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Motor imagery (MI), a covert cognitive process where an action is mentally simulated
but not actually performed, could be used as an effective neurorehabilitation tool
for motor function improvement or recovery. Recent approaches employing brain–
computer/brain–machine interfaces to provide online feedback of the MI during
rehabilitation training have promising rehabilitation outcomes. In this study, we examined
whether participants could volitionally recall MI-related brain activation patterns when
guided using neurofeedback (NF) during training. The participants’ performance was
compared to that without NF. We hypothesized that participants would be able to
consistently generate the relevant activation pattern associated with the MI task during
training with NF compared to that without NF. To assess activation consistency, we used
the performance of classifiers trained to discriminate MI-related brain activation patterns.
Our results showed significantly higher predictive values of MI-related activation patterns
during training with NF. Additionally, this improvement in the classification performance
tends to be associated with the activation of middle temporal gyrus/inferior occipital
gyrus, a region associated with visual motion processing, suggesting the importance
of performance monitoring during MI task training. Taken together, these findings
suggest that the efficacy of MI training, in terms of generating consistent brain activation
patterns relevant to the task, can be enhanced by using NF as a mechanism to enable
participants to volitionally recall task-related brain activation patterns.

Keywords: real-time fMRI, motor imagery, neurofeedback, brain machine interface, functional MRI, support
vector machine

INTRODUCTION

A growing number of neuroimaging studies have shown that brain regions activated during an
overt motor task are also activated during motor imagery (MI), a covert cognitive process where
an individual mentally simulates an action but without any body movement (Grèzes and Decety,
2000; Hétu et al., 2013). Key anatomical structures typically activated in both overt movement and

Frontiers in Human Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 158

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2018.00158
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2018.00158
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2018.00158&domain=pdf&date_stamp=2018-04-24
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00158/full
http://loop.frontiersin.org/people/465675/overview
http://loop.frontiersin.org/people/551045/overview
http://loop.frontiersin.org/people/500653/overview
http://loop.frontiersin.org/people/524705/overview
http://loop.frontiersin.org/people/500512/overview
http://loop.frontiersin.org/people/16858/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00158 April 20, 2018 Time: 16:10 # 2

Bagarinao et al. Improved Volitional Recall Using Neurofeedback

MI include the primary motor cortex (M1), supplementary
motor area (SMA), premotor cortex (PMC), prefrontal cortex
(PFC), posterior parietal cortex (PPC), cerebellum and basal
ganglia (O’Shea and Moran, 2017; Tong et al., 2017). Aside from
activating similar cortical areas, overt movement and MI have
also been shown to share cortical networks, although networks
specific to each task were also reported (Sharma and Baron,
2013). These findings are aptly summed up by the mental
simulation hypothesis (Jeannerod, 2001; O’Shea and Moran,
2017) which states that overt movement and MI are essentially
based on the same processes. To account for the absence of
actual movement in MI, Guillot et al. (2012) argued that MI also
includes motor execution commands but are inhibited at some
level of the motor system.

The notion that mental practice via MI could trigger activation
in relevant motor areas raises the potential of MI as an
effective neurorehabilitation tool to improve motor functions.
As such, MI training has been employed in sports science to
improve athletes’ performance (Feltz and Landers, 1983). The
potential use of MI training as a no-cost, safe, and easy way
to improve or preserve motor function in the elderly has also
been examined (Saimpont et al., 2013). MI is also popular
as a neurorehabilitation technique to enhance motor recovery
following stroke (see relevant reviews in Jackson et al., 2001; Page,
2001; Sharma et al., 2006; de Vries and Mulder, 2007). Some
studies have also shown that MI provides additional benefits
to conventional physiotheraphy (Zimmermann-Schlatter et al.,
2008) and can be used to identify potential sources of residual
functional impairment in well-recovered stroke patients (Sharma
et al., 2009a,b). However, recent findings have also shown that MI
training does not enhance motor recovery in patients in early post
stroke (Ietswaart et al., 2011). Thus, the efficacy of MI training for
neurorehabilitation still remains unclear.

For MI to be effective, participants need to consistently
generate activation patterns involving relevant brain regions
during the training. This entails the ability to volitionally
recall relevant MI-related brain activation patterns. An effective
mechanism to evaluate MI task performance will also be needed
(Sharma et al., 2006). To mitigate this problem, recent approaches
employed brain-computer/brain-machine interfaces (BCI/BMI)
in conjunction with MI to provide online contingent sensory
feedback of the brain activity during rehabilitation training.
In these approaches, BCI/BMI systems actively decode brain
activity and display the outcome to the user to create feedback
that is reflective of task performance. The addition of BCI
in neurorehabilitation has been shown effective in improving
clinical parameters of post-stroke motor recovery (Ramos-
Murguialday et al., 2013; Ono et al., 2014; Frolov et al., 2017),
suggesting the importance of providing feedback information
during training to improve rehabilitation outcomes.

The importance of feedback in learning to volitionally
control different aspects of brain activity has also been
demonstrated in several neuroimaging studies. In particular,
neurofeedback (NF) based on real-time functional magnetic
resonance imaging (fMRI) has been shown effective in training
participants to control brain activity within circumscribed
brain regions (Posse et al., 2003; deCharms et al., 2005;

Caria et al., 2007, 2010; Sulzer et al., 2013), control connectivity
measures between regions (Koush et al., 2013, 2015), and induce
multi-voxel activation patterns (Shibata et al., 2011). In this
study, we systematically examined whether participants could
volitionally recall MI-related brain activation patterns when
guided using NF during training. The participants’ performance
was compared to that without NF. Two recent studies on MI
have shown that NF could significantly enhance task-specific
brain activity compared to no NF (Zich et al., 2015; Perronnet
et al., 2017). Based on these findings, we hypothesized that with
NF during an extended MI task training, participants would
be able to consistently generate the desired brain activation
pattern associated with the MI task compared to that without
NF. We assessed the consistency of recalled brain activation
using the performance of classifiers trained to discriminate
MI-related activation patterns. We further compared brain
activations during MI with and without NF to investigate the
neural mechanisms associated with NF during MI tasks training.
For this, we developed a BMI system based on real-time fMRI
that employed MI tasks to manipulate the arm movement of a
small humanoid robot. The robot’s arm movement was then used
to provide a form of visual representation of the MI task as well
as to act as the NF signal.

MATERIALS AND METHODS

Participants
Twenty two healthy young volunteers (11 males and 11
females) were recruited for this study. The participants’ age
ranged from 20 to 33 years old (mean age = 23.18 years,
standard deviation = 3.5 years). All participants had no
history of neurological or psychiatric disorders, right handed
as indexed by a handedness inventory test, with Mini-Mental
State Examination scores greater than 28, and had no prior
experience with real-time fMRI or the MI tasks. This study
was approved by the Institutional Review Board of the National
Center for Geriatrics and Gerontology of Japan (Protocol #938;
Title: Development of cognitive function measurement system
using real-time fMRI; Approval date: June 19, 2016). Written
informed consent was obtained from all participants before
joining the study.

Experimental Paradigm and Tasks
All participants underwent two MI training sessions, one with NF
and the other without NF (non-NF), 7 or 11 days apart. Due to
this design, participants were divided into two groups. Group A
participants (NA = 11) started with the non-NF session followed
by the NF session. On the other hand, group B participants
(NB = 11) started with the NF session followed by the non-NF
session. Participants were randomly assigned to each group.

Each training session consisted of the following scans: (1)
an anatomical localizer run, (2) 3D MPRAGE (Magnetization
Prepared Rapid Acquisition Gradient Echo, Siemens) scan for
a reference anatomical image, and (3) 4 task-based functional
MRI scans. The task scans consisted of 9-rest and 8-task blocks
alternated with each other with each block lasting for 30 s. The
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task blocks were divided into 4 blocks of imagined left hand
gripping and opening (LGO) and another 4 blocks of imagined
right hand gripping and opening (RGO). The task fMRI scans
during NF sessions included a pre-feedback scan (run 0) with
no NF and 3 NF scans (runs 1 – 3). For non-NF sessions, the
participants performed the same task in all 4 scans (runs 0 – 3)
with no NF. Participants were given a 5-min break in between
scans.

Imaging Parameters
Both functional and anatomical scans were acquired using a
Siemen’s Magnetom Trio (Siemens, Erlanger, Germany) 3.0T
scanner with a 12-channel head coil. T1-weighted MR images
were acquired using a 3D MPRAGE pulse (Mugler and
Brookeman, 1990) sequence for anatomical reference with the
following imaging parameters: repetition time (TR) = 2.53 s, echo
time (TE) = 2.64 ms, 208 sagittal slices with a 50% distance
factor and 1mm thickness, field of view (FOV) = 250 mm,
256 × 256 matrix dimension, and in-plane voxel resolution of
1.0 mm × 1.0 mm. Functional MR images were acquired using
a gradient echo (GE) echo planar imaging (EPI) sequence with
the following imaging parameters: TR = 2.0 s, TE = 30 ms, flip
angle (FA) = 80◦, 37 axial slices with a distance factor of 30%,
FOV = 192 mm, slice thickness = 3.0 mm, 64 × 64 matrix
dimension, voxel size = 3.0 mm × 3.0 mm × 3.0 mm, and a total
of 255 volumes.

Real-Time Neurofeedback System
The schematic representation of our real-time neurofeedback
system is shown in Figure 1. It consists of three subsystems,
namely (1) image acquisition subsystem, (2) real-time analysis
subsystem, and (3) presentation subsystem. The image
acquisition subsystem consists of the MRI scanner and its
console and is responsible for MR image acquisition, real-time
image reconstruction, and real-time image transfer to the
analysis subsystem. The real-time analysis subsystem, consisting
of a dedicated workstation running the Linux operating
system, is responsible for the real-time analysis of the acquired
images including image preprocessing, statistical analysis,
and brain state decoding/classification, among others. The
presentation subsystem is responsible for input stimuli as well
as feedback presentation. Currently, it supports screen-projector
combination for simple stimuli and feedback presentation as
well as video camera-small humanoid robot (KHR-3V, Kondo
Science, Japan) combination for BMI applications.

At present, the real-time fMRI-based BMI system enables us
to control the arm movements (e.g., raising or lowering) of the
humanoid robot using MI tasks. The system operates as follows
(Figure 1). During real-time operation, the image acquisition
subsystem sends the acquired functional images volume-by-
volume to the analysis subsystem, which then processes the data.
After processing and if the target brain activation pattern has
been identified, a command (e.g., raise left arm) is sent to the
humanoid robot via a USB cable connection. The robot then
executes the movement associated with the command signal. The
action of the robot is captured by a video camera, which sends
live video feed to the participant via a projector for feedback.

This enables the participant to control the arm movements of
the humanoid robot by consistently generating brain activation
patterns associated with the target MI task.

Support Vector Machines
To identify the brain activation patterns associated with the
different MI tasks, we used support vector machines (SVMs)
for both real-time and offline analyses. SVM is a supervised
machine learning algorithm used for classification or regression
analysis. It requires training examples to generate a classification
model for a given problem. In general, given two classes of
objects, SVM attempts to determine a separating hyperplane
(decision boundary) optimizing the separation between the two
groups using the provided training samples. The obtained model
can then be used to classify new samples not yet seen by the
SVM algorithm. In all SVM analyses, we used a linear SVM
algorithm and set the regularization parameter c to 1. All analyses
were performed in Matlab using in-house scripts and LIBSVM1

(Chang and Lin, 2011).

Neurofeedback Training
During NF sessions, data from the pre-feedback scan (run 0) were
used to train SVMs online to classify the different brain activation
patterns associated with the MI tasks. Here, we used several SVM
classification models including Rest vs. LGO (to classify image
volumes during rest blocks and LGO task blocks), Rest vs. RGO,
and LGO vs. RGO. The trained SVMs were then used in the
succeeding NF scans to classify the acquired functional images
in real time and to generate the corresponding BMI commands
to control the arm movement of the small humanoid robot
connected to the real-time fMRI system. The robot’s whole body
was projected on a screen by the system’s video camera to provide
visual feedback to the participants. Before the start of each NF
scan, the robot’s arms were initially set in a horizontally extended
position. For each image volume, correct task classification of
the SVM would generate a BMI command that would initially
raise either the left (for LGO tasks) or the right (for RGO tasks)
arm of the robot by about 85◦ from the horizontal and then
lower the arm back to its initial horizontal position before the
next volume was acquired, thus providing a continuous feedback
during task blocks. For incorrect classification, the robot would
remain stationary. Note that during rest blocks and for non-NF
scans (run 0 for NF session and runs 0 – 3 for non-NF session),
the robot was stationary with horizontally extended arms and the
participants focused their attention on a cross mark positioned
on the robot’s body.

Real-Time Image Preprocessing
Data from the pre-feedback scan during NF sessions were
preprocessed immediately after the scan (online analysis) using
SPM8 (Wellcome Trust Center for Neuroimaging, London,
United Kingdom). Functional images were realigned relative
to the scan’s mean functional image, Imean. Realigned images
were then smoothed using an 8-mm full-width-at-half-maximum
(FWHM) 3D Gaussian kernel. These preprocessed images were

1http://www.csie.ntu.edu.tw/~cjlin/libsvm
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FIGURE 1 | Schematic representation of the real-time neurofeedback system consisting of an image acquisition subsystem, a real-time analysis subsystem, and a
presentation subsystem.

used to train the SVMs. A brain mask was also created to
exclude voxels outside the brain in the classification analysis.
To do this, we used SPM’s normalization procedure to find a
transformation from the standard MNI (Montreal Neurological
Institute) space to the subject space using an EPI template in MNI
space and Imean. We then applied the obtained transformation
to a brain mask in MNI space to transform it to the subject
space. The normalized mask was further co-registered to Imean,
then re-sliced to have the same dimension and orientation
as Imean. During feedback scans, each functional image was
realigned to Imean immediately after acquisition, smoothed using
an 8-mm FWHM Gaussian kernel, masked to exclude outside
brain voxels, and used as input to the trained SVMs for the real-
time classification of brain activation patterns. We also applied
an incremental detrending approach to the real-time output of
the classifier to correct for possible classifier drift (LaConte et al.,
2007).

Offline Data Analysis
Since there was no feedback and no real-time brain activation
pattern classification during non-NF sessions, we analyzed data
sets from both NF and non-NF sessions offline and comparisons
were performed based on these analyses. For the offline analysis
of all imaging data, we used SPM12. T1-weighted images were
first segmented into component images including gray matter,
white matter, cerebrospinal fluid, and non-brain tissues using
SPM’s segmentation approach (Ashburner and Friston, 2005).
For the functional data, the first 5 volumes were discarded

to account for the initial image inhomogeneity. Functional
images were then realigned relative the mean image from the
series, co-registered to the bias-corrected anatomical image
obtained from the segmentation step, normalized to standard
MNI space, resampled to an isotropic voxel resolution of
2 mm × 2 mm × 2 mm, and spatially smoothed using an 8-mm
FWHM 3D Gaussian filter.

To identify brain regions activated during each task, we
used a box-car convolved with the canonical hemodynamic
response function to model each MI task. The 6 estimated
motion parameters were also included in the model as nuisance
regressors to account for head motion. Contrast images were
extracted for each task and group results were obtained using a
one-sample t-test with the contrast images as inputs. To compare
differences in activation between NF and non-NF sessions, we
performed a paired sample t-test for each run using the contrast
images from the first level analysis as inputs. We also used a
2 × 3 factorial analysis with within-subject factors of NF (with
and without) and training runs (runs 1–3) using the flexible
factorial design implemented in SPM12 to investigate the overall
difference in activation patterns between NF and non-NF sessions
(main effect of NF). Additionally, a one-way within-subject
analysis of variance (ANOVA) was also performed to compare
activation changes across NF runs during NF session. Activation
maps were generated using a threshold value of p < 0.05
corrected for multiple comparisons using family-wise error
cluster level correction (FWEc) with cluster defining threshold
(CDT) set to p = 0.001. We used the Neuromorphometrics atlas
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available in SPM12 to label the different cortical areas in the
obtained statistical maps.

We also performed offline SVM analyses using the
preprocessed data sets. For each participant, data from run
0 were used to train the SVMs and the resulting classification
models were then tested using data from runs 1 – 3. Separate
SVMs were trained for scans from NF and non-NF sessions.
To evaluate the SVMs’ performance, we computed the task
predictive value (TPV) defined here as the ratio between the
number of task volumes correctly classified and the total number
of task volumes as well as accuracy defined as number of correctly
classified volumes over the total number of volumes. We used
TPV in evaluating the performance of classification models
comparing rest and task volumes (i.e., Rest vs. LGO and Rest
vs. RGO) since rest blocks were not monitored and participants
might have practiced the task during rest blocks that could lead
to inaccurate classification. On the other hand, for LGO vs. RGO
classification model, we used the classification accuracy.

RESULTS

Brain Activation During MI Tasks
Figure 2 shows the group activation maps using all participants
associated with the two MI tasks in run 0 during the first
session. Compared to rest, LGO showed activation in bilateral
supplementary motor cortex (SMC) spreading toward the
right cingulate gyrus (CgG), bilateral cerebellum (not shown),
bilateral precentral gyrus (PrG), bilateral parietal operculum
(PO), and left central operculum (CO). On the other hand,
RGO showed activations in bilateral SMC extending toward
CgG, bilateral PrG extending toward inferior frontal gyrus
(IFG)/Brodmann area (BA) 44 and insula/BA13, bilateral
putamen, bilateral inferior parietal lobule (IPL), bilateral
cerebellum, right thalamus/caudate, and left middle frontal gyrus
(MFG). The list of activated regions with the corresponding
cluster peak MNI coordinates, cluster sizes, and z-values is shown
in Table 1.

Contrast maps showing significant run-specific differences in
activation during NF and non-NF sessions are shown in Figure 3.
LGO task activated more regions during non-NF session than
NF session in runs 1 and 3. These regions included the right
cerebellum, bilateral postcentral gyrus (PoG), left superior frontal
gyrus (SFG), right superior temporal gyrus (STG), right posterior
insula (PIns), and right hippocampus in run 1 and the left
superior occipital gyrus (SOG) in run 3. The only region that
exhibited stronger activation during NF session was the right
inferior occipital gyrus (IOG)/middle temporal gyrus (MTG) in
run 1, which persisted even in run 2. For the RGO task, the right
PrG and the left MTG/IOG were activated strongly during NF in
run 1. The stronger activity in left MTG/IOG persisted even in
run 2. Finally, in run 3, no significant differences were observed
between the two sessions. The list of regions showing significant
difference in activation between NF and non-NF sessions is given
in Table 2.

Overall differences in activation between NF and non-NF
(main effect of NF in the factorial analysis) for the two MI tasks

are shown in Figure 4. Consistent with run-specific results, LGO
task activated more regions during non-NF session than NF
session including a very large cluster with peak location in the
right MTG and extending toward several other regions including
left cuneus, right occipital pole (OCP), left PrG, and left PoG,
among others, right cerebellum, left medial frontal cortex (MFC),
and left SFG. Regions showing significant activation during NF
included right MTG and right STG. For the RGO task, the left
IOG, right MTG, and right STG showed significant activation
during NF, while the left OCP showed significant activation
during non-NF. Comparisons across runs during NF (one-way
within-subject ANOVA) did not show any significant differences
in activation. The full list of regions showing significant difference
in activation between NF and non-NF sessions is given in Table 3.

SVM Classification Performance
The classification performance of the trained SVMs is shown in
Figure 5 and Table 4. For the classification models Rest vs. LGO
(Figure 5A) and Rest vs. RGO (Figure 5B), the mean TPVs are
plotted. On the other hand, for LGO vs. RGO (Figure 5C), the
classification accuracies are shown. During NF scans, the overall
average TPV for the 3 runs is about 81.36% for Rest vs. LGO
and 82.35% for Rest vs. RGO and the overall average accuracy
is 70.09% for LGO vs. RGO. During non-NF scans, the overall
average TPV value is 74.54% for Rest vs. LGO and 76.82% for Rest
vs. RGO and the average accuracy is 63.78% for LGO vs. RGO.
No significant difference in TPVs and accuracies were observed
across runs for both NF and non-NF sessions.

Comparing NF and non-NF using paired sample t-tests,
TPV during NF was significantly higher than that during non-
NF in run 1 (p = 0.0001) and run 2 (p = 0.002) but not
in run 3 (p = 0.8495) for Rest vs. LGO and also in run
1 (p = 0.0134) and run 2 (p = 0.0106), but not in run 3
(p = 0.3161) for Rest vs. RGO. The same was true in terms
of the classification accuracies for LGO vs. RGO, which was
significantly higher in run 1 (p = 0.0217) and run 2 (p = 0.0019),
but not in run 3 (p = 0.3730). This suggests that SVMs were
able to classify brain activation patterns more reliably (higher
classification performance) during NF sessions than during
non-NF sessions.

We further investigated if previous experience in MI tasks
could have affected the improvement in the classification
performance during NF sessions since by design half of the
participants (group A) did non-NF session, which provided
the participants prior training of the MI tasks, before the NF
session. Group A participants could drive the observed significant
difference. The classification performance for the two MI tasks in
runs 1 and 2 for each subgroup is shown in Figure 6. Group A
(green circle) showed significant increase in TPV from session
1 to session 2 for both MI tasks (p = 0.0057 and p = 0.0250
in runs 1 and 2, respectively, for LGO and p = 0.0034 and
p = 0.0021 in runs 1 and 2, respectively, for RGO). Classification
of the two tasks (p = 0.0093 and p = 0.0001 in runs 1 and
2, respectively, for LGO vs. RGO) also became more accurate
in the second session with NF. On the other hand, for group
B (blue squares), we observed a significant decrease in TPV
(p = 0.0152 and p = 0.0485 in runs 1 and 2, respectively) for

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2018 | Volume 12 | Article 158

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00158 April 20, 2018 Time: 16:10 # 6

Bagarinao et al. Improved Volitional Recall Using Neurofeedback

FIGURE 2 | Activation maps for run 0 during the first session. Surface projections of the activation maps showing regions that were activated during (A) imagined left
hand gripping and opening (LGO) and (B) imagined right hand gripping and opening (RGO). Activation maps were generated using a threshold value of p < 0.05
corrected for multiple comparisons using family wise error correction at the cluster level. Note that some regions in the cerebellum were also activated but were not
shown in the figure. PrG, precentral gyrus; PO, posterior operculum; CO, central operculum; SMC, supplementary motor cortex; CgG, cingulate gyrus; MFG, middle
frontal gyrus.

the LGO task when no feedback is given (session 2), while no
significant change was observed in both TPV for RGO and
classification accuracy for LGO vs. RGO. Moreover, group B also
had a relatively higher TPV in the first session compared to
group A. In run 3, we did not observe any significant difference
in the classification performance of the trained SVM between
sessions and groups and so was not included in the figure.
These results further reinforced the important role of NF in
generating consistent brain activation patterns during MI task
training.

DISCUSSION

In this study, we investigated the importance of NF in generating
consistent brain activation patterns during an extended MI
task training using a BMI system to provide a form of visual
feedback of the MI tasks. Our results confirmed our hypothesis
that participants were able to consistently reproduce brain
activation patterns associated with the MI task when provided
with NF than without NF as measured by the classification
performance of SVMs trained to identify MI-related activation

TABLE 1 | List of activated regions for imagined left and right hand gripping and opening during the 1st scan session.

Peak location MNI (mm) Cluster size z-value Cortical area

X Y Z

LGO —8 2 58 2256 5.75 L SMC

38 −54 −28 277 4.79 R Cer

−50 6 4 680 4.7 L CO

52 4 46 439 4.56 R PrG

−50 −2 46 531 4.52 L PrG

−42 −38 24 463 4.45 L PO

52 −32 24 678 4.42 R PO

−30 −60 −24 420 4.32 L Cer

RGO —6 2 62 3304 5.83 L SMC

52 2 46 2533 5.72 R PrG

−48 −6 44 7466 5.49 L PrG

32 −62 −22 2578 5.34 R Cer

54 −34 22 1659 5.14 R PT/PO

22 −14 20 433 3.93 R Th

−34 50 20 524 3.9 L MFG

Activation maps were generated using a threshold value of p < 0.05 corrected for multiple comparisons using family-wise error correction at the cluster level. LGO,
imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; SMC, supplementary motor cortex; Cer, cerebellum; CO, central operculum;
PrG, precentral gyrus; PO, parietal operculum; PT, planum temporal; Th, thalamus; MFG, middle frontal gyrus; L, left; R, right.
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FIGURE 3 | Contrast maps comparing NF and non-NF sessions for runs 1 (top row), 2 (middle row) and 3 (bottom row) for LGO (left column) and RGO (right
column) tasks. Regions where NF > non-NF are shown in red-yellow colors, whereas regions where NF < non-NF are shown in dark-light blue colors. Contrast
maps were generated using a threshold value of p < 0.05 corrected for multiple comparisons using family wise error correction at the cluster level. Blue arrows
indicate the location of left or right middle temporal gyrus/inferior occipital gyrus. LGO, imagined left hand gripping and opening and RGO, imagined right hand
gripping and opening.

patterns. Moreover, these findings also demonstrated the
capability of participants to volitionally recall MI-related brain
activation patterns in the presence of contingent feedback. The
improvement in the classification performance during NF was
also associated with the activation of MTG/IOG suggesting the
significance of performance monitoring in generating consistent
brain activation.

Previous neuroimaging studies have demonstrated the
importance of NF, based on real-time fMRI, in the training

of participants to self-regulate brain activity in circumscribed
brain regions (Posse et al., 2003; deCharms et al., 2005; Caria
et al., 2007, 2010; Sulzer et al., 2013). More recent studies
have extended the application of NF to voluntary control of
the connectivity between brain regions (Koush et al., 2013,
2015) or induction of multi-voxel activation patterns (Shibata
et al., 2011). Our findings have demonstrated the use of NF
for the improvement of volitional recall of specific activation
patterns (in this case, MI-related brain activation patterns).
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TABLE 2 | List of regions showing significant difference in activations between NF and non-NF sessions using paired sample t-tests.

Peak location MNI (mm) Cluster size z-value Cortical area

X Y Z

LGO – run 1

NF > non-NF 46 −66 2 374 4.47 R IOG

NF < non-NF 34 −76 −30 561 5.00 R Cer

−18 −46 64 2601 4.72 L PoG

48 4 −26 315 4.45 R STG

−22 58 10 365 4.42 L SFG

−26 40 46 417 4.40 L SFG

32 −18 14 417 4.40 R PIns

28 −34 —6 460 4.23 R Hip

6 −80 26 475 4.20 R Cun

−20 4 28 367 4.13 L Cau

54 −36 −16 236 3.96 R ITG

54 −58 34 213 3.71 R AnG

RGO – run 1

NF > non-NF 8 −22 8 257 4.89 R Th

42 0 52 343 4.78 R PrG

−42 −66 4 415 4.59 L MTG

44 −62 0 287 4.19 R MTG

LGO – run 2

NF > non-NF 48 −62 2 484 5.43 R MTG

RGO – run 2

NF > non-NF −40 −72 8 494 4.90 L IOG

LGO – run 3

NF > non-NF 38 0 44 222 4.59 R PrG

NF < non-NF 18 −94 16 436 4.10 R OCP

Contrast maps were generated using a threshold value of p < 0.05 corrected for multiple comparisons using family-wise error correction at the cluster level. IOG, inferior
occipital gyrus; Cer, cerebellum; PoG, postcentral gyrus; STG, superior temporal gyrus; SFG, superior frontal gyrus; PIns, posterior insula; Hip, hippocampus; Cun,
cuneus; Cau, caudate; ITG, inferior temporal gyrus; AnG, angular gyrus; Th, thalamus; PrG, precentral gyrus; MTG, middle temporal gyrus; OCP, occipital pole; L, left; R,
right.

FIGURE 4 | Overall difference in activation between NF and non-NF sessions (main effect of NF in the factorial analysis) for (A) LGO and (B) RGO tasks. Regions
where NF > non-NF are shown in red-yellow colors, while regions where NF < non-NF are shown in dark-light blue colors. Statistical maps were thresholded using
FWEc p < 0.05. LGO, imagined left hand gripping and opening and RGO, imagined right hand gripping and opening.

This is important, for example, in BMI applications where
successful recall of activation patterns could provide consistent
and improved BMI operation. For neurorehabilitation, volitional

recall may also prove useful in re-acquiring learned task-related
activations disrupted by the insult to the brain. It has also the
potential to promote long-term learning by stabilizing activation
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TABLE 3 | List of regions showing overall (main effect of NF) differences in activation between NF and non-NF sessions.

Peak location MNI (mm) Cluster Size z-value Cortical area

X Y Z

RGO

NF > non-NF −42 −70 4 725 6.54 L IOG

50 −64 4 533 5.6 R MTG

64 −36 18 667 5.28 R STG

NF < non-NF −8 −98 18 363 4.85 L OCP

LGO

NF > non-NF 48 −64 6 769 7.53 R MTG

62 −38 16 380 5.13 R STG

NF < non-NF 44 −6 −24 12661 5.41 R MTG

−6 46 −10 842 4.5 L MFC

−24 40 42 376 4.21 L SFG

An FWEc p < 0.05 value was used to threshold all statistical maps. LGO, imagined left hand gripping and opening; RGO, imagined right hand gripping and opening; IOG,
inferior occipital gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; OCP, occipital pole; MFC, medial frontal cortex; SFG, superior frontal gyrus; L, left; R,
right.

patterns via repeated retrieval or recall of relevant activation
patterns. To establish the relevance and efficacy of this NF
application, more detailed application-specific studies will be
necessary.

Our finding showing the efficacy of MI training with NF
compared to non-NF is consistent with the result of Zich et al.
(2015) in a study using EEG-based feedback during simultaneous
EEG-fMRI. Using a block design (2 blocks without NF and
1 block with NF), the authors observed stronger MI-related
activation in contralateral regions in both EEG and fMRI BOLD
signals when NF was provided. Most recently, Perronnet et al.
(2017) compared unimodal EEG-based NF and fMRI-based NF
with bimodal EEG-fMRI-based NF. Their results again showed
significantly higher activation during MI with NF than without
NF. Interestingly, NF involving fMRI appeared to have higher
activation compared with unimodal EEG-based NF. But unlike
these studies where NF and non-NF tasks were done in the same
scan or same session, we divided NF and non-NF tasks into two
separate sessions and used extended practice runs (3 runs) for
both tasks to simulate actual training. Thus, our findings further
demonstrated the benefits of NF even for an extended MI task
training.

In addition, our result also showed that without NF prior
experience of MI does not necessarily translate to improvement
in performance (Figure 6). Comparing the two groups of
participants, performance of those that started without NF
(Group A) significantly increased in the second session with
NF. At first, this finding may suggest the effect of prior MI
experience for improved performance. However, participants
in Group B did not show any performance improvement
in the second session when no NF was provided. In fact,
the initial performance in the session with NF was even
better than in the second session without NF. This is
particular more evident in the LGO vs. RGO classification
result.

Compared to many BCI/BMI approaches, we used real-
time fMRI instead of EEG. The main advantage of real-time

fMRI-based NF is that the NF signal is derived directly from
the activation pattern of the relevant cortical regions. Changes
in the NF signal are therefore directly related to the activity
changes in these regions (e.g., Posse et al., 2003; deCharms
et al., 2005; Caria et al., 2007; Hamilton et al., 2016). Other
works had also successfully used MI to control activation in
specific motor and somatosensory regions (Yoo and Jolesz, 2002;
DeCharms et al., 2004; Yoo et al., 2008) using NF signal derived
from these regions. By contrast, EEG-based NF commonly used
the spontaneous modulation of global brain oscillation such
as the desynchronization of the sensorimotor rhythm. Due to
the inverse problem inherent in EEG source reconstruction,
changes in the measured brain oscillatory pattern cannot be
uniquely attributed to changes in activity patterns in specific
areas within the sensorimotor network. However, EEG has
the advantage in terms of costs and portability (Kranczioch
et al., 2014) and is therefore more accessible for practical use.
Thus, a combined use of EEG-based NF and real-time fMRI-
based NF may prove optimal for a successful MI training
approach.

Unlike previous real-time fMRI-based NF studies involving
MI (Yoo and Jolesz, 2002; DeCharms et al., 2004; Yoo et al., 2008),
we used a multivariate pattern classification approach (LaConte
et al., 2007) in the training sessions to generate NF signals
during MI training. This approach ensures that the feedback is
based on the activation pattern of distributed MI-related cortical
regions (Grèzes and Decety, 2000; Simos et al., 2017) rather
than on the activity of a single region-of-interest (ROI). This
is particularly relevant when the tasks being considered, such
as MI, involved overlapping activation regions. Using activation
patterns instead of the strength of ROI activation as basis for
NF could improve the specificity of the individual task. As an
example, both LGO and RGO tasks activated SMC and bilateral
PrG and therefore could not be effectively differentiated by
the activation of these regions. However, the overall activation
patterns differed between the two tasks, and therefore could be
more useful in improving the classification of the two tasks.
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FIGURE 5 | Support vector machines (SVMs) classification performance for
(A) Rest vs. LGO, (B) Rest vs. RGO, and (C) LGO vs. RGO classification
models during NF (blue bars) and non-NF (green bars) sessions. ∗ Indicates
significant difference in classification performance between NF and non-NF
sessions.

By using patterns of activations over multiple brain regions,
the BMI system could provide more relevant NF signal to the
participants than just by using the strength of activation of a
single ROI.

In terms of brain activation, we observed greater activation
in IOG/MTG during NF sessions. Activation in this region
was also observed in previous studies involving EEG-based
BCI NF (Marchesotti et al., 2017), real-time fMRI-based
NF (Berman et al., 2012), and motor observation (Grèzes
and Decety, 2000; Simos et al., 2017). Moreover, IOG/MTG
activation was also associated with the perception of visual
motion and visually guided motion (Astafiev et al., 2004; Arzy
et al., 2006; Ninaus et al., 2013). As most NF involves some
form of visual motion, the activation of this region could
be associated with task performance monitoring, which in
turn could provide guidance to help participants generate the
correct brain activation patterns associated with the task during
training.

We also note that a change in the classification performance
(no significant difference between NF and non-NF session) and
in the activation of the IOG/MTG was observed in run 3 of
the NF session. There are two possibilities that may explain
this change. The first possibility is fatigue. Participants had been
performing the same tasks 4 times in the same scanning session
with limited rest period in between scans. When participants
were interviewed after the session, several did complain of being
tired doing the MI tasks. To overcome this problem, training
can be performed on multiple sessions separated by several days
(deCharms et al., 2005). The other possibility is the effect of
learning itself. Using a motor learning task, LaConte (2011)
showed that prediction accuracy decreased for participants who
demonstrated motor learning, whereas the opposite was true for
those exhibiting little or no motor improvement. Learning is non-
stationary and can introduce changes in the observed activation
patterns. In the current context, after continuous practice with
NF, participants were becoming more familiar with the task
possibly resulting in changes in brain activation pattern, which
in turn, led to a decrease in the classification performance of
the trained SVMs. One way to mitigate this issue is to re-
train the SVMs using the most recently acquired data to adapt
the classifier to changes in the participants’ brain activation
pattern. However, caution should be exercised when using
this approach since if participants are not learning correctly,
adapting SVMs to the most recent data sets will have negative
effects. Another alternative is to pre-train an SVM using data
sets that truly capture the target brain activation pattern and
to use the trained classifier for all participants. The data set
could come from an expert in MI or from a trained group of
participants. With this, better classification performance can be
easily interpreted to mean activation patterns closer to the desired
target pattern.

Finally, the number of participants (N = 22) recruited
for the study may also present some limitations. Although
for the current purpose this number is already sufficient,
investigation for differences in strategies used during MI
task training, for example, may require more participants.
Moreover, this also constraints us to employ the same group
of participants for both NF and non-NF sessions and as a
consequence, we had to take into account the potential effect
of prior MI experience in the reported TPVs or accuracies.
Although we have demonstrated that prior experience of MI
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TABLE 4 | Support vector machines classification performance.

Rest vs. LGO (mean TPV) Rest vs. RGO (mean TPV) LGO vs. RGO (mean accuracy)

NF Non-NF p-value NF Non-NF p-value NF Non-NF p-value

ALL

Run 1 83.79 73.48 0.0001 84.09 77.95 0.0134 70.61 63.30 0.0217

Run 2 81.82 72.20 0.0020 82.12 75.15 0.0106 70.19 60.91 0.0019

Run 3 78.48 77.95 0.8495 80.83 77.35 0.3161 69.47 67.12 0.3730

Group A

Run 1 83.18 71.51 0.0057 86.21 75.30 0.0034 76.59 64.55 0.0093

Run 2 80.76 70.61 0.0250 83.33 71.67 0.0021 76.14 63.49 0.0001

Run 3 75.61 77.42 0.6603 79.85 78.64 0.7066 76.14 70.23 0.1252

Group B

Run 1 84.39 75.45 0.0152 81.97 80.61 0.6578 64.62 62.05 0.5566

Run 2 82.88 73.79 0.0485 80.91 78.64 0.5491 64.24 58.33 0.2355

Run 3 81.36 78.48 0.4743 81.82 76.06 0.3695 62.80 64.02 0.7434

Group A participants started with non-NF session followed by NF session while group B participants did the opposite, first with NF session followed by the non-NF
session. Shown p-values are from paired sample t-test comparing the performance between NF and non-NF sessions.

FIGURE 6 | Support vector machines classification performance for the two groups of participants in runs 1 (top row) and 2 (bottom row) for the Rest vs. LGO
(left column), Rest vs. RGO (middle column) and LGO vs. RGO (right column) classification models. Group A (green circles) started with the non-NF session
followed by the NF session, while Group B (blue squares) started with the NF session followed by the non-NF session.

did not affect the reported results, the smaller number of
participants per group (N = 11) did limit us to further examine
potential differences in brain activation patterns between the two
groups.

CONCLUSION

In summary, we have demonstrated the advantages of using NF
during MI task training using a BMI system that provided a
form of visual representation of the MI task and also acted as
visual feedback. Our results showed that SVM’s classification
performance was consistent across the three feedback runs.

Higher TPVs/accuracies during NF sessions compared to non-
NF sessions suggest that participants were able to maintain
consistent activation patterns associated with the MI tasks
in the former than in the latter. This improvement in the
classification performance with NF was also associated with
the additional activation in the left/right MTG/IOG during NF
sessions, which could be related to visual motion processing
as a means of tracking performance during NF scans. These
findings corroborate previous studies showing the importance
of NF in improving MI performance and also demonstrate the
potential use of real-time fMRI-based NF to improve volitional
recall of relevant brain activation patterns during MI task
training.

Frontiers in Human Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 158

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00158 April 20, 2018 Time: 16:10 # 12

Bagarinao et al. Improved Volitional Recall Using Neurofeedback

AUTHOR CONTRIBUTIONS

EB, AY, MU, SK, HI, and TN conceived and designed the study.
SK and KT built and programmed the humanoid robot for real-
time fMRI application and EB developed the real-time analysis
system. EB, AY, MU, and KT performed the experiments and
analyzed the data. TN gave technical support and supervised the
whole research procedure. EB, HI, and TN wrote the draft of
the manuscript and all authors reviewed and approved the final
version of the manuscript.

FUNDING

TN was supported by Grants-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science
(KAKENHI Grant Numbers 15H03104 and 16K13063)
and the Kayamori Foundation of Information Science
Advancement (FY 2017). EB was supported by Grants-
in-Aid for Scientific Research from the Japan Society
for the Promotion of Science (KAKENHI Grant Number
26350993).

REFERENCES
Arzy, S., Thut, G., Mohr, C., Michel, C. M., and Blanke, O. (2006). Neural

basis of embodiment: distinct contributions of temporoparietal junction and
extrastriate body area. J. Neurosci. 26, 8074–8081. doi: 10.1523/JNEUROSCI.
0745-06.2006

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,
839–851. doi: 10.1016/j.neuroimage.2005.02.018

Astafiev, S. V., Stanley, C. M., Shulman, G. L., and Corbetta, M. (2004). Extrastriate
body area in human occipital cortex responds to the performance of motor
actions. Nat. Neurosci. 7, 542–548. doi: 10.1038/nn1241

Berman, B. D., Horovitz, S. G., Venkataraman, G., and Hallett, M. (2012). Self-
modulation of primary motor cortex activity with motor and motor imagery
tasks using real-time fMRI-based neurofeedback. Neuroimage 59, 917–925.
doi: 10.1016/j.neuroimage.2011.07.035

Caria, A., Sitaram, R., Veit, R., Begliomini, C., and Birbaumer, N. (2010). Volitional
control of anterior insula activity modulates the response to aversive stimuli.
A real-time functional magnetic resonance imaging study. Biol. Psychiatry 68,
425–432. doi: 10.1016/j.biopsych.2010.04.020

Caria, A., Veit, R., Sitaram, R., Lotze, M., Welskopf, N., Grodd, W., et al. (2007).
Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage
35, 1238–1246. doi: 10.1016/j.neuroimage.2007.01.018

Chang, C. C., and Lin, C. J. (2011). LIBSVM: a library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 1–27. doi: 10.1145/1961189.1961199

de Vries, S., and Mulder, T. (2007). Motor imagery and stroke rehabilitation: a
critical discussion. J. Rehabil. Med. 39, 5–13. doi: 10.2340/16501977-0020

DeCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., and
Gabrieli, J. D. E. (2004). Learned regulation of spatially localized brain
activation using real-time fMRI. Neuroimage 21, 436–443. doi: 10.1016/j.
neuroimage.2003.08.041

deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D.,
et al. (2005). Control over brain activation and pain learned by using real-time
functional MRI. Proc. Natl. Acad. Sci. U.S.A. 102, 18626–18631. doi: 10.1073/
pnas.0505210102

Feltz, D., and Landers, D. (1983). The effects of mental practice on motor
skill learning and performance: a meta-analysiss. J. Sport Psychol. 5, 25–57.
doi: 10.1123/jsp.5.1.25

Frolov, A. A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L.,
et al. (2017). Post-stroke rehabilitation training with a motor-imagery-based
brain-computer interface (BCI)-controlled hand exoskeleton: a randomized
controlled multicenter trial. Front. Neurosci. 11:400. doi: 10.3389/fnins.2017.
00400

Grèzes, J., and Decety, J. (2000). Functional anatomy of execution, mental
simulation, observation, and verb generation of actions: a meta-analysis. Hum.
Brain Mapp. 12, 1–19. doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>
3.0.CO;2-V

Guillot, A., Di Rienzo, F., MacIntyre, T., Moran, A., and Collet, C. (2012).
Imagining is not doing but involves specific motor commands: a review of
experimental data related to motor inhibition. Front. Hum. Neurosci. 6:247.
doi: 10.3389/fnhum.2012.00247

Hamilton, J. P., Glover, G. H., Bagarinao, E., Chang, C., Mackey, S., Sacchet,
M. D., et al. (2016). Effects of salience-network-node neurofeedback training
on affective biases in major depressive disorder. Psychiatry Res. 249, 91–96.
doi: 10.1016/j.pscychresns.2016.01.016

Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., et al.
(2013). The neural network of motor imagery: an ALE meta-analysis. Neurosci.
Biobehav. Rev. 37, 930–949. doi: 10.1016/j.neubiorev.2013.03.017

Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter,
R. S., et al. (2011). Mental practice with motor imagery in stroke recovery:
randomized controlled trial of efficacy. Brain 134, 1373–1386. doi: 10.1093/
brain/awr077

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., and Doyon, J.
(2001). Potential role of mental practice using motor imagery in neurologic
rehabilitation. Arch. Phys. Med. Rehabil. 82, 1133–1141. doi: 10.1053/apmr.
2001.24286

Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for
motor cognition. Neuroimage 14, S103–S109. doi: 10.1006/nimg.2001.0832

Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., et al.
(2015). Learning control over emotion networks through connectivity-based
neurofeedback. Cereb. Cortex 27, 1193–1202. doi: 10.1093/cercor/bhv311

Koush, Y., Rosa, M. J., Robineau, F., Heinen, K., Rieger, S. W., Weiskopf, N.,
et al. (2013). Connectivity-based neurofeedback: dynamic causal modeling
for real-time fMRI. Neuroimage 81, 422–430. doi: 10.1016/j.neuroimage.2013.
05.010

Kranczioch, C., Zich, C., Schierholz, I., and Sterr, A. (2014). Mobile EEG and
its potential to promote the theory and application of imagery-based motor
rehabilitation. Int. J. Psychophysiol. 91, 10–15. doi: 10.1016/j.ijpsycho.2013.
10.004

LaConte, S. M. (2011). Decoding fMRI brain states in real-time. Neuroimage 56,
440–454. doi: 10.1016/j.neuroimage.2010.06.052

LaConte, S. M., Peltier, S. J., and Hu, X. P. (2007). Real-time fMRI using brain-state
classification. Hum. Brain Mapp. 28, 1033–1044. doi: 10.1002/Hbm.20326

Marchesotti, S., Martuzzi, R., Schurger, A., Blefari, M. L., del Millán, J. R.,
Bleuler, H., et al. (2017). Cortical and subcortical mechanisms of brain-
machine interfaces. Hum. Brain Mapp. 38, 2971–2989. doi: 10.1002/hbm.
23566

Mugler, J. P. III, and Brookeman, J. R. (1990). Three-dimensional magnetization-
prepared rapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 15,
152–157. doi: 10.1002/mrm.1910150117

Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C.,
et al. (2013). Neural substrates of cognitive control under the belief of getting
neurofeedback training. Front. Hum. Neurosci. 7:914. doi: 10.3389/fnhum.2013.
00914

Ono, T., Shindo, K., Kawashima, K., Ota, N., Ito, M., Ota, T., et al. (2014).
Brain-computer interface with somatosensory feedback improves functional
recovery from severe hemiplegia due to chronic stroke. Front. Neuroeng. 7:19.
doi: 10.3389/fneng.2014.00019

O’Shea, H., and Moran, A. (2017). Does motor simulation theory explain the
cognitive mechanisms underlying motor imagery? A critical review. Front.
Hum. Neurosci. 11:72. doi: 10.3389/fnhum.2017.00072

Page, S. J. (2001). Mental practice: a promising restorative technique in stroke
rehabilitation. Top. Stroke Rehabil. 8, 54–63. doi: 10.1310/7WDU-2P4U-V2EA-
76F8

Perronnet, L., Lécuyer, A., Mano, M., Bannier, E., Lotte, F., Clerc, M., et al. (2017).
Unimodal versus bimodal EEG-fMRI neurofeedback of a motor imagery task.
Front. Hum. Neurosci. 11:193. doi: 10.3389/fnhum.2017.00193

Posse, S., Fitzgerald, D., Gao, K. X., Habel, U., Rosenberg, D., Moore, G. J., et al.
(2003). Real-time fMRI of temporolimbic regions detects amygdala activation

Frontiers in Human Neuroscience | www.frontiersin.org 12 April 2018 | Volume 12 | Article 158

https://doi.org/10.1523/JNEUROSCI.0745-06.2006
https://doi.org/10.1523/JNEUROSCI.0745-06.2006
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1038/nn1241
https://doi.org/10.1016/j.neuroimage.2011.07.035
https://doi.org/10.1016/j.biopsych.2010.04.020
https://doi.org/10.1016/j.neuroimage.2007.01.018
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.2340/16501977-0020
https://doi.org/10.1016/j.neuroimage.2003.08.041
https://doi.org/10.1016/j.neuroimage.2003.08.041
https://doi.org/10.1073/pnas.0505210102
https://doi.org/10.1073/pnas.0505210102
https://doi.org/10.1123/jsp.5.1.25
https://doi.org/10.3389/fnins.2017.00400
https://doi.org/10.3389/fnins.2017.00400
https://doi.org/10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
https://doi.org/10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
https://doi.org/10.3389/fnhum.2012.00247
https://doi.org/10.1016/j.pscychresns.2016.01.016
https://doi.org/10.1016/j.neubiorev.2013.03.017
https://doi.org/10.1093/brain/awr077
https://doi.org/10.1093/brain/awr077
https://doi.org/10.1053/apmr.2001.24286
https://doi.org/10.1053/apmr.2001.24286
https://doi.org/10.1006/nimg.2001.0832
https://doi.org/10.1093/cercor/bhv311
https://doi.org/10.1016/j.neuroimage.2013.05.010
https://doi.org/10.1016/j.neuroimage.2013.05.010
https://doi.org/10.1016/j.ijpsycho.2013.10.004
https://doi.org/10.1016/j.ijpsycho.2013.10.004
https://doi.org/10.1016/j.neuroimage.2010.06.052
https://doi.org/10.1002/Hbm.20326
https://doi.org/10.1002/hbm.23566
https://doi.org/10.1002/hbm.23566
https://doi.org/10.1002/mrm.1910150117
https://doi.org/10.3389/fnhum.2013.00914
https://doi.org/10.3389/fnhum.2013.00914
https://doi.org/10.3389/fneng.2014.00019
https://doi.org/10.3389/fnhum.2017.00072
https://doi.org/10.1310/7WDU-2P4U-V2EA-76F8
https://doi.org/10.1310/7WDU-2P4U-V2EA-76F8
https://doi.org/10.3389/fnhum.2017.00193
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00158 April 20, 2018 Time: 16:10 # 13

Bagarinao et al. Improved Volitional Recall Using Neurofeedback

during single-trial self-induced sadness. Neuroimage 18, 760–768. doi: 10.1016/
S1053-8119(03)00004-1

Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F. L.,
et al. (2013). Brain-machine interface in chronic stroke rehabilitation:
a controlled study. Ann. Neurol. 74, 100–108. doi: 10.1002/ana.
23879

Saimpont, A., Malouin, F., Tousignant, B., and Jackson, P. L. (2013). Motor imagery
and aging. J. Mot. Behav. 45, 21–28. doi: 10.1080/00222895.2012.740098

Sharma, N., and Baron, J.-C. (2013). Does motor imagery share neural networks
with executed movement: a multivariate fMRI analysis. Front. Hum. Neurosci.
7:564. doi: 10.3389/fnhum.2013.00564

Sharma, N., Baron, J. C., and Rowe, J. B. (2009a). Motor imagery after stroke:
relating outcome to motor network connectivity. Ann. Neurol. 66, 604–616.
doi: 10.1002/ana.21810

Sharma, N., Pomeroy, V. M., and Baron, J. C. (2006). Motor imagery: a backdoor
to the motor system after stroke? Stroke 37, 1941–1952. doi: 10.1161/01.STR.
0000226902.43357.fc

Sharma, N., Simmons, L. H., Jones, P. S., Day, D. J., Carpenter, T. A., Pomeroy,
V. M., et al. (2009b). Motor imagery after subcortical stroke: a functional
magnetic resonance imaging study. Stroke 40, 1315–1324. doi: 10.1161/
STROKEAHA.108.525766

Shibata, K., Watanabe, T., Sasaki, Y., and Kawato, M. (2011). Perceptual learning
incepted by decoded fMRI neurofeedback without stimulus presentation.
Science 334, 1413–1415. doi: 10.1126/science.1212003

Simos, P. G., Kavroulakis, E., Maris, T., Papadaki, E., Boursianis, T., Kalaitzakis, G.,
et al. (2017). Neural foundations of overt and covert actions. Neuroimage 152,
482–496. doi: 10.1016/j.neuroimage.2017.03.036

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., et al.
(2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain.
Neuroimage 83, 817–825. doi: 10.1016/j.neuroimage.2013.05.115

Tong, Y., Pendy, J. T., Li, W. A., Du, H., Zhang, T., Geng, X., et al. (2017).
Motor imagery-based rehabilitation: potential neural correlates and clinical
application for functional recovery of motor deficits after stroke. Aging Dis. 8,
364–371. doi: 10.14336/AD.2016.1012

Yoo, S. S., and Jolesz, F. A. (2002). Functional MRI for neurofeedback: feasibility
study on a hand motor task. Neuroreport 13, 1377–1381. doi: 10.1097/
00001756-200208070-00005

Yoo, S. S., Lee, J. H., O’Leary, H., Panych, L. P., and Jolesz, F. A. (2008).
Neurofeedback fMRI-mediated learning and consolidation of regional brain
activation during motor imagery. Int. J. Imaging Syst. Technol. 18, 69–78.
doi: 10.1002/Ima.20139

Zich, C., Debener, S., Kranczioch, C., Bleichner, M. G., Gutberlet, I., and De Vos, M.
(2015). Real-time EEG feedback during simultaneous EEG-fMRI identifies the
cortical signature of motor imagery. Neuroimage 114, 438–447. doi: 10.1016/j.
neuroimage.2015.04.020

Zimmermann-Schlatter, A., Schuster, C., Puhan, M., Siekierka, E., and Steurer, J.
(2008). Efficacy of motor imagery in post-stroke rehabilitation: a systematic
review. J. Neuroeng. Rehabil. 5:8. doi: 10.1186/1743-0003-5-8

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Bagarinao, Yoshida, Ueno, Terabe, Kato, Isoda and Nakai. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 April 2018 | Volume 12 | Article 158

https://doi.org/10.1016/S1053-8119(03)00004-1
https://doi.org/10.1016/S1053-8119(03)00004-1
https://doi.org/10.1002/ana.23879
https://doi.org/10.1002/ana.23879
https://doi.org/10.1080/00222895.2012.740098
https://doi.org/10.3389/fnhum.2013.00564
https://doi.org/10.1002/ana.21810
https://doi.org/10.1161/01.STR.0000226902.43357.fc
https://doi.org/10.1161/01.STR.0000226902.43357.fc
https://doi.org/10.1161/STROKEAHA.108.525766
https://doi.org/10.1161/STROKEAHA.108.525766
https://doi.org/10.1126/science.1212003
https://doi.org/10.1016/j.neuroimage.2017.03.036
https://doi.org/10.1016/j.neuroimage.2013.05.115
https://doi.org/10.14336/AD.2016.1012
https://doi.org/10.1097/00001756-200208070-00005
https://doi.org/10.1097/00001756-200208070-00005
https://doi.org/10.1002/Ima.20139
https://doi.org/10.1016/j.neuroimage.2015.04.020
https://doi.org/10.1016/j.neuroimage.2015.04.020
https://doi.org/10.1186/1743-0003-5-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback
	Introduction
	Materials and Methods
	Participants
	Experimental Paradigm and Tasks
	Imaging Parameters
	Real-Time Neurofeedback System
	Support Vector Machines
	Neurofeedback Training
	Real-Time Image Preprocessing
	Offline Data Analysis

	Results
	Brain Activation During MI Tasks
	SVM Classification Performance

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


