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ABSTRACT
We consider the problem of learning a conditional Gaussian graphical model in the presence of latent vari-
ables. Building on recent advances in this field, we suggest a method that decomposes the parameters of
a conditional Markov random field into the sum of a sparse and a low-rank matrix. We derive convergence
bounds for this estimator and show that it is well-behaved in the high-dimensional regime as well as “spar-
sistent” (i.e., capable of recovering the graph structure). We then show how proximal gradient algorithms
and semi-definite programming techniques can be employed to fit the model to thousands of variables.
Through extensive simulations, we illustrate the conditions required for identifiability and show that there
is a wide range of situations in which this model performs significantly better than its counterparts, for
example, by accommodatingmore latent variables. Finally, the suggestedmethod is applied to twodatasets
comprising individual level data on genetic variants and metabolites levels. We show our results replicate
better than alternative approaches and show enriched biological signal. Supplementary materials for this
article are available online.

1. Introduction

The task of performing graphical model selection arises inmany
applications in science and engineering. There are several fac-
tors that make this problem particularly challenging. First, it is
common that only a subset of the relevant variables are observed
and estimators that do not account for hidden variables are
therefore prone to confounding. On the other hand, modeling
latent variables is itself difficult because of identifiability and
tractability issues. Second, the number of variables being mod-
eled is often greater than the number of samples. It is well known
that, in such a scaling regime, obtaining a consistent estimator
is usually impossible withoutmaking further assumptions about
the model, for example, sparsity or low-dimensionality. Finally,
modeling the joint distribution over all observed variables is not
always relevant. It is sometimes preferable to learn a graphical
model over a number of variables of interest while conditioning
on the rest of the collection.

These problems are encountered in many fields of appli-
cation. In genetics, for example, one might model a gene
expression network conditional on the samples’ combinations
of DNA variants: the variables of interest are the expression
levels, while the DNA variants are included because of their
predictive power and capacity to explain some of the observed
correlations between genes (Stearns 2010). As genotype is not
causally influenced by gene expression levels (i.e., the direction
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of effect only goes genotype to expression), we would like to
model expression levels conditional on genotype. For another
example, consider the task of modelling stock returns condi-
tional on sentiment analysis data. The variables that encode
sentiment about the stocks have value (Li et al. 2014), but
modeling their joint distribution might be difficult and unnec-
essary, hence the need for conditioning. Moreover, a number of
unmeasured variables (e.g., energy prices) might impact many
stocks and should be modeled for better predictive accuracy
(Chandrasekaran, Parrilo and Willsky 2012).

The problem of learning a Gaussian graphical model in the
presence of latent variables was considered by Chandrasekaran,
Parrilo and Willsky (2012). They suggest estimating an inverse
covariance matrix which is the sum of a sparse and a low-rank
matrix. Another partial solution to our problem was introduced
independently by Sohn and Kim (2012) andWytock and Kolter
(2013) who defined the concept of a sparse Gaussian conditional
random field: a regularized maximum likelihood estimator that
learns a Gaussian graphical model over a subset of the variables
(X , say) while conditioning on the remaining variables (Z, say).

Chandrasekaran, Parrilo, and Willsky (2012), Sohn and
Kim (2012), and Wytock and Kolter (2013) made significant
advances to the problem of model selection in general graphi-
cal models, but there exist many situations, where we may wish
to allow for latent variables and condition on some of those
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measured.Here, we suggest learning aGaussian conditional ran-
dom field in the presence of latent variables and introduce a
novel regularizedmaximum likelihood estimator which fits into
the “low-rank plus sparse” framework (Chandrasekaran et al.
2009; Candès et al. 2011). In our setting, inputs (variables in
Z) are allowed to act on the outputs (X) in both a sparse and a
low-rank fashion, while the inverse covariance matrix over X is
estimated conditional on Z and on the marginalized latent vari-
ables. As will be shown later, this approach allows us to correctly
recover graphs that are typically denser and with more hidden
variables than the ones that can be handled by other methods.

From both a theoretical and a computational point of view,
modeling latent variables with a conditional random field gives
rise to a number of complications (e.g., the proximal operator
is not defined in a closed form) that we address in this arti-
cle. In particular, we derive convergence bounds for our estima-
tor and show that under suitable identifiability conditions it is
consistent in the high-dimensional regime as well as “sparsis-
tent” (i.e., capable of recovering the graph structure). We then
show how the alternating directionmethod of multipliers (Boyd
et al. 2010) and semi-definite programming techniques can be
employed to fit the model to thousands of variables. Through
extensive simulations, we illustrate the conditions required for
identifiability and show that there is a wide range of situations
in which this model performs significantly better than its coun-
terparts. In order to show how our model behaves in a realistic
setting, we apply the present estimator to two datasets compris-
ing genetic variants and metabolite levels. Both replication and
a test statistic constructed using an independent source of vali-
dation suggest that our estimates havemore biological relevance
than the results obtained via other methods.

2. Problem Statement

2.1. Setup

Throughout, we consider n independent, identically distributed
realizations of a zero-mean random vector Y ∈ R

m+p+h. Y
is indexed by disjoint subsets of {1, . . . ,m + p+ h}, denoted
Z,X,H and with respective cardinality m, p, and h. They cor-
respond to the variables we wish to condition on, the variables
wewish tomodel and the hidden variables.WewriteYZ (resp.YX
andYH) for the subvector ofY indexed byZ (resp.X andH). Our

main assumption is that the distribution of
(
YX
YH

)
∈ R

p+h con-

ditional onYZ ∈ R
m is normal and that its mean is a linear com-

bination of the inputs YZ . Thus, conditioning on YZ , YX follows
a multivariate normal distribution. More precisely, we assume a
Gaussian conditional random field parameterized as follows:(
YX
YH

)
|YZ

∼ N
{

−
(

M∗
X M∗

XH
M∗

XH
T M∗

H

)−1(M∗
ZX

T

M∗
ZH

T

)
YZ,

(
M∗

X M∗
XH

M∗
XH

T M∗
H

)−1
}
,

where we have used partitioned matrices to show the con-
tributions of the observed and hidden variables. Thus, M∗

X ∈
R

p×p,M∗
ZX ∈ R

m×p,M∗
XH ∈ R

p×h, . . . . The superscript −∗ is
used to indicate that thesematrices are parameters of themodel,

as opposed to estimates. Note that there are no distributional
assumptions aboutYZ .

Finally, we assume that variables indexed by H are unob-
served. Accordingly, we compute the marginal distribution
YX |YZ , which yields

YX |YZ
∼ N

{
− (

S∗
X − L∗

X
)−1

(
S∗
ZX

T − L∗
ZX

T
)
YZ,

(
S∗
X − L∗

X
)−1

}
,

(2.1)

where we have defined S∗
X � M∗

X , L∗
X � M∗

XHM∗
H

−1M∗
XH

T ,
S∗
ZX � M∗

ZX and L∗
ZX � M∗

ZHM
∗
H

−1M∗
XH

T . This expression
follows straightforwardly from the formula for the inverse of
a partitioned matrix (the full derivation is given in the supple-
mentary materials). From Equation (2.1), the log-likelihood
function can be expressed in terms of the sample covariance
matrices �n

Z � 1
n
∑

i(YZ)i(YZ)
T
i , �

n
X � 1

n
∑

i(YX )i(YX )
T
i and

�n
ZX � 1

n
∑

i(YZ)i(YX )
T
i :

�
(
SX , LX , SZX , LZX ;�n

Z, �
n
X , �

n
ZX

)
= log det (SX − LX )− Tr

(
�n

X (SX − LX )
)

−2Tr
(
�n

ZX (SZX − LZX )T
)

−Tr
(
((SX − LX )−1(SZX − LZX )T�n

Z(SZX − LZX )
)
. (2.2)

For clarity, all terms related to a given subset will be dropped
from the expression when the subset is empty. For exam-
ple, whenever Z = H = ∅ the log-likelihood becomes
�(SX ;�X ) = log det SX − Tr(�n

XSX ).
Note that our assumption about the Gaussianity of X,H

plays an important role in the interpretation of the parameters
(M∗

X ,M∗
XH , . . .).Under this assumption, it is well known that the

structure of the conditional Gaussian graphical model (GGM)
over X,H can be read-off these matrices directly by looking at
the location of their nonzero entries (Lauritzen 1996). Briefly,
a graphical model is a statistical model defined according to
a graph, whose nodes are random variables and whose edges
encode conditional independence statements between variables
(Lauritzen, 1996). Thus, (M∗

X )i, j = (M∗
X ) j,i = 0 if and only if

Xi ⊥⊥Xj|Z,X\{Xi,Xj},H . Likewise, (M∗
ZH )i, j = 0 if and only

if Zi ⊥⊥Hj|Z \ Zi,X,H \ {Hj}. Note that since the conditional
mean vector is a linear transformation ofYZ , this interpretation
of the non-zero entries of M∗

ZH and M∗
ZX holds irrespective of

YZ ’s distribution.

2.2. Goal

In typical applications such as the ones mentioned in the intro-
duction, S∗

X is the target. Since it encodes the structure of the
graphical model over X , recovering S∗

X can provide insight into
the causal mechanisms underpinning the data but, in general,
hidden variables make it impossible to access this parameter
directly. Instead, it follows from Equations (2.1) and (2.2) that
only the sum S∗

X − L∗
X can be inferred (similarly, only S∗

ZX − L∗
ZX

is accessible). The maximizer of the log-likelihood (2.2) is not
unique and the problem is fundamentally misspecified.

We are therefore facing two related, but distinct, problems:
� identifiability: under which conditions does the problem
admit a unique solution? Ideally, these conditions ought to
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be as broad as possible so that they will be met in realistic
situations. Note that unlike the breakdown caused by the
high-dimensional regime, this kind of non-identifiability
is more fundamental and remains no matter how large the
number of samples.

� consistency: provided there exists a unique solution, can we
derive a consistent, tractable estimator which is capable of
recovering (S∗

X , L∗
X , S∗

ZX , L
∗
ZX )?

Here, we chose to focus on S∗
X because it fits our application

but there might be situations in which other parameters are of
interest, for example, S∗

ZX in Zhang and Kim (2014).

2.3. PreviousWork

In practice, model selection in the context of GGMs is often
performed using �1-regularized maximum likelihood estima-
tors (MLEs) such as the ones introduced by Banerjee, El Ghaoui
and d’Aspremont (2008); Yuan and Lin (2007), and the so-
called graphical lasso (Friedman, Hastie, and Tibshirani 2008).
The �1-norm is the convex envelope of the �0 unit ball and is
therefore a natural convex relaxation to learn sparse matrices.
Building on the success of the graphical lasso, estimators of the
form “log-likelihood” + “non-Euclidian convex penalty” have
received considerable interest (Chandrasekaran, Recht, Parrilo,
and Willsky 2012). A relevant example is the use of the nuclear
norm (i.e., the sum of the singular values) as a convex relaxation
for learning low-rank models (Bach 2008). Beyond their attrac-
tive computational properties, the �1 and nuclear norm regu-
larized MLEs enjoy strong theoretical guarantees (Bach 2008;
Ravikumar et al. 2011).

Using penalized MLEs, the questions raised above (Section
2.1) have been solved in some special cases of model (2.1).

Sparse Gaussian Conditional Markov Random Field: H = ∅
When H is empty, (2.1) reduces to

YX |YZ ∼ N
{
−S∗

X
−1S∗

ZX
TYZ, S∗

X
−1

}
.

The log-likelihood associated with this model is convex and
maximum-likelihood estimates can be obtained in closed form.
In order to increase the interpretability of the estimates and cope
with high-dimensionality, Sohn and Kim (2012); Wytock and
Kolter (2013) suggested the following estimator of (S∗

X , S∗
ZX ):

(ŜX , ŜZX ) = argmin
SX∈Rp×p,SZX∈Rm×p,SX�0

−� (
SX , SZX ;�n

Z, �
n
X
)

+λn(||SX ||1 + ||SZX ||1),
with λn > 0. The entries of both SX and SZX are being shrunk
in order to jointly learn a pair of sparse matrices describing
the direct effects of Z on X and the graph over X . Wytock and
Kolter (2013) studied the theoretical properties of this estimator
and derived a set of sufficient conditions for the correct recov-
ery of S∗

X and S∗
ZX . Among other results, they showed that this

approach often outperforms the graphical lasso in terms of pre-
dictive power andmodel selection accuracy. Alternative param-
eterizations and approaches have been suggested in the multi-
variate linear regression literature.We refer the reader toYin and
Li (2011); Sohn andKim (2012), and references therein formore
details on these estimators and their relative performances.

Low-Rank Plus Sparse Decomposition: Z = ∅

The presence of latent variables (H �= ∅) is a substantial com-
plication. As explained earlier, themarginal precision S∗

X − L∗
X is

then the sum of two matrices and the problem is fundamentally
misspecified. However, following the seminal work of Candès
et al. (2011) and Chandrasekaran et al. (2009), Chandrasekaran,
Parrilo and Willsky (2012) showed that it is sometimes possi-
ble to correctly decompose S∗

X − L∗
X into its summands. Loosely

speaking, this is the case if S∗
X is sparse and there are few hidden

variables with an effect spread over most of the observed vari-
ables. As a result, Chandrasekaran, Parrilo, and Willsky (2012)
introduced an estimator which penalises the �1-norm of SX and
the nuclear norm of LX as follows:

(ŜX , L̂X )= argmin
SX ,LX∈Rp×p

−�(SX , LX ;�X )+λn(γ ||SX ||1 + ||LX ||∗),
(2.3)

subject to SX − LX � 0, LX 	 0., with λn, γ > 0. Here, ||LX ||∗
denotes the nuclear norm of LX (i.e. the sum of its singular val-
ues). Among other useful results, Chandrasekaran, Parrilo, and
Willsky (2012) showed that this estimator is, under suitable con-
ditions, sparsistent and “ranksistent”: the sign patterns of both
the entries of S and the spectrum of L can be recovered exactly.

2.4. Suggested Estimator

As hinted in the introduction, there are many cases where one
might want to both condition and allow for latent variables. In
such cases, neither the sparse Gaussian conditionalMarkov ran-
dom field nor the low-rank plus sparse approach would be opti-
mal. Building on these estimators, we propose decomposing the
parameters of a Gaussian conditional Markov random field into
the sum of a low-rank and a sparse matrix. To that end, we sug-
gest optimizing the following regularized MLE

(ŜX , L̂X , ŜZX , L̂ZX ) = argmin
SX ,LX∈Rp×p;SZX ,LZX∈Rm×p

−�(SX , LX , SZX , LZX ;�n
Z, �

n
X , �

n
ZX )+ λn(γ ‖S‖1 + ‖L‖∗)

s.t. SX − LX � 0, LX 	 0 and S =
(

SX
SZX

)
, L =

(
LX
LZX

)
.(2.4)

Solving (2.4) amounts to minimizing a function which is jointly
convex in its parameters over a convex constraint set (proofs
are in the supplementarymaterials, along with other elementary
properties of the likelihood). As mentioned earlier, this likeli-
hood is structured around two parameters, SZX and SX , account-
ing respectively for the direct (i.e., conditional on all variables)
effects ofZ onX and the structure of the graph overX . However,
because we penalise the nuclear norm of L, the effect of all latent
variables is modeled jointly and a single set of latent factors is
learned. No distinction is beingmade between the variables that
“mediate” the action of Z and the ones that act as confounders
onX . On the other hand, the parameters SX and SZX retain their
interpretability.

3. Theoretical Analysis

According to our assumptions, we assume here that each sample
is generated according to the model

YX |YZ ∼ N ( − (S∗
X − L∗

X )
−1(S∗

ZX − L∗
ZX )

TYZ,
(
S∗
X − L∗

X
)−1 )

,

(3.1)
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and ask under what circumstances Estimator (2.4) correctly
recovers the parameters S∗, L∗ (as built by stacking S∗

X , S∗
ZX and

L∗
X , L∗

ZX ) with overwhelming probability.
We analyze this problem in the framework of Chan-

drasekaran, Parrilo, andWillsky (2012) and therefore our proofs
often mirror theirs. However, because of the form taken by
the likelihood and because we do not limit ourselves to square
matrices, the analysis is more involved.

As mentioned earlier, modeling latent variables by decom-
posing the parameters into a sum of twomatrices raises identifi-
ability issues: given samples drawn from (3.1), when is it possi-
ble to exactly decompose the sum S − L (where S, L are defined
as before) into its summands? This is a problem which has been
tackled in great generality in Chandrasekaran, Parrilo, andWill-
sky (2012) and their results directly apply to the present sit-
uation: they are expressed in terms of the Fisher information
matrix but do not explicitly involve the likelihood function. For
that reason, key definitions, as well as assumptions necessary for
our result to hold, are deferred to the supplementary materials.
Here we focus on the original contributions of this article by giv-
ing an intuition for these conditions before formally stating the
consistency of the estimator defined by (2.4).

3.1. Identifiability

Until now, it was repeatedly mentioned that a “low-rank plus
sparse decomposition” is possible when S is sparse and L is low-
rank. However, it is clear that imposing conditions on the spar-
sity of S and the rank of L is not sufficient. For example, con-
sider a matrix with a single entry: it is at the same time sparse
and low-rank and there is, therefore, no unique way of decom-
posing it into the sum of a low-rank and a sparse matrix. Chan-
drasekaran et al. (2009) introduced the notion of rank-sparsity
incoherence and define quantities thatmake it possible to express
the conditions under which such a problem is well-posed, even
for arbitrary matrices. Two concepts are particularly important
(precisemathematical statements and explanations can be found
in the supplementary materials):

� ξ (T (L∗)): a small ξ (T (L∗)) guarantees that no single
latent variable will have a strong effect on only a small set
of the observed variables. It is closely related to the concept
of incoherence found in Candès et al. (2011).

� μ(�(S∗)) quantifies the diffusivity of S’s spectrum. It can
be shown that matrices with few nonzero entries per
row/column (and thus sparse) have a small μ.

A sufficient condition for identifiability can be expressed in
terms of ξ, μ by requiring that their product be small enough
(ξ (T (L∗))μ(�(S∗)) ≤ 1

6C2) and that the tuning parameter γ be
chosenwithin a given range (γ ∈ [ 3ξ (T (L

∗))
C , C

2μ(�(S∗)) ]), for some
constant C which depends on the Fisher information matrix
(FIM). In other words, there must be a small number of latent
variables acting on many observed ones and S∗ must not have
too many non-zero entries in any given row or column. This
is a condition on the parameters S∗, L∗ and it is related to the
problem of decomposing the sum of two matrices. Moreover,
it can be shown that natural classes of matrices satisfy these
assumptions. In particular, the degree of S∗ (q) and number
of latent variables (h) are allowed to grow as a function of the

problem size p,m (Chandrasekaran et al. 2009). For example,
under some assumptions about the distribution from which L∗

is sampled, one shows that ξ (T (L∗)) ∼
√

h
p and that scaling

regimes of the form q ∼ log(p+ m)b and h ∼ p
log(p+m)2b (for

0 ≤ b < ∞) guarantee identifiability with high probability (see
Section 4.2 in Chandrasekaran, Parrilo, and Willsky 2012). We
call the restrictions on ξ, μ, and γ Assumption 1.

Another issue is that one does not directly observe S∗ − L∗

but samples generated from (3.1). All lasso-type methods face
this problem and conditions on the FIM are usually imposed
(the so-called irrepresentability condition) (Ravikumar et al.
2011). Similar assumptions about the FIM are made here and
detailed in the supplementary materials. This is Assumption 2.

3.2. Consistency

We can now present our main result and state the consistency
of Estimator (2.4) (see supplementary materials for the proof).
First, let us recall that for any matrix P, ||P||2 denotes its largest
singular value and ||P||∞ is its largest entry in magnitude. We
can then define the following quantities:

ψZ = ∣∣∣∣�n
Z

∣∣∣∣
2 , ψ

∗
X = ∣∣∣∣(S∗

X − L∗
X )

−1∣∣∣∣
2 , φ

∗
ZX = ∣∣∣∣S∗

ZX − L∗
ZX

∣∣∣∣
2 ,

ψ = 2ψ∗
X

√
1 + 6

ψZ

ψ∗
X

(
1 + ψ∗

Xφ
∗
ZX

)2
,

W = Q1 min
(

1
4ψ∗

X

Q2

ψ∗
Xψ

2

)
.

Finally, for M = max(1, ψZ
4ψ∗

X
(1 +

√
m
p )

2), let λn =
Q3

ξ (T (L∗))

√
256ψ∗

X
2 pM

n .
We prove the following theorem in the supplementary mate-

rials (Q1 to Q6 are constants whose definitions are deferred for
clarity):

Theorem 1 (Algebraic Consistency). Suppose that Assumptions 1
and 2 hold and that we are given n samples drawn according to
(3.1). Further assume that the following hold:

(a) n ≥ pM
ξ (T (L∗))4 max(2, 256ψ∗

X
2

W 2 ).
(b) (σmin and θmin conditions) Let the minimum nonzero

singular value σ of L∗ and the minimum nonzero entry
of S∗ in magnitude θ be such that

σ ≥ Q4λn

ξ (T (L∗))2
, θ ≥ Q5λn

μ(�(S∗))
.

Then, with probability greater than 1 −
max(2 exp(−pM), exp(−4ψ

∗
X
ψZ

pM)) we have
1. sign(Ŝ) = sign(S∗), rank(L̂) = rank(L∗) and L̂X 	 0.
2.

max
(
1
γ

‖Ŝ − S∗‖∞, ‖L̂ − L∗‖2
)

≤ Q6ψ
∗
X

ξ (T (L∗))

√
pM
n
.

Seen at a high-level, Theorem 1 is analogous to the result
obtained by Chandrasekaran, Parrilo andWillsky (2012) for the
low-rank plus sparse (LR+S) estimator. A particularly important
feature is that Assumption 1 holds even the degree of S∗ and the
rank of L∗ grow with the dimensions of the problem. Taking as
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example the scaling regimementioned in Section 3.1, we see that
n � p log(p+ m)4bM samples are required for Theorem 1 to
hold with high probability. This is also enough to guarantee that
max( 1

γ
‖Ŝ − S∗‖∞, ‖L̂ − L∗‖2) = oP(1), but it should be con-

trasted with the logarithmic scaling usually encountered in the
�1-regularized literature, for example, one asks log(pm)

n = o(1)
for the SCGGM estimator of Wytock and Kolter (2013).

In order to further compare the convergence rates of our esti-
mator and LR+S, a few points are worth considering.

First, we do not make any distributional assumptions about
YZ and there are therefore many scenarios in which only
Theorem 1 applies. For the sake of comparison, we can assume
that YZ follows a normal distribution so that the consistency
theorem of LR+S is applicable. Since LR+S does not model
a conditional distribution, Z and X are modeled jointly. The
estimated matrices, (ŜLR+S, L̂LR+S), are of size (p+ m)× (p+
m) and, to obtain ŜX , ŜZX , . . . , the relevant sub-matrices are
extracted from the larger (p+ m)× (p+ m) estimates. Con-
sidering the scaling described in Section 3.1, we see that
high-dimensional regimes of the form pn + mn = O(n1−a) for
0 < a ≤ 1 cover interesting applications and are enough to
guarantee consistency. To see why the convergences rates are
comparable, start by noticing that under Assumption 1 of
either theorem mn = o(n) is required for consistent estima-
tion. Now, since YZ follows a normal distribution, we have
that limn→∞ ψZ = σ 2(1 + √y)2, for some 0 ≤ σ < ∞ and
where y = limn→∞ mn/n (see, e.g., Th. 5.11 in Bai and Sil-
verstein 2009). Therefore, ψZ = O(1) and pnMn = O((√pn +√
mn)

2) = O(pn + mn) so that assuming pn + mn = O(n1−a)

for 0 < a ≤ 1 is also enough for consistent estimation in many
settings of interest.

Second, μ and ξ play an identical role in both Theorem
1 and (Chandrasekaran, Parrilo, and Willsky 2012, Theorem
4.1), namely through Assumption 1 and conditions (a) and (b).
However, these quantities are usually different (i.e. μ(�(S∗)) �=
μ(�(S∗

LR+S)), ξ (T (L
∗)) �= ξ (T (L∗

LR+S))), which has interesting
implications. An obvious consequence is the one stated in the
previous section: since μ, ξ define the acceptable range for γ ,
its span can vary widely across methods. More importantly, one
shows that conditions (a) and (b) are driven by the lower-end
of that range. Should it be assumed instead that γ = C

2μ(�(S∗))
(the upper-end), all three conditions would be relaxed (Chan-
drasekaran, Parrilo, andWillsky, 2012, Corollary 4.2). Thus, the
smaller the value of ξ (T (L∗)), the wider the acceptable range
and the more likely Theorem 1 is to hold.

4. Optimization

Optimizing (2.4) in the high-dimensional setting is a challeng-
ing problem. For example, some of the constraints are hard
to accommodate (e.g., SX − LX � 0, LX 	 0) and the penalty
terms are non-smooth. Fortunately, (2.4) has similarities with
(2.3) (the estimator of Chandrasekaran, Parrilo, and Willsky
2012) and we can rely on algorithms that have proven effective
on (2.3), namely the alternative direction method of multipliers
(ADMM) (Boyd et al. 2010; Ma, Xue, and Zou 2013; Ye, Wang,
and Xie 2011) and approaches relying on semi-definite pro-
gramming (SDP) (Vandenberghe and Boyd 1996; Wang, Sun,

and Toh 2010; Tütüncü, Toh, and Todd 2003). The general the-
ory behind both ADMM and SDP is applicable to the problem
at hand but features that are specific to (2.4) prevent a straight-
forward application of existing algorithms. SDP is an active field
of research and recasting (2.4) within that framework makes it
easier for the reader to use existing software and even bene-
fit from future advances in that field. On the other hand, our
ADMM implementation is tailored to the problem at hand but
converges to a reasonable accuracy quickly. This is why we dis-
cuss both strategies. Technical details and step-by-step deriva-
tions are given in the supplementary materials.

4.1. The Alternating DirectionMethod ofMultipliers

The alternating direction method of multipliers (ADMM) is a
first-order optimization procedure which is well-suited to the
minimization of large-scale convex functions. It proceeds by
decomposing the original problem into more amenable sub-
problems which are then solved iteratively (Boyd et al., 2010).
It is sometimes possible to obtain closed-form solutions to these
subproblems but this is not required for ADMM to converge:
even inexact iterative methods can be employed (Eckstein and
Bertsekas 1992; Goldstein and Osher 2009). Moreover, only a
few tens of iterations are necessary for ADMM to converge to
an accuracy which is sufficient for most applications1 (Boyd
et al., 2010). ADMM (and related algorithms such as Bregman
iterations and Douglas–Rachford splitting) has been celebrated
as an efficient and robust general-purpose algorithm for �1-
regularized problems (Goldstein and Osher, 2009).

More recently, Ye, Wang, and Xie (2011) and Ma, Xue, and
Zou (2013) used ADMM to solve (2.3) and showed that it can
be optimized by iteratively solving four smaller subproblems (Ye,
Wang, and Xie 2011). A similar decomposition is applicable to
the problem at hand but, in the case of (2.4), one of the subprob-
lems requires the computation of a so-called proximal operator
which does not admit a closed-form solution. Consequently, we
derived an algorithm which iteratively converges to this prox-
imal operator. In practice, we found that only a few iterations
(typically less than 10) of this subprocedure are necessary to
obtain a good approximation to the proximal operator.

4.2. Recasting the Objective Function as a Semi-Definite
Program

The solvers made available in the MATLAB® packages SDPT3
and Logdet-PPA are capable of solving problems of the form
(Tütüncü, Toh, and Todd 2003; Wang, Sun, and Toh 2010):

argmin
X1,X2,...

Tr
(
X1CT

1
) + Tr

(
X2CT

2
) + · · · + a1 log det(X1) (4.1)

subject to a number of linear, quadratic and positive semi-
definite constraints2. Our goal is then to recast (2.4) as a problem

 However, converging to a very high accuracy can be slow in comparison to
second-order methods.

 This is only a subset of the problems that can be tackled by such packages. See
references for a formulation of this problem in its full generality.
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of the same form as (4.1). We show in the supplementary mate-
rials that (2.4) admits the following SDP reformulation:

argmin
SX ,LX ,SZX ,LZX ,W,F,H1,H2

Tr
(
K�n

O
) − log det SX

+λn
(
γ 1TF1 + 1

2
(Tr(H1)+ Tr(H2))

)
subject to K 	 0, SX � 0, LX 	 0,(
H1 L
LT H2

)
	 0,−Fi j ≤ Si j ≤ Fi j,∀i, j;

where K =
(

W SZX − LZX
STZX − LTZX SX − LX

)
, S =

(
SX
SZX

)
,

L =
(

LX
LZX

)
. (4.2)

(4.2) can easily be implemented in e.g.YALMIP and solved using
LogdetPPA or SDPT3 (Löfberg 2004; Wang, Sun, and Toh 2010;
Tütüncü, Toh, and Todd 2003). We remark that the objective
function is now smooth (as opposed to (2.4)) but contains many
more variables and constraints.

5. Simulations

Wenow study the properties of the proposedmodel on synthetic
data and compare its performances to the three other methods
introduced earlier: the graphical lasso (GLASSO) (Friedman,
Hastie, and Tibshirani 2008), the sparse conditional Gaussian
graphical model (SCGGM) (Sohn and Kim 2012; Zhang and
Kim 2014; Wytock and Kolter 2013) and the low-rank plus
sparse decomposition (LR+S) (Chandrasekaran, Parrilo, and
Willsky 2012). The suggested approach will henceforth be
referred to as LSCGGM (i.e., latent sparse conditional Gaussian
graphical model).

In Section 3, it was established that assumptions about both
the nominal parameters (S∗, L∗) and the Fisher information
matrix are necessary to guarantee the identifiability of the prob-
lem and, subsequently, the applicability of Theorem 1. In partic-
ular, we recalled the key role played by the maximum degree of
S∗ and the incoherence of L∗. To better understand when these
assumptions are expected to hold, we simulate data from a set
of graphical models that span the range of possible latent struc-
tures andmeasure the ability of the different methods to recover
the underlying graphs.

5.1. Graphical Structures andMethods

The set of graphical structures we simulate from is constructed
in such a way that only two integers, dZ and dH , describe
the relevant properties (rank, sparsity, incoherence, degree) of
S∗
ZX − L∗

ZX and L∗
X , respectively. Thus, dZ controls the relation-

ship between inputs (Z) and outputs (X ) while dH encodes
the behavior of L∗

X . The remaining parameter, S∗
X , remains

unchanged throughout.We now briefly describe how the graphs
are constructed but defer technical details to the supplemen-
tary materials (e.g., distribution of effect sizes). The code used
to generate the data and fit ourmodel is made available with this
article.

For all simulations, each observation is generated according
to a model of the form(
YX
YH

)
|YZ

∼ N
{

−
(
S∗
X M∗

XH
M∗

XH
T M∗

H

)−1(M∗
ZX

T

0

)
YZ,

(
S∗
X M∗

XH
M∗

XH
T M∗

H

)−1
}
,

with YZ a random vector of size p whose entries are drawn
independently from a t-distribution with 4 degrees of free-
dom. YX is also of size p. Here, YX and YH are drawn jointly
from a conditional random Markov field but only YX and YZ
are observed, which implies that L∗

X = M∗
XHM∗

H
−1M∗

XH
T . The

matrices S∗
X , L∗

X , andM∗
ZX are constructed as follows.

The nonzero pattern of the p× pmatrix S∗
X is identical across

all simulations and is similar to the one adopted by Wytock
and Kolter (2013): the graph over X is a chain of p variables in
which one link out of five has been removed. The non-diagonal
entries of S∗

X are such that S∗
X i j �= 0, if and only if i = j + 1 and

i �≡ 0 (mod 5).
As stated above, the rank/sparsity of L∗

X is described by a sin-
gle integer, dH . Specifically, we assume that p is an integer of the
form p = 2k and pick dH ∈ {0, 1, . . . , k}. Then, for a fixed value
of dH , M∗

H and M∗
ZX are random matrices constructed so that:

(a) there are exactly 2dH confounders, that is, the rank of L∗
X is

2dH ; (b) each of the 2dH confounders impacts exactly p/2dH out-
puts; (c) each output is connected to exactly one latent variable.
Thus, when dH = k, there is effectively no confounding since
latent variables and outputs are in a one-to-one correspondence.
When dH is much smaller than k, there are few confounders
with an effect spread over many observed variables. When dH
is set close to k, there are many hidden variables, each affect-
ing a handful of outputs—a gross violation of the identifiability
assumptions.

Likewise, dZ accounts for the structure of M∗
ZX . Here again,

we assume p = 2k and pick dZ ∈ {0, 1, . . . , k}. Then, M∗
ZX is

designed to satisfy: (a) rk(M∗
ZX ) = 2dZ ; (b) each row/column of

M∗
ZX has exactly p/2dZ nonzero entries. The effect of dZ is eas-

ily interpreted. For example, dZ = k is an ideal situation, where
inputs and outputs are in a one-to-one correspondence. As dZ
goes from k to 0,M∗

ZX becomes denser and increasingly incoher-
ent. When dZ is close to k,M∗

ZX is estimated as a sparse matrix.
When dZ is small, its decomposition is a single low-rankmatrix.

Finally, since neither GLASSO nor LR+S model conditional
distributions, we use these estimators as described in Section 3,
i.e., by first modeling Z and X jointly and then extracting sub-
matrices of the estimates.

5.2. Results

In our simulations, we set p = 32, n = 3000 and let (dZ, dH )
take values in {2, 3, 4, 5}2. Each of these 16 designs is replicated
20 times, for a total of 320 distinct datasets.

Here, we are interested in recovering the structure of S∗
X and

we use precision/recall curves as ametric, thus ignoring the rank
of the latent component. LR+S and LSCGGM both have two
tuning parameters (λ and γ ). For each value of γ , one obtains
a distinct precision/recall curve by varying λ. For each of the
320 simulated datasets, we computed the paths corresponding
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Figure . Comparison of the suggested estimator (LSCGGM) to other published methods. Along the x-axis (resp. y-axis), dZ (resp. dH ) varies from  to . More precisely, in
the bottom row (dH = 5), there is no confounding at all. In the second row from the bottom (dH = 4), hidden variables act in a very sparse fashion. In the top row (dH = 2),
there are four hidden variables andwe are in the range of applicability of the low-rank plus sparsemethod. The second row (dH = 3) corresponds to an intermediate regime
in which there are eight latent variables. Settings: p = 32, n = 3000. For each dataset, the value of the tuning parameter γ was chosen so as to maximize the Area Under
the Curve (AUC). Each of the  designs is repeated  times. We report average precisions at fixed recalls of {0.1, 0.2, . . . , 1}.

to 15 distinct values of γ and subsequently selected γ so as
to maximise the area under the curve (AUC). Figure 1 shows
the average precision/recall curves obtained by applying this
procedure.

First, we see that known methods behave as expected:
GLASSO behaves best when there is no confounding and Z acts
in a sparse fashion (dH = dZ = 5) ; SCGGM is more robust to
changes in dZ , but this is restricted to situations in which there
is not confounding (dH = 5); LR+S performs best when dH = 5
or when there is low-rank, diffuse confounding (dH = 2). In a
number of cases, the method proposed here is better than any
of the alternative methods and, in the worst cases, it offers com-
parable performances. Specifically, it outperforms LR+S signifi-
cantly when both inputs and hidden variables act on the outputs
through a relatively low-rank mechanism (dZ = 2, 3; dH =
2, 3). Two factors might explain this behavior: (a) the inputs
are not normally distributed, which violates the assumptions
of LR+S; (b) the data are generated according to a conditional
random Markov field, which is not assumed by LR+S, and may
result in a violation of its identifiability assumptions.

dH = 4 corresponds to the extreme situation in which each
latent variable confounds exactly two random variables. None of
the methods performs well but LR+S and LSCGGMbehave bet-
ter than GLASSO and SCGGM in scenarios where one would
not expect any differences (e.g., dZ = dH = 5). This is because
LR+S and LSCGGM have two tuning parameters, one of which
(γ ) is chosen with perfect knowledge: it improves the AUC of
these methods but causes L̂X to be non-zero. Additional simula-
tions made available in the supplementary materials show that
when γ is chosen with cross-validation, the selected value of γ
is indeed often too small.

Both LR+S andLSCGGMhave two tuning parameters (λ, γ ):
λ controls the overall shrinkage on the sparsity/rank of the esti-
mates, γ accounts for the trade-off between sparse and low-rank
components. To better understand the role of γ , we look at the
precision/recall curves obtained for various values of this tun-
ing parameter. As suggested in Chandrasekaran et al. (2009), the
penalty term is reformulated as λ(γ ||S||1 + (1 − γ )||L||∗) with
γ ranging from 0 to 1 instead of (0,+∞). By analogy to the
AUC metric, we report the “volume under the surface” (VUS)
which accounts for the effect of both regularization parameters.

In Figure 2, the surfaces obtained for (dH = dZ = 2) and
(dH = 5, dZ = 3) are plotted. They show that the suggested
approach is less sensitive to γ than LR+S, thusmaking it easier to
pick a sensible value in real-world applications. Figure 2(b) illus-
trates what happens when both methods offer comparable per-
formances according to Figure 1 (which is obtained by choosing
γ perfectly): compared to LSCGGM, there are actually very few
values of γ for which LR+S achieves its best AUC. Here, only
two of the 16 possible surface plots are shown, but Figure 2(c)
indicates that LSCGGM is less sensitive to this tuning param-
eter across all simulation designs, as measured by the VUS. In
particular, we have consistently observed that upper-end of the
acceptable range for γ is higher for LSCGGM than LR+S. The
next simulations illustrate the implications of this property.

In these simulations, our main concern was to illustrate how
methods differ in terms of identifiability and consistency. Setting
p and m to a relatively small value (32) made it possible to cap-
turemost scenarioswith only 16 graphical structures. In the sup-
plementarymaterials, we simulate from larger graphs (p = m =
27 = 128, n = 3000) and obtain results that are similar to the
ones showed here. We also report the estimation errors for the
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Figure . Sensitivity to the tuning parameter γ . Here, an alternative parameterization of the regularization term is used: λn(γ ||S||1 + (1 − γ )||L||∗), so that γ ∈ (0, 1)
instead of (0,+∞). (a) Precision/recall surface for dZ = dH = 2 (i.e., each input acts on  random outputs and there are  confounding variables). (b) Precision/recall
surface for dZ = 3 and dH = 5 (there are no confounders, each input acts on  random outputs). (c) Volume under surface across all  simulation designs.

other L∗ along with the precision/recall curves for S∗
ZX . Finally,

we look at the effect of choosing γ using cross-validation. In the
next section, we show how one can select λ and γ when some
control over the number of falsely discovered edges is expected.

6. Application: Using Genetic Information to Detect
Relationships Between HumanMetabolites

To illustrate the value of our new approach, we now apply it to
a dataset combining humanmetabolite levels and genetic mark-
ers. Here, metabolites play the role of the variables indexed by
X while genetic variants are the inputs, Z. For comparison pur-
poses, we also report the results obtained with the low-rank plus
sparse method (LR+S)3.

6.1. The Avon Longitudinal Study of Parents and Children
(ALSPAC)

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a cohort study of children born in the county
of Avon during 1991 and 1992 (Boyd et al. 2012; Fraser et al.
2012). More details about this study and data preparation are
available in the supplementarymaterials. Here, only key features
of this dataset are reported.4

 The other two methods (graphical lasso and sparse conditional graphical model)
arise as special cases by setting γ close to . For completeness, the results
obtained by applying SCGGM are reported in the supplementary materials.

 Please note that the study website contains details of all the
data that is available through a fully searchable data dictionary
(http://www.bristol.ac.uk/alspac/researchers/access/). Ethical approval for the
study was obtained from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees.

The data at our disposal contain genetic and phenotypicmea-
surements on approximately 8,000 children and their mothers.
We first performed our entire analysis on the children’s cohort
(called “Child cohort” throughout) and then independently
applied the same procedure to the mothers’ cohort (Mother
cohort). We modeled the levels of 39 metabolites. Measure-
ments for all 39 variables were available withoutmissing data for
5242 children and 2770 mothers. In each cohort, independent
genetic variants were selected based on their predictive power
with respect to any of the 39 traits under study: 133 and 44 vari-
ants were selected in the Child andMother cohorts, respectively.
Metabolite levels being continuous variables, they were quan-
tile normalized and standardized. Genotypes, on the other hand,
were encoded as ternary variables (0/1/2).

In summary, for the Child cohort (resp. Mother cohort)
we have: n = 5242, p = |X | = 39,m = |Z| = 133 (resp.
n = 2770, p = 39,m = 44).

6.2. Methods

Since both the suggested approach (LSCGGM) and the LR+S
method have two tuning parameters (λ, γ ), some procedure
is required in order to set these parameters to appropriate
values. As shown by both theoretical results and simulations,
solutions are expected to be identical for a range of values
of γ . Consequently, we do not select a single value of γ but
consider instead 30 values within the range (0.02, 0.98)5. To
each γ corresponds a regularization path: a graph along each
path is selected using “pointwise” complementary pairs stability

 The penalty is parameterized as λ(γ ||S||1 + (1 − γ )||L||∗), so that γ ∈ (0, 1).
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selection (Meinshausen and Bühlmann 2010; Shah and Sam-
worth 2013). Following the approach used in Meinshausen and
Bühlmann (2010), the threshold on the inclusion probabilities
is chosen by requiring that the expected number of falsely dis-
covered edges be at most one: E(V ) ≤ 1 (using their notations).
Thus, for each method and each cohort we obtain a collection
of 30 graphical structures.

In order tomeasure how similar two graphical structures are,
we consider their edge sets. For any pair of undirected graphs
G1 = (V1,E1),G2 = (V2,E2),we define their similarity by their
Jaccard Index

J(G1,G2) = |E1 ∩ E2|
|E1 ∪ E2| .

This measure has two uses: (1) it makes it possible to select γ
by measuring how the estimates relate to each other as γ varies
from 0 to 1; (2) it allows us to measure how well the findings are
replicated across cohorts.

Another important step is assessing the biological relevance
of the estimates using an external source of information. We
used ChEBI: an ontology of small chemical entities of biologi-
cal interest (Hastings et al. 2012). We manually matched all 39
metabolites to their ChEBI IDs and annotated them using the
ontology. Using such annotations, one can compute an “enrich-
ment statistic” reflecting whether a given graph contains edges
between related metabolites more often than would be expected
in a random graph with a similar topology (such a graph has an
expected statistic of 1). We defer the definition of this statistic
to the supplementary materials but remark that this method is
close to the ontology analyses frequently encountered in com-
putational biology (Wang et al. 2011). By randomly permuting
the annotations, empirical p-values for this statistic can also be
computed.

6.3. Results

First, we can ask how sensitive the estimates are to the tuning
parameter γ . Indeed, as pointed out earlier, one would expect to
see a “stable region”: a range of values of γ for which there is lit-
tle variation. One would typically select a graph estimated with
a γ within this region. Let Ĝ(γ )LSCGGM,Ch (resp. Ĝ(γ )LR+S,Ch) denote

the graph returned by LSCGGM (resp. LR+S) for a given value
of γ in the Child cohort. For every pair (γ1, γ2), Figure 3(a)
shows how similar the estimates are to each other (as computed
by J(Ĝ(γ1 )LSCGGM,Ch, Ĝ(γ2 )LSCGGM,Ch)). In the range 0.6 ≤ γ1, γ2 ≤ 0.9,
they are very close to each other. For small values of γ , the graph-
ical structures returned by LSCGGM vary smoothly with γ .
The regime γ ≤ 0.05 corresponds to the case in which the rank
of the latent component is 0: LSCGGM behaves like a sparse
conditional graphical model. Similar figures can be found for
the LR+S method and the Mother cohort in the supplementary
materials.

Having established that bothmethods exhibit a stable region,
we look at how close the estimates found in these regions are. To
that end, we plot J(Ĝ(γ1 )LSCGGM,Ch, Ĝ(γ2 )LR+S,Ch) for all pairs (γ1, γ2)
(Figure 3(b)). For small values of γ , LR+S and LSCGGM appear
indistinguishable. However, for γ1, γ2 > 0.5 their Jaccard Index
drops to reach values around 0.3–0.4. But the range γ > 0.5
covers precisely the stable regions of both LSCGGM and LR+S,
thus indicating that the methods’ “best guesses” are different.
Figure 4 shows in what way the graphs found in those stable
regions differ, with LR+S inferring more connections between
amino-acids. Here again, a similar result was obtained in the
Mother cohort (see suppl. mat.). The supplementary materials
also contain the full name of the metabolites being modeled.

Given that two cohorts are at our disposal, one way of assess-
ing the quality of our results is to look at how well they replicate
across datasets. In Figure 5(a), we plot the similarity between
graphs estimated at the same value of γ (see suppl. mat. for a
plot of this similarity for all possible pairs γ1, γ2.). First, it can
be seen that higher replication values are achieved in the stable
regions of their respective methods, with Jaccard Indices at 0.6
or above. We also see that LSCGGM’s edge set replicates better
than LR+P’s. Moreover, the suggested estimator retrieves more
edges under the condition E(V ) ≤ 1 (see suppl. mat.).

Finally, we use the “enrichment statistic” defined earlier. In
our attempt to assess the quality of our estimates and their
biological relevance, this metric is useful as it makes it pos-
sible to score graphs using an external source of information.
Figure 5(b) shows the value taken by this statistic across cohorts
and methods. Associated p-values can be found in the see sup-
plementary materials. Here again it is clear that, irrespective of

Figure . Sensitivity of LSCGGM and LR+S to the tuning parameter γ . For any two graphs, their similarity is computed using the Jaccard Index of their edge sets. (a)
Similarities between the edges sets of the graphs returned by LSCGGM in the Child cohort, as a function of γ (for  values of γ ∈ (0.02, 0.98)). (b) Similarities between
the graphs returned by LSCGGM and LR+S in the Child cohort.
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Figure . Adjacency matrices of the graphs returned by the LSCGGM and LR+S methods for γ = 0.81 and γ = 0.68, respectively.

Figure . (a) Comparing estimates across cohorts. For each value of γ and each method, we plot the similarity between the estimate obtained in one cohort against the
one obtained in the other. We limit ourselves to values of γ for which the estimates in both cohorts comport  edges or more. (b) Enrichment statistic, as a function of the
tuning parameter γ .
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the dataset, higher values are achieved within the stable regions
of their respective methods. Just like in the case of the replica-
tion measure, LSCGGM achieves the highest values. Given that
the Child cohort contains twice as many samples as the Mother
cohort, it is surprising to observe better performances in the
Mother dataset. This might be due to the fact that this cohort is
more homogeneous: there are women only, measurements were
taken the same number of months after pregnancy, etc.

7. Discussion

We discussed the problem of estimating a conditional Gaussian
graphical model in the presence of latent variables. Building on
the framework introduced by the authors of Chandrasekaran,
Parrilo and Willsky (2012), we suggested an estimator which
decomposes the parameters of a sparse conditional Gaussian
graphical model into the sum of a low-rank and a sparse
matrix. Among other theoretical results, we established that the
proposed approach is well-behaved in the high-dimensional
regime. Through simulations and an application to a modern
dataset comprising genetic and metabolic measurements, we
compared the performances of this approach to alternative
methods. In particular, we showed how such a conditional
graphical model leads to better replication of the results across
cohorts and to estimates that are more biologically relevant.

The rise of high-throughput genetics, along with progress
in data linkage, biobanking and functional genomics projects,
has dramatically increased the number of datasets that include
both genetic and multivariate phenotypic data. The data appli-
cation we present in this article, using genotype data to draw
biological conclusions about the relationships between human
traits, is thus becoming one of the most rapidly growing statisti-
cal challenges in human genetics. Conditional graphical models
are particularly well-suited to such problems as they rely on an
assumption we know to be true (namely, that genotype impacts
phenotype and not vice versa).Moreover, geneticmeasurements
are discrete in nature and it is therefore difficult to model them
alongside continuous measurements. To the best of our knowl-
edge, there are no approaches capable of learning a joint dis-
tribution over continuous and discrete data in the presence of
latent variables.

When it comes to lasso-type estimators, choosing an appro-
priate value of the tuning parameters can also be challenging. In
simulations, ourmethod seems to be less sensitive to the value of
the tuning parameter γ , which makes it easier to set it to a suit-
able value in real life applications. Moreover, the use of (comple-
mentary pairs) stability selection makes the estimates less sensi-
tive to the value of λwhile providing some form of error control.

Another limitation of such estimators comes from the fact
that consistency/identifiability conditions are highly likely to be
violated in real-world applications. While this is true, a more
realistic take is to regard our method as a means to generate
“causal” hypotheses from a high-dimensional dataset. Paired
with stability selection, such an approach can realistically be
used to generate a high-quality set of putative causal relation-
ships that can then further be investigated using hypothesis
testing driven approaches (e.g., instrumental variables). As
shown in our application, this is an achievable goal.

Naturally, the method suggested here also suffers from a
number of limitations and more work is required. For exam-
ple, assuming that the latent variables are normally distributed
appears quite restrictive when compared to the flexibility offered
by instrumental variable methods. The question of learning dis-
crete graphical models is also important, but it is not yet clear
how the present work can be extended to such models.
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