants with a
greater ability to control viral replication on first infection, via the presence of
neutralizing antibody and a more robust IFN-g response, are successful in limiting
excessive antigen presentation, generating protective immune responses associ-
ated with viral clearance, and avoiding immuno-pathogenesis. To date, no study
has evaluated antibody and cellular immune phenotype together with viral load
measurements in infants with respiratory infections. Additionally, the association
between these factors and disease severity has not been explored in premature
infants.
Overall, alterations in lymphocyte-related immunity occur and are dependent on

gestational age, maternal influences, postnatal oxidant stress, and viral diseases.
There are burgeoning data in this area in premature infants, although as yet minimal
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knowledge of specific mechanisms by which lymphocytes participate in respiratory
outcomes in premature infants.

Altered Establishment of Colonizing Microbiota

A developing body of research suggests that both the acquisition and maintenance of
bacterial populations in the gut soon after birth are important drivers of the develop-
ment of both systemic and mucosal immunity.7 Recent advances in high-
throughput sequencing technology have provided insight into the gut microbiome
and are beginning to describe the diversity and dynamics of the microbial populations
in both health and disease. Although the exact factors that control the interactions be-
tween the gut epithelial cells, the gut-associated lymphoid tissue, and the gut micro-
biome are not yet clear, all 3 components appear to play a significant role in the
induction of immune tolerance to luminal bacterial antigens and the maintenance of
homeostasis. Proposed mechanisms identified in animal models include the blocking
of innate signaling via Toll-like receptor-4, the development or expansion of Fox P31
Treg cells, and enhanced IL-10 production in the gut induced by commensal bacte-
ria.163,164 The presence of specific species of bacteria also may be crucial to the
development of gut tolerance as suggested by the relatively decreased amounts of
Bacteroides, Bifidobacterium, and Lactobacillus species in patients with inflammatory
bowel disease.7 Additionally, the timing of acquisition of gut bacteria may be critical
for the positive effects on health. Neonatal IL-10–deficient mice exposed to bacterial
antigens had delayed development of colitis at 18 weeks of age compared with those
not exposed. Decreased IFN-g and IL-17 production in explanted intestinal tissue and
spleen cells following stimulation with gut bacteria also suggests that exposure of the
neonatal immune system to antigens of the microbiome is associated with both
mucosal and systemic immune tolerance.8 These findings may be especially relevant
to the preterm infant in view of recent data showing an inverse relationship between
antibiotic therapy and parenteral nutrition with fecal diversity in the infants born at
less than 29 weeks’ gestation.165 A recent study in elderly adults also suggests
improved protection from influenza infection with oral provision of a Bifidobacterium
longum species.166

Attention has recently turned to determining the microbiome of the respiratory tract
in premature infants. The conventional theory that the lower airways are sterile has
been challenged by identification of organisms in the deep lung of adults and now
infants and children, initially, not surprisingly associated with diseases such as cystic
fibrosis, chronic obstructive pulmonary disease, and asthma, but also now as a
“normal microbiome” in healthy patients.167–169 In preterm infants, Lohmann and
colleagues170 described nonsterile tracheal aspirates with a predominance of Acine-
tobacter in samples taken at intubation in the delivery room, and a persistent decrease
in diversity of organisms over the first month of life in those who went on to develop
BPD. Early sustained airway bacterial colonization in infants less than 1250 g at birth
and intubated for at least 3 weeks was detected within 7 days of life, dominated by
Staphylococcus and Ureaplasma.171 Ongoing studies promise further longitudinal in-
testinal and respiratory microbiome and viral infection data and correlations to respi-
ratory outcomes in preterm and full-term infants (Clinicaltrials.gov: NCT01607216 and
NCT01789268, funding U01HL101813 and HHSN272201200005C, respectively).
That the microbes, the bacteria, viruses, fungi, and others, that flourish on human

skin and mucosa affect the metabolism, immune system, health, and disease of their
host is becoming more clear. Just what those effects are in the premature infant and
how they affect susceptibility to infections and alter respiratory outcomes is an impor-
tant area of current research.

http://Clinicaltrials.gov
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