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Single photon emission computed tomography (SPECT) and Electroencephalography

(EEG) have become established tools in routine diagnostics of dementia. We aimed

to increase the diagnostic power by combining quantitative markers from SPECT and

EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that

the combination of SPECT with measures of interaction (connectivity) in the EEG yields

higher diagnostic accuracy than the single modalities. We examined 39 patients with

Alzheimer’s dementia (AD), 69 patients with depressive cognitive impairment (DCI), 71

patients with amnestic mild cognitive impairment (aMCI), and 41 patients with amnestic

subjective cognitive complaints (aSCC). We calculated 14 measures of interaction

from a standard clinical EEG-recording and derived graph-theoretic network measures.

From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime

(HMPAO)-SPECT in 46 regions, we calculated relative cerebral perfusion in these

patients. Patient groups were classified pairwise with a linear support vector machine.

Classification was conducted separately for each biomarker, and then again for each

EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers

outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%), aMCI

vs. AD (70%), and AD vs. DCI (100%), while a selection of EEG measures performed

best when classifying aSCC vs. aMCI (82%) and aMCI vs. DCI (90%). Only the contrast

between aSCC and DCI did not result in above-chance classification accuracy (60%).

In general, accuracies were higher when measures of interaction (i.e., connectivity

measures) were applied directly than when graph-theoretical measures were derived. We

suggest that quantitative analysis of EEG and machine-learning techniques can support

differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging

methods such as SPECT. Quantitative analysis of EEG connectivity could become an

integral part for early differential diagnosis of cognitive impairment.
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1. INTRODUCTION

Mild cognitive impairment (MCI) is common in the elderly
population and can be stable or convert to Alzheimer’s disease
(AD) (Winblad et al., 2004; Gauthier et al., 2006). Estimated
47.5 million people suffer from dementia worldwide, and it is
estimated that this number will triple by 2050 (Wold Health
Organization, 2016). The WHO reports an estimate of US $604
billion of total global costs associated with dementia. Early
differential diagnosis of MCI, subjective cognitive complaints
(SCC), and depressive cognitive impairment (DCI) would pave
the way for new therapeutic programs, possibly reducing the
overall burden of memory disorders and improving quality of
life of these patients (DeKosky and Marek, 2003). Because of
the various aetiologies and pathologic processes that may lead
to memory impairments it is suggested that a combination of
several biomarkers is necessary to provide an early diagnosis of
AD in the various phases and variations of the disease (Scheltens
et al., 1997; DeKosky and Marek, 2003; Wurtman, 2015).

The National Institute of Neurological and Communicative
Diseases and Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) has proposed clinical criteria for
the diagnosis of probable AD (McKhann et al., 1984). For an early
detection it is not enough to use neuropsychological tests alone
since SCC are—by definition—not detectable by these diagnostic
procedures, i.e., they are experienced subjectively, only. A patient
may suffer from impairment and notice the change. However, a
neuropsychological test indicates only whether the patient scores
lower than the reference group that was used to standardize the
test. When a patient performs well above average throughout his
life and experiences a loss because of beginning MCI, he might
still perform within the normal range, despite having subjectively
noticed the objective decline. In turn, the diagnosis of MCI is still
a challenge for neuropsychologists (Ladeira et al., 2009; Lopez,
2013; Rentz et al., 2013). In addition, some of the physiological
features that differentiate several types of dementia cannot be
assessed with behavioral tests. In the following, we want to outline
two diagnostic modalities that might complement each other and
thus, are hypothesized to contribute to the differential diagnosis
of disorders with amnestic symptoms.

Single Photon Emission Computer Tomography (SPECT)
is complementary to clinical assessment (Farid et al., 2011).
The measured activity, i.e., the perfusion, can be quantified by
volumetric analysis of activated brain regions either manually,
semi-automatically, or fully automatically, such as with statistical
parametric mapping (SPM) (Friston, 1995; Van Heertum et al.,
2009), specifically for differentiating AD from different types
of dementia (Kemp et al., 2005). By providing functional
information, early stages of cognitive impairment can be
identified and differentiation between MCI, AD, and/or other
types of cognitive dysfunction can be achieved (Bonte et al.,
1990; Talbot et al., 1998; Staffen et al., 2006, 2009; Van Heertum
et al., 2009; Farid et al., 2011). Specifically, 99mTc-hexamethyl-
propylene- aminoxime (HMPAO)-SPECT seems to be sensitive
to cognitive impairment, AD and prodromal stages of AD
(e.g., Goldenberg et al., 1989; Frisoni et al., 2014; Swan et al.,
2015; Valotassiou et al., 2015). Even when contrasting patients

with subjective memory complaints to patients with memory
impairment, HMPAO SPECT can be sensitive to cerebral
hypoperfusion (Banzo et al., 2011). However, not all studies fully
support the usefulness of SPECT for differential diagnosis of
disorders with amnestic symptoms (Barnes et al., 2000; Kaneko
et al., 2004). Therefore, we suggest combination of SPECT with
another physiological modality.

Characteristics from the electroencephalogram (EEG)
distinguish patients with AD from MCI and patients with MCI
from healthy subjects (see Rossini et al., 2007; Dauwels et al.,
2010, for a review). The classical clinical finding is the slow
alpha rhythm, which can be quantified as an increase of slow
activity; Fast Fourier transform shows a relative increase of
activity below 8 Hz and a decrease above this range.The use
of the EEG in the assessment of AD dates back to 1952 (see
Brenner, 1999, for review). Today it is assumed that the shift
toward lower frequencies is possibly caused by perturbations
in synchronization and decreased neural complexity (Cantero
et al., 2009). Synchronization may be increased or decreased in
MCI depending on frequency range, type of analysis, and regions
being assessed (Jelic et al., 2000; Koenig et al., 2005; Stam, 2005;
Babiloni et al., 2006). Interactions between neural signals are at
the forefront of current neuroscientific research, which is also
emphasized by the most recent name for this phenomenon:
connectomics (Sporns, 2015). The assessment of the connectome
has attracted particularly great interest with regard to brain
disorders (Fornito et al., 2015). In MCI, interaction between
EEG-signals (today, mostly known as connectivity, Aertsen and
Preissl, 1991) was found to be a reliable marker for cerebral
reserve capacity (Teipel et al., 2016), response to interventions
(Klados et al., 2016), and to monitor disease progression (see
for recent examples Dimitriadis et al., 2015; Hatz et al., 2015;
Wurtman, 2015; Babiloni et al., 2016; Miraglia et al., 2016;
Vecchio et al., 2016). Among the plethora of measures indicating
interactions between brain regions it is neither clear which
ones are preferable over others for diagnostic purposes, nor
do we know whether the integration of these measures in
to graph-theoretic network characteristics could be a viable
method for feature reduction. Therefore, it is recommendable
to compare different approaches for characterization of EEG
interactions (Lehnertz, 2011). However, because of the low
spatial resolution of the EEG, we suggest that it should be
combined with neuroimaging in order to yield a full picture of
altered brain activity in amnestic disorders.

While it was suggested that the combination of different
modalities would contribute to the diagnostic process (Scheltens
et al., 1997; DeKosky and Marek, 2003; Wurtman, 2015), only
little research was done on the combination of SPECT with
EEG. Some studies tried to associate EEG and cerebral perfusion
values in patients with AD (Gueguen et al., 1991; Frölich
et al., 1992; Sloan et al., 1995). EEG slowing is associated
with reduced blood flow in temporo-parietal regions of AD
patients (Kwa et al., 1993; Sloan et al., 1994). Degrees of
interhemispheric asymmetry of EEG and SPECT are concordant
in patients with AD (Montplaisir et al., 1996). Global decrease
in cerebral blood flow correlates with a posterior shift of the
topographical alpha-centroids (Müller et al., 1997). Power in the
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EEG delta and alpha frequency ranges correlates with perfusion
level in parietal regions and power in the EEG delta range
with hippocampal perfusion level of AD patients (Rodriguez
et al., 1999). In addition to these correlative studies, some
evidence points to a possible complementary use of SPECT
and EEG. There is an interaction between alterations in event
related potentials recorded with EEG and changes of cerebral
blood flow characterized by HMPAO SPECT in AD (Gungor
et al., 2005). Specifically, EEG changes take place at earlier
stages of the condition than the changes in cerebral blood
flow.

No study so far examined the additional value of merging
information from advanced EEG measures of interaction and
cerebral blood flow measured by SPECT in order to differentiate
patients with different types of amnestic syndromes at different
stages of AD. We hypothesize that the combined analysis
of cerebral perfusion as indicated by HMPAO SPECT and
quantitative measures of interaction from the EEG by applying
modern methods of data analysis will increase the diagnostic
accuracy.

In this study, we assessed the significance of combining
EEG measures of interaction or graph-theoretical network
characteristics with SPECT perfusion values for differential
diagnosis of amnestic SCC (aSCC), amnestic MCI (aMCI), AD,
or DCI. Specific expectations about characteristics from the EEG
or SPECT that could be most distinctive are restricted to the
slowing of the EEG networks, which is more prominent at more
advanced stages of cognitive decline, as well as parietal and
hippocampal hypoperfusion. Therefore, we applied a machine-
learning approach that should identify the most distinctive
combination of features from both modalities to pairwise group
classifications.

2. MATERIALS AND METHODS

2.1. Ethics
The study was conducted as a retrospective data analysis.
Several years after the examination of the patients had been
performed, we analyzed routinely recorded EEG, SPECT, and
clinical data. The local Ethics Committee (Ethics Commission
Salzburg/Ethikkommission Land Salzburg) confirmed that there
are no ethical concerns with respect to this study.

2.2. Subjects
We selected 220 consecutive patients from the data repositories
at the Department of Neurology, Paracelsus Medical University
Salzburg, Austria, which were examined in the memory clinic
between June 2007 and March 2011. Diagnosis of aSCC, aMCI,
AD, or DCI was assigned at the time of examinations, based
on multimodal assessment in the memory clinic of our hospital,
including a neurological and neuropsychological examination
[German version of the hospital anxiety and depression scale;
HADS-D (Zigmond and Snaith, 1983; Herrmann-Lingen et al.,
2007), test battery of the Consortium to Establish a Registry
for Alzheimer’s Disease; CERAD (Morris et al., 1989; Welsh
et al., 1994; Thalmann et al., 2000), including a slightly
modified version of the mini-mental state examination MMSE

by Folstein (Folstein et al., 1975), and in addition (known
as the CERAD-Plus tests), the trail making test (Reitan,
1979), and the test for phonematic verbal fluency (Spreen and
Benton, 1977)]. The examination included routine laboratory
investigations, supplemented by determination of thyroid
parameters, internal diagnostics (including electrocardiogram,
ECG), cranial computed tomography (CCT), ultrasonographic
examination of the carotid and vertebrobasilar arteries, and
a cerebral perfusion SPECT scan. The latter was exclusively
employed in the differential diagnosis of AD vs. Lewy body
dementia, frontotemporal dementia, and vascular dementia
based on visually evaluated different patterns of perfusion
disturbance. An EEG was recorded in order to disclose epileptic
activity.

The diagnosis was assigned by the medical doctor according
to the results of the described multimodal examination according
to the criteria of Petersen (Petersen et al., 1999). Specifically, we
conformed to the definition of aMCI and aSCC where amnestic
aMCI equals to level three and patients with aSCC equals to
level two of the global deterioration scale for aging and dementia
(Winblad et al., 2004; Gauthier et al., 2006). Most importantly,
the diagnosis of aMCI and aSCC indicates that the complaints
and/or deficits were detectable only in the memory domain, and
not on other cognitive subscales.

Patients with DCI were treated with antidepressants after
the examinations clarified the diagnosis. However, not all
of them were drug-naive at the time of examination since
antidepressants are commonly prescribed in the elderly by
the general practitioner in order to treat self-reported mood
complaints and sleep disorders.

Please note that the diagnosis did not include quantitative
assessment of SPECT and EEG as done for the present work.
Thus, the original diagnosis of memory impairment was not
based on the quantitative analysis as described in the subsequent
sections.

2.3. SPECT Examination
The SPECT examination was performed under quiet conditions
(relaxed lying in quiet surroundings and dimmed light 10min
before the injection and during the whole time of the
examination), with 99mTc-hexamethyl-propylene- aminoxime
(HMPAO, Ceretec, Amersham, UK) serving as perfusion tracer
at a dose of 740 MBq. Perfusion was measured 20 min after
injection with a three-headed gamma camera (Prism 3000,
Picker International, Imaging Division, Cleveland, OH) over
35133815min (3◦ for 40 steps, i.e., in sum 120◦). Datasets were
corrected for scatter and attenuation, reconstructed using filtered
back projection and displayed as a set of 20 slices using a 128
× 128 matrix. Attenuation correction was applied at the time of
reconstruction using Chang’s first-order approximation of linear
attenuation (µ = 0.09/cm), within an elliptical contour fitted to
every slice of the brain (Chang, 1978).

2.4. SPECT Analysis
For analysis of SPECT data a region of interest (ROI)
regionalization was performed automatically to assess relative
blood flow (cerebellar ratios) of 46 brain regions. Data
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were quantified semiautomatically, using the HERMES BRASS
Software package (Hermes Medical Solutions, Stockholm,
Sweden) which spatially co-registered the image data to an
anatomically standardized, stereotactic template consisting of
scans of 35 healthy volunteers. Data were count-normalized by
the cerebellar count rate and compared to the normal population
voxel-by-voxel, as well as on a regional basis. The region map
used therefore was predefined using a normal T1-weighted MRI
scan co-registered to the normal template.

The regions for which we obtained relative blood flow were
cerebellar cortex, cerebellar white matter, nucleus lentiformis,
nucleus caudatus, thalamus, sensorimotor cortex, occipital
cortex, superior parietal lobule, anterior dorsal frontal region,
posterior dorsal frontal region, anterior orbital frontal region,
posterior orbital cortex, parietotemporal cortex, medial temporal
lobe, lateral temporal lobe, posterior temporal lobe, temporal
pole, insular cortex, anterior cingulate gyrus, posterior cingulate
gyrus, anterior subcortical region, posterior subcortical region,
each of these separately for left and right hemisphere, and in
addition one region including pons and midbrain and one region
including other subcortical regions. Thus, in sum, the SPECT-
feature vector had a length of 46 values.

2.5. EEG Data Registration
EEG was recorded in a quiet room with a clinical standard
electrode montage (10–20 Stellate Harmonie Routine EEG
System by Natus, 21 channels placed in standard 10–20 EEG
system) ground on Fpz, reference on Fcz, with additional earlobe-
electrodes for re-referencing, and a sampling rate of 200Hz.
Impedances were kept below 10 k�. The EEG recording started
with artifact provocation/calibration procedures. Subsequently
standard intermittent light stimulation and hyperventilation
were performed. Afterwards, the patients were asked to relax with
eyes closed.

2.6. EEG data extraction
From a period of wakefulness with eyes closed a trained
neuroscientist (co-author AL) extracted 3 min of EEG that
were free of artifacts, e.g., muscle, eye, movement, etc. Data
analysis was conducted for 17 electrodes: F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. The pre-
selected EEG segments were exported into EDF and imported for
further processing to Matlab R© (release R2016b, The Mathworks,
Massachusetts, USA).

2.7. Feature Extraction
We estimated a set of measures of interaction between all
of the 17 selected electrodes (i.e., channels). The estimation
was performed for each of the participants. The measures
were calculated with the functions mvfreqz.m and mvar.m
from the BioSig toolbox (Schlögl and Brunner, 2008) with
model order 100 (i.e., equaling half of the sampling rate
allowing to model at least one full oscillation beginning from
2 Hz). To estimate the multivariate autoregressive model we
used partial correlation estimation with unbiased covariance
estimates (Marple, 1987), which was found to be the most
accurate estimation method according to Schlögl (2006). The

model was then transformed from the time-domain into the
z-domain and the f -domain, which yielded accordingly two
transfer functions. The multivariate parameters in the frequency
domain that could be derived from these transfer functions were
computed for 1 Hz frequency steps between 2 and 80 Hz. The
following measures were extracted: auto- and cross-spectrum
(S), direct causality (DC), transfer function (h), transfer function
polynomial (Af), real valued coherence (COH), complex
coherence (iCOH), partial coherence (pCOH), partial directed
coherence (PDC), partial directed coherence factor (PDCF),
generalized partial directed coherence (GPDC), directed transfer
function (DTF), direct directed transfer function (dDTF), full
frequency directed transfer function (ffDTF), and Geweke’s
Granger causality (GGC). A description of these measures and
the references can be retrieved in the Supplementary Material
Section.

Before statistically determining and evaluating the network
characteristics, we averaged the network characteristics in
classical frequency ranges delta (2–4Hz), theta (5–7Hz), alpha
(8–13Hz), beta (14–30Hz), and gamma (31–80Hz).

Finally, we derived graph theoretical measures for each of
the listed measures by use of the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Thus, we calculated global network
parameters from the connection matrices in each frequency
range obtained from each of the multivariate parameters:
assortativity, efficiency, clustering coefficient, modularity, and
transitivity. For more details and references of these values we
refer to the Supplementary Material.

2.8. Feature Vectors
Classification and cross-validation was repeated for the following
scenarios, which can be described by their respective feature
vectors including the following:

1. EEG single: each EEG measure individually, that is, feature
vector optimization and classification was repeated for each
EEG measure, where in every case the initial feature vector
was formed as a concatenation of all measures of interaction
for each electrode combination and all frequencies

2. SPECT: SPECT perfusion values of the 46 brain regions
formed the initial feature vector

3. EEG single + SPECT: a combination of each EEG measure
from (1) with the SPECT perfusion values from (2), separately
for each EEG measure

4. EEG merged: a combination of all optimized feature vectors
of the EEG measures from (1) in one feature vector formed
the initial feature vector

5. EEG merged + SPECT: a combination of all optimized
feature vectors of the EEG measures from (1) in one feature
vector as in (4), combined with the optimized feature vector
of SPECT perfusion values from (2) formed the initial feature
vector

6. EEG graph: a combination of all EEG measures from (1)
converted to graph-theoretic measures

7. EEG graph + SPECT: a combination of all EEG measures
from (1) converted to graph-theoretic measures as in (6)
combined with the SPECT perfusion values from (2).
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2.9. Classification analysis
Weperformed pair-wise classification of all four groups, resulting
in 6 group comparisons.

Supervised learning for classification typically includes a
training and a testing step, with disjunctive samples for these
two steps. That is, the data is divided into two subsets, one is
used only for training, and one only for testing according to a
defined strategy of cross-validation. The algorithm learns with
the training data according to the properties of the samples and
their labels, that is, the diagnosis. The result of this learning
step is a model that allows to distinguish the members of the
groups. In the second step, the algorithm is given only the data
of the testing subset, but without the labels. The task is now to
predict the correct labels based on the model that was built in
the learning step and the data. In order to assess the quality of
the classification, the correctness of the predicted labels can be
evaluated.

We decided to use support vector machines for classification,
because they deal with non-linear properties of the data even
when a linear kernel is used. When data are only non-linearly
separable, the data is mapped into a feature space in which
the linear separating hyperplane can be used. We performed a
classification in the sense of supervised learning with a linear
kernel function (dot product) and quadratic programming in
order to find the separating hyperplane, resulting in a 2-norm
soft-margin support vector machine, by using the MATLAB
functions svmtrain and svmclassify from the statistics
and machine learning toolbox.

2.10. Feature Subset Selection
Weperformed a nested cross-validation with 3 layers with feature
vector optimization, that is, feature subset selection, for each
group comparison as illustrated in Figure 1.

Because of the high dimensionality of the data, we
implemented a feature subset selection procedure. This
procedure is used for two purposes. First, it is known that when
the length of the feature vector exceeds the size of the sample,
it can cause artificially high accuracies due to overfitting. Thus,
shortening the feature vector to a length that is smaller than
the training sample prevents us from running into the small
sample size problem. This is easily the case for the EEG feature
vectors, because then the length of the feature vector is up to
17 × 17 × 5. Second, a long feature vector with uninformative
features prevents the machine learning algorithm from finding
a good solution. Therefore, the shortest possible feature vector
should be found in the sense of a feature vector optimization.
Because the maximally available features for SPECT was 46, we
limited the maximally acceptable length of the feature vector to
0.9 · 46 ∼ 41 entries. This is well below the smallest sample when
combining the two smallest groups of AD (N = 39) and aSCC
(N = 41), where the training sample in the outermost cross
validation was 0.9 · 80 = 72.

As described in Figure 1, the classification and feature subset
selection procedure was done in a nested design with 3 layers.
We implemented an outer layer as a division of the data into
10% of the data for testing the resulting model, and 90% for
feature vector optimization and cross validation, i.e., submitted

to the middle layer. The middle layer is a first inner loop,
implemented with 10-fold cross-validation. This loop aims to
estimate the consistency of selected features, since each run yields
a different feature vector. The inner layer is a second, thus,
nested inner loop, again with 10-fold cross-validation in order to
perform adequate feature subset selection. So-called k-fold cross-
validation consist of k repetitions of leaving out N/k samples as
the training set, while the remaining N − (N/k) samples are used
during the training step.

All subsets were drawn in order to maintain the original
proportion of the two groups.

Thus, the whole algorithm can be described as follows:

1. First, 10% of the sample were excluded as the outer-layer
test set for the final validation step in the outer layer, while
the remaining 90% of patients were used as the outer-layer
training set, submitted to the next step

2. The outer-layer training set obtained from the outer loop was
divided into 10 equal sized subsets, each one maintaining
the proportion of group sizes from the original sample. For
each of these 10 sets, the following steps were repeated in
order to yield a greedy stepwise feature selection with forward
search:

a. This set was left out, the other 9 sets were merged to form
the middle-layer training set.

b. A t-test for the middle-layer training-set subjects was
calculated between the two groups.

c. The resulting p-values were sorted in ascending order.
d. The feature vector was initiated by taking the feature with

the smallest p-value, thus, the initial length was one.
e. For this feature vector, the classification accuracy was

calculated with 10-fold cross-validation, thus, the middle-
layer training set was divided into an inner-layer 10-fold
partition with an inner-layer training- and testing set.

f. The next feature from the sorted list was added. For this
feature vector, the inner-layer classificationwith 10-fold out
cross-validation was repeated.

g. The result was compared to the previous result. The
added entry to the feature vector was included only if the
following three criteria were met:

• The resulting classification accuracy was required to
be at least as high as the maximum of the previously
obtained classification accuracies; that is, the second
accuracy had to be larger than the first entry, or
the 6th accuracy had to be larger than the previous
5 classification accuracies.

• If the so far best sensitivity/specificity, or in other words,
accuracy for members of the first group/second group,
respectively, was lower than 0.75, then the obtained
sensitivity had to be at least as large as this maximum.

• If the so far best specificity/sensitivity, was lower than
0.5, then the obtained specificity had to be larger than
this maximum.

h. This way, features were added and tested for their
contribution to the classification accuracy until all available
features were used, or until the feature vector reached a
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FIGURE 1 | Procedure of cross-validation, classification, and feature subset selection.

maximum of 40 entries, or if more than a consecutive
number of 10% of all available features was not added to
the feature vector.

3. The resulting 10 optimized feature sets were concatenated and

the occurrences of the features were counted. A final feature

vector was formed by including only those features which were

selected at least in 3 of the 10 iterations. If this resulted in no

features, all features were included that were selected at least
in 2 out of 10 iterations, and if this still did not yield any

feature, this threshold was lowered to 1 out of 10 iterations.

If the resulting feature vector included more than 41 features,

only the top-most selected 41 features were included (equaling

to approximately 90% of the available SPECT features).
4. The resulting feature vector was used to train a SVM

on the outer-layer training set, and the resulting model
was used to classify the outer-layer test set, which was

then used to calculate the general classification accuracy

and the within-group accuracy for the two subgroups (i.e.,
sensitivity/specificity).

The thresholds of 0.75 and 0.5 were selected as rough estimator

for above-chance classification; a value of 0.75 can be considered

to be clearly above chance, while values below 0.5 are considered

to be clearly below chance and thus, a result of overfitting the
model to one of the two groups.

Feature subset selection and classification was done for each of
the scenarios as described in Section 2.8 and separately for each
of the 6 combinations of groups.

2.11. Statistics
We calculated overall group classification accuracy, but also
accuracies for the single groups, that can be understood in a
sense of sensitivity and specificity. For sensitivity and specificity
we have to define what are the positives and what the negatives,
which is not directly applicable to pairwise group classifications.
Thus, the accuracy of the single groups was

accgroup =
N correct in group

total N of group
(1)

Namely, for each group the proportion of correctly classified
individuals was determined in each of the classification situations
(feature vectors and group combinations).

In order to evaluate the resulting accuracies we calculated the
maximum-chance criterion, that is the proportion of samples
contained in the larger of the two groups of one group
comparison.
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Wilcoxon-tests, t-tests, or Fisher’s exact tests were used
as appropriate for pairwise group-comparisons of numerical
or nominal data characteristics of the samples. We applied
Bonferroni correction to the resulting p-values by interpreting
them at the level 0.05/(16∗6) for the 6 group comparisons and
16 neuropsychological scales and demographic aspects.

3. RESULTS

3.1. Sample Details
The demographic details as well as the results of the
neuropsychological scales of the patients are given group-wise in
Table 1.

The results of the pairwise group comparisons are shown in
Table 2.

3.2. Classification Results
The results of the classification are given in Table 3. We marked
the best classification accuracies in bold font, where the best
accuracy was defined as the highest overall accuracy and also
high within group accuracies.We can see that for all comparisons
involving AD, that is, aSCC-AD, aMCI-AD, and AD-DCI, the
best result was obtained when combining a single EEG measure
with SPECT. For the comparisons of aSCC-aMCI and aMCI-
DCI the best comparison was obtained when merging all EEG
measures, and adding SPECT to this configuration yielded the
same result. For the comparison aSCC-DCI the best result was
found for single EEG measures, but the accuracies were below
the maximum-chance criterion.

Please note that, however, the combination leads to a re-
ordering of the features during the sorting according to p-
values, so that merging of EEG and SPECT does not necessarily
mean that there were actually features from the EEG or SPECT
included in the analysis. For example, the classification accuracy
for aSCC vs. AD was already quite high when using SPECT
alone. When introducing the EEG measure spectrum, none of
the EEG measures was finally used, but the additional features in
the feature vector helped to choose the most informative SPECT
values so that the accuracy was higher.

3.3. Visualization of Group Differences
For clinical interpretability we created heatmaps for all measures.
Since EEG+SPECT yielded most informative measures, we based
this illustration on the features selected from this combination.
The heatmaps represent t-values for the pairwise group
comparisons of the EEG, where all non-used indices were set
to zero. Thus, we highlighted the region-interactions/frequencies
that were selected during feature subset selection. In addition, we
noted which SPECT regions were included into the analysis.

We include here only two measures as examples, while the
others can be retrieved in the Supplementary Material Section.
We include transfer function (h) which is the base on which
the other measures are calculated, and which indeed yields
reasonable accuracies for several comparisons.

From Figure 2 we can see that from the transfer function
polynomial, single channels are selected because of the
information spread from these channels toward others. For

most comparisons, the classifier was based on at least one such
interaction where the strength was higher in the one than in the
other group and at least one such interaction with the opposite
pattern.

In contrast, in Figure 3 we can see for real valued coherence
the typical pattern of information contained in the lower
frequencies, where patients with aSCC showed higher values
than the other groups, followed by DCI and then AD. Single
electrode interactions were chosen, and most information was
contained in the frequency ranges delta, theta and alpha, while
beta contributed only with a single value for AD vs. DCI and the
gamma range was not informative, at all.

The regions typically used from SPECT (Figure 4) are
quite consistent across the EEG measures, especially for the
comparisons with the AD group. Patients with AD have lower
perfusion values in bilateral parietotemporal cortex, medial,
lateral, and posterior temporal-lobe, and the temporal pole. In
addition, differences in the cerebellum (cortex and white matter),
the occipital cortex, and the thalamus were useful sources for
information. However, while all the regions mentioned here were
found to show lower perfusion values in AD than all other
groups, the cerebellar white matter evokes higher values in AD
compared to DCI.

4. DISCUSSION

In this work, we examined the diagnostic accuracy of quantitative
EEG and SPECT alone and in combination with each other in
order to differentiate patients with AD, aMCI, aSCC, and DCI.
SCC are common in the elderly population and can be an early
phase of MCI (Kryscio et al., 2014). Patients with SCC are twice
as likely to develop AD than people without SCC (Mitchell et al.,
2014). Conversion rates of MCI to AD are estimated around 10–
18% per year (Gauthier et al., 2006), 11–33% after 2 years (Ritchie,
2004), and 50–70% after 3–5 years (see review in Rossini et al.,
2007). Depressive symptoms in the elderly affect daily living and
severely reduce quality of life (Stögmann et al., 2016a). Depressive
symptoms correlate with conversion fromMCI to AD (Makizako
et al., 2016; Stögmann et al., 2016b), and can challenge differential
diagnosis (Leyhe et al., 2017). Early differential diagnosis between
these disorders with amnestic symptoms is a prerequisite to
targeted interventions.

We found that for specific comparisons, a combination of EEG
and SPECT yields the best diagnostic accuracy, while for other
group contrasts, the one or the other modality is superior. In the
following, we want to discuss our results in relation to previously
reported classification approaches and we want to emphasize the
novelty of a possible classification of DCI by using EEG and
SPECT in combination.

4.1. EEG—An Underestimated Source of
Information?
Previous research has suggested that biomarkers from the
EEG may be more useful than methods investigating cerebral
perfusion, such as HMPAO SPECT in order to identify patients
suffering from AD at an early stage of the condition (Gungor
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TABLE 1 | Sample overview with means and standard deviations in parentheses for neuropsychological test results.

Sample aSCC aMCI AD DCI

N 41 71 39 69

Median age 68 70 76 69

Mean age 67.54 70.04 74.97 68.81

Age range 52–82 51–87 57–90 50–86

N women 30 38 27 51

HADS

Anxiety (SD) 52.46 (10.30) 50.72 (11.61) 50.91 (11.27) 61.45 (9.21)

Depression (SD) 53.54 (5.66) 53.68 (8.82) 55.15 (8.85) 71.18 (6.60)

CERAD

Semantic verbal fluency z-value (SD) 0.30 (0.90) −0.60 (0.90) −1.73 (0.86) −0.50 (1.15)

Boston naming test z-value (SD) 0.49 (0.80) −0.26 (1.06) −1.09 (1.50) −0.21 (1.35)

MMSE raw (SD) 28.66 (1.06) 26.80 (1.66) 20.23 (4.50) 27.81 (1.62)

Wordlist learning z-value (SD) −0.51 (0.97) −1.67 (0.89) −3.31 (1.28) −1.03 (1.24)

Wordlist recall z-value (SD) −0.37 (0.64) −1.60 (0.91) −2.78 (0.93) −0.77 (0.98)

Wordlist recognition z-value (SD) −0.10 (0.91) −1.46 (1.30) −2.56 (1.41) −0.40 (1.41)

Figures copying z-value (SD) 0.50 (0.94) 0.13 (1.14) −1.29 (1.95) 0.50 (1.18)

Figures recall z-value (SD) 0.55 (1.19) −1.08 (1.33) −2.16 (1.02) 0.32 (1.53)

Figures recognition z-value (SD) 0.36 (1.03) −0.90 (1.21) −1.69 (1.23) 0.03 (1.15)

PLUS-TESTS

Trail making test A z-value (SD) 0.81 (1.06) -0.16 (1.18) −1.73 (1.28) −0.04 (1.54)

Trail making test B z-value (SD) 0.48 (1.27) −0.32 (1.11) −1.25 (0.83) 0.31 (1.21)

Phonematic verbal fluency z-value (SD) 0.44 (0.99) 0.08 (1.07) −0.55 (1.15) −0.05 (1.25)

N, number; aSCC, amnestic subjective cognitive complaints; aMCI, mild cognitive impairment.

AD, Alzheimer’s disease; DCI, depression with cognitive impairment; SD, standard deviation.

z-values of the CERAD scores refer to the relative scores with respect to a normative (cognitively healthy). group and adjusted for age and education.

TABLE 2 | Sample comparisons test-value/p-values.

Comparison aSCC-aMCI aSCC-AD aSCC-DCI aMCI-AD aMCI-DCI AD-DCI

Age (t-test) −1.55/0.12 −4.15/* −0.81/0.42 −2.79/0.006 0.84/0.40 3.56/<0.001

Sex (Fisher) 2.37/0.05 1.21/0.81 0.96/1 0.51/0.16 0.41/0.01 0.79/0.66

HADS

Anxiety (Wilc) 0.78/0.43 0.94/0.35 −4.52/* 0.14/0.89 −5.48/* −4.76/*

Depression (Wilc) 0.26/0.80 −1.02/0.31 −8.39/* −1.11/0.27 −8.80/* −7.19/*

CERAD

Semantic vf (Wilc) 4.35/* 6.98/* 3.54/* 5.36/* −0.66/0.51 −5.33/*

Boston naming test (Wilc) 3.66/* 4.90/* 2.48/0.01 2.92/0.004 −0.50/0.62 −2.97/0.003

MMSE (Wilc) 5.55/* 7.74/* 2.54/.01 8.17/* −3.71/* −8.37/*

Wordlist learning (Wilc) 5.42/* 7.15/* 1.99/.05 6.07/* −3.65/* −6.87/*

Wordlist recall (Wilc) 6.76/* 7.36/* 1.87/.06 5.48/* −5.05/* −7.31/*

Wordlist recognition (Wilc) 5.52/* 6.22/* 1.14/.26 3.91/* −4.50/* −5.89/*

Figures copying (Wilc) 1.73/0.08 4.07/* −0.90/0.37 3.74/* −2.49/0.01 −4.40/*

Figures recall (Wilc) 5.48/* 7.11/* 0.72/0.47 4.35/* −4.94/* −6.80/*

Figures recognition (Wilc) 5.04/* 6.15/* 1.28/.20 3.52/* −4.27/* −6.00/*

PLUS-TESTS

Trail making test A (Wilc) 3.92/* 6.24/* 2.87/.004 5.03/* −0.55/.58 −4.87/*

Trail making test B (Wilc) 2.91/0.004 3.98/* 0.39/0.70 2.66/0.008 −2.74/0.006 −3.65//*

Phonematic vf (Wilc) 1.63/0.10 3.29/<0.001 1.78/0.07 2.34/0.02 0.21/0.83 −2.08/0.04

vf, verbal fluency; Fisher’s test, oddsRatio/p-value; t-test, t-value/p-value; Wilc: Wilcoxon, z-value/p-value;

aSCC, amnestic subjective cognitive complaints; aMCI, mild cognitive impairment; AD, Alzheimer’s disease;

DCI, depression with cognitive impairment; *significant at Bonferroni-corrected level p < 0.00052083.
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TABLE 3 | Sample comparison classification accuracies.

aSCC-aMCI aSCC-AD aSCC-DCI aMCI-AD aMCI-DCI AD-DCI

EEG SINGLE

DC 0.36(0.5/0.29) 0.6(0.6/0.6) 0.6(0.67/0.57) 0.5(0.5/0.5) 0.5(0.4/0.6) 0.6(0/1)

S 0.64(0.75/0.57) 0.8(0.8/0.8) 0.2(0.67/0) 0.5(0.83/0) 0.5(0.4/0.6) 0.8(0.5/1)

h 0.73(0.5/0.86) 0.5(0.6/0.4) 0.6(0.67/0.57) 0.6(0.5/0.75) 0.8(0.8/0.8) 0.7(0.75/0.67)

Af 0.55(0.25/0.71) 0.3(0/0.6) 0.2(0/0.29) 0.6(0.5/0.75) 0.7(0.8/0.6) 0.5(0.75/0.33)

COH 0.55(0.75/0.43) 0.8(0.8/0.8) 0.2(0.67/0) 0.6(0.33/1) 0.6(0.2/1) 0.7(0.25/1)

iCOH 0.36(0.5/0.29) 0.5(0.6/0.4) 0.5(0.33/0.57) 0.5(0.5/0.5) 0.7(0.4/1) 0.5(0.25/0.67)

pCOH 0.55(0.5/0.57) 0.7(0.8/0.6) 0.4(0.67/0.29) 0.5(0.5/0.5) 0.5(0.6/0.4) 0.7(0.5/0.83)

PDC 0.64(0.75/0.57) 0.7(0.6/0.8) 0.5(0.67/0.43) 0.5(0.83/0) 0.5(0.4/0.6) 0.6(0.25/0.83)

PDCF 0.27(0.25/0.29) 0.8(1/0.6) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.6(0.4/0.8) 0.6(0.75/0.5)

GPDC 0.36(0.75/0.14) 0.5(0.8/0.2) 0.6(0.33/0.71) 0.3(0.5/0) 0.5(0.4/0.6) 0.6(0.5/0.67)

DTF 0.18(0.25/0.14) 0.5(0.8/0.2) 0.3(0.67/0.14) 0.5(0.67/0.25) 0.8(0.8/0.8) 0.5(0.5/0.5)

dDTF 0.27(0.25/0.29) 0.5(0.4/0.6) 0.5(0.67/0.43) 0.5(0.83/0) 0.8(1/0.6) 0.5(0.25/0.67)

ffDTF 0.55(0.75/0.43) 0.4(0.4/0.4) 0.4(0.67/0.29) 0.4(0.5/0.25) 0.6(0.2/1) 0.6(0.25/0.83)

GGC 0.36(0.5/0.29) 0.6(0.4/0.8) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.5(0.2/0.8) 0.6(0.25/0.83)

SPECT 0.18(0/0.29) 0.8(1/0.6) 0.4(0.33/0.43) 0.5(0.33/0.75) 0.5(0.6/0.4) 0.7(0.75/0.67)

EEG SINGLE + SPECT

DC + SPECT 0.45(0.25/0.57) 0.9(1/0.8) 0.5(0.33/0.57) 0.6(0.5/0.75) 0.5(0.4/0.6) 0.7(0.75/0.67)

S + SPECT 0.64(0.75/0.57) 0.9(1/0.8) 0.3(0/0.43) 0.5(0.33/0.75) 0.5(0.4/0.6) 0.8(0.75/0.83)

h + SPECT 0.73(0.5/0.86) 0.8(1/0.6) 0.6(0/0.86) 0.7(0.83/0.5) 0.8(0.8/0.8) 1(1/1)

Af + SPECT 0.55(0.25/0.71) 0.8(0.8/0.8) 4(0/0.57) 0.7(0.67/0.75) 0.7(0.8/0.6) 0.7(0.75/0.67)

COH + SPECT 0.55(0.75/0.43) 0.9(1/0.8) 0.6(0.33/0.71) 0.6(0.5/0.75) 0.6(0.2/1) 0.6(0.5/0.67)

iCOH + SPECT 0.55(0.5/0.57) 0.9(1/0.8) 0.5(0/0.71) 0.5(0.5/0.5) 0.8(0.6/1) 0.7(0.5/0.83)

pCOH + SPECT 0.55(0.5/0.57) 0.7(0.8/0.6) 0.5(0.67/0.43) 0.6(0.5/0.75) 0.5(0.6/0.4) 0.9(0.75/1)

PDC + SPECT 0.64(0.75/0.57) 0.7(1/0.4) 0.4(0/0.57) 0.5(0.33/0.75) 0.5(0.4/0.6) 0.7(0.5/0.83)

PDCF + SPECT 0.27(0.25/0.29) 0.9(1/0.8) 0.4(0/0.57) 0.5(0.5/0.5) 0.6(0.4/0.8) 0.7(0.75/0.67)

GPDC + SPECT 0.36(0.75/0.14) 0.9(1/0.8) 0.4(0/0.57) 0.6(0.5/0.75) 0.5(0.4/0.6) 0.7(0.75/0.67)

DTF + SPECT 0.18(0.25/0.14) 0.7(0.8/0.6) 0.4(0.67/0.29) 0.5(0.5/0.5) 0.8(0.8/0.8) 0.8(0.75/0.83)

dDTF + SPECT 0.27(0.25/0.29) 0.6(0.4/0.8) 0.5(0.67/0.43) 0.4(0.33/0.5) 0.8(1/0.6) 0.8(0.5/1)

ffDTF + SPECT 0.55(0.75/0.43) 0.7(0.8/0.6) 0.5(0.33/0.57) 0.5(0.33/0.75) 0.6(0.2/1) 0.6(0.25/0.83)

GGC + SPECT 0.36(0.5/0.29) 0.9(0.8/1) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.5(0.2/0.8) 0.7(0.25/1)

EEG merged 0.82(0.75/0.86) 0.8(0.6/1) 0.6(0.33/0.71) 0.4(0.67/0) 0.9(1/0.8) 0.6(0.25/0.83)

EEG merged + SPECT 0.82(0.75/0.86) 0.7(0.4/1) 0.6(0.33/0.71) 0.5(0.67/0.25) 0.9(1/0.8) 0.6(0.25/0.83)

EEG graph 0.55(0.75/0.43) 0.7(0.4/1) 0.2(0.33/0.14) 0.5(0.67/0.25) 0.4(0.2/0.6) 0.7(0.5/0.83)

EEG graph + SPECT 0.55(0.75/0.43) 0.8(0.8/0.8) 0.4(0.67/0.29) 0.6(0.67/0.5) 0.4(0.2/0.6) 0.8(0.75/0.83)

Chance level 0.63 0.65 0.63 0.65 0.51 0.64

aSCC, amnestic subjective cognitive complaints; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; DCI, depression with cognitive impairment; bold font, best result; S,

auto- and cross-spectrum; DC, direct causality; h, transfer function; Af, transfer function polynomial; COH, real valued coherence; iCOH, complex coherence; pCOH, partial coherence;

PDC, partial directed coherence; PDCF, partial directed coherence factor; GPDC, generalized partial directed coherence; DTF, directed transfer function; dDTF, direct directed transfer

function; ffDTF, full frequency directed transfer function; GGC, Geweke’s Granger causality; chance level, maximum-chance criterion according to maximum of group proportions.

et al., 2005). Still, the additional contribution of EEG seems to be
underestimated, since EEG alterations such as slow theta-delta
activity are a common feature of dementia and natural aging,
as well (Rossini et al., 2007). In our study, alterations in the
delta, theta, and alpha frequency ranges were prominent when
comparing patients with AD to the other groups in widespread
regions, where the exact localization of the most informative
region depended highly on themeasure of interaction. In patients
with AD, coherence was lower than in patients with SCC, and
than in patients with DCI, while patients with aMCI showed
lower coherence than patients with AD. Previous research

reported that within and between hemisphere alpha coherence
values are reduced in patients with dementia that show abnormal
regional cerebral blood flow (Sloan et al., 1994). We could extend
this finding by showing directly that combination of measures of
interaction, for example partial coherence, with SPECT provides
considerable information gain in a differential diagnostic setting.
However, our results also demonstrate that the clear findings
reported in the literature depend highly on the choice of the
measure.

We want to mention that we performed a rather simple
feature merging algorithm, and also the feature subset selection
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FIGURE 2 | Heatmaps of the t-values of group differences of all electrode ×

electrode interactions for transfer function, sorted by groups comparisons in

columns and frequency ranges in rows. Colors indicate values from −4.11

(dark blue) over zero (green) to +5.24 (yellow). All values that were not

included for classification were set to zero. If the first group of the group

comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second

group, this results in a positive t-value, i.e., yellow colors. Electrodes start from

top to bottom and from left to right following the order: F3, F4, C3, C4, P3, P4,

O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. AD, Alzheimer’s disease; DCI,

depression with cognitive impairment; aMCI, mild cognitive impairment with

amnestic symptoms; aSCC, subjective cognitive complaints with amnestic

symptoms.

technique presented here is not able to fully explore the
information in the data. In order to reduce computational
complexity, the feature vectors were sorted by p-values.
Processing the features in a different order might have yielded
different results, which is also emphasized by the case when
adding SPECT to EEG spectrum changes the results, even when
the information from SPECTmight not have been used (as found
for spectrum). With more sophisticated feature subset selection
techniques and feature merging algorithms we might achieve
even higher accuracies.

The largest difference between information content in EEG
and SPECT is seen for aSCC vs. DCI, where the best result
is obtained with EEG-measures, only. However, the resulting
accuracies are at chance, so that it is likely that none of the two
modalities is able to accurately differentiate these two disorders.
In contrast, the comparison of aSCC vs. aMCI and aMCI vs. DCI
was highest when the best features from all EEG measures were
merged, where this result did not change when including SPECT
to the feature vector. The evidence for SPECT being useful
to identify SCC or aSCC is scarce (Banzo et al., 2011; Frisoni
et al., 2014). The differential diagnosis of aSCC is a challenge.
In our study, we included patients with minimal deviations on
the neuropsychological scales for memory, but who did not yet
fulfill the clinical criteria for aMCI. Nevertheless, whether aSCC
is a state of normal aging, where the patients become aware
of the natural decay of memory capacities, or whether this is
the first sign of a beginning dementia cannot be determined by
neuropsychological scales, unless one has longitudinal data at his

FIGURE 3 | Heatmaps of the t-values of group differences of all electrode ×

electrode interactions for real valued coherence, sorted by groups

comparisons in columns and frequency ranges in rows. Colors indicate values

from −4.11 (dark blue) over zero (green) to +5.24 (yellow). All values that were

not included for classification were set to zero. If the first group of the group

comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second

group, this results in a positive t-value, i.e., yellow colors. Electrodes start from

top to bottom and from left to right following the order: F3, F4, C3, C4, P3, P4,

O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. AD, Alzheimer’s disease; DCI,

depression with cognitive impairment; aMCI, mild cognitive impairment with

amnestic symptoms; aSCC, subjective cognitive complaints with amnestic

symptoms.

disposal. The group in our study may be very heterogeneous, for
these reasons. On this background it is remarkable that we were
able to report above-chance classification accuracies of the EEG
biomarkers.

EEG also successfully differentiated DCI from aMCI, best
when merging all EEG measures, and from AD, combination
with SPECT, yielding reasonable classification accuracies. Only
the comparison of aSCC vs. DCI was not above chance with none
of the applied feature vectors. A similar classification experiment
of DCI vs. AD, aMCI and aSCC was—to our best knowledge—
never done before with EEG, so that this result points to a
new field of application. Especially in aMCI or AD depression
is not rare and the differential diagnosis is often based on the
trend of the symptoms when treating the depression adequately.
Cognitive improvement after antidepressive therapy suggests
that the depression, not a neurodegenerative disorder, causes the
symptoms. As a conclusion the diagnosis of DCI can be made.
However, since dementia and depressive symptoms coexist in
some cases it could be difficult to assess whether depression is
the cause or the effect of the cognitive impairment and vice
versa. This is especially true when considering that depression
is suspected to play a role in the progression of aMCI to AD
(Van der Mussele et al., 2014; Chung et al., 2016).

Using robust invariant features from unprocessed EEGs, it
may even be possible to reach higher classification accuracies
than in the present manuscript (Buscema et al., 2015; Dimitriadis
et al., 2015). However, in our study we used strict nested
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FIGURE 4 | Maps of the t-values of group differences of all regions of interest assessed by SPECT perfusion, sorted by groups comparisons, colored according to

use for classification in combination with EEG measures. Colors indicate values from −4.95 (dark blue) over zero (green) to +6.07 (yellow). All values that were not

included for classification were set to zero. If the first group of the group comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second group, this results

in a positive t-value, i.e., yellow colors. For each measure (columns of subplots) only those regions (rows of subplots) were colored according to the t-values that were

used for classification. AD, Alzheimer’s disease; DCI, depression with cognitive impairment; aMCI, mild cognitive impairment with amnestic symptoms; aSCC,

subjective cognitive complaints with amnestic symptoms.

cross-validation, which is the state of the art in order to avoid
overfitting during parameter selection, and could rely on our
sample with a sufficient size without need for data augmentation
techniques as implemented in other studies (Dimitriadis et al.,
2015). Moreover, the intention of this study was not to reach
maximum classification accuracy of one particular method, but
rather to show how EEG and SPECT could complement each
other, while trying to render the comparison between individual
and combined methods as fair as possible. However, our results
are comparable with previous publications (Buscema et al., 2015;
Gallego-Jutgla et al., 2015; Hatz et al., 2015). Other studies
using entropy measures instead of measures of interaction
report results with accuracies of 91.7–93.8% when discriminating
MCI, AD and normal controls (McBride et al., 2015). After
all, there was no healthy control group in our study, and the
comparison to healthy controls is more straightforward and
clinically not of interest, because differential diagnosis between
AD and healthy or even aSCI can be accomplished reliably with
classical paper and pencil tests. In contrast, we examined also the
more challenging and interesting discrimination of DCI vs. AD
or vs. aMCI yielding excellent classification accuracies.

4.2. Information Gain or Information Loss
through Graph-Theory
It was suggested that graph-theoretical approaches could help
to make measures of interaction more useful for the prediction

of MCI progression from the EEG (Vecchio et al., 2014, 2015;
Miraglia et al., 2016; Rossini et al., 2016; Vecchio et al., 2016).
In our study, using the measures of interaction directly yielded
higher accuracies than the use of the derived graph-theoretic
indices. Only for aSCC vs. AD and for AD vs. DCI above-chance
classification (0.8) was obtained with graph-theoretical measures.
Thismeans that the way the information is integrated with graph-
theoretical measures may not be advantageous in every scenario
and needs to be examined from case to case.

4.3. HMPAO-SPECT
A systematic review found sensitivity and specificity of HMPAO-
SPECT to distinguish AD from healthy controls to be 76.1 and
85.4%, respectively, and the distinction of vascular dementia
and dementia with Lewy Bodies from AD yielded even lower
diagnostic values (Yeo et al., 2013). We want to emphasize that
when contrasting HMPAO-SPECT of AD and healthy controls,
sensitivities and specificities are high: 81 and 96% (Fleming et al.,
2002), or 91 and 86% (Johnson et al., 1993). However, when cases
with diagnostic uncertainty are examined, only very low values
with a sensitivity of 71–77% and a specificity of 38–44% can be
achieved (Doran et al., 2005). It is also hard to identify AD among
unselected patients in amemory clinic, resulting in a sensitivity of
75% and a specificity of 52% (Masterman et al., 1997). Indeed, a
systematic review found that the diagnostic accuracy of HMPAO-
SPECT to discriminate between AD and other forms of dementia
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was characterized by a sensitivity of 71.3% and a specificity
of 75.9% (Dougall et al., 2004a). This is also reflected by our
results, where the highest accuracy values when using the SPECT-
feature vector, only, were found for aSCC vs. AD. In clinical
terms, this is the most obvious differentiation, followed by the
more challenging contrasts of AD vs. DCI and then by AD vs.
aMCI. There is a statistically significant difference in perfusion in
specific brain areas between AD and aMCI (Fröhlich et al., 1989;
Staffen et al., 2006, 2009; Tranfaglia et al., 2009; Van Heertum
et al., 2009; Farid et al., 2011), but according to our results, it is not
enough for creating amodel with high distinctiveness when being
used without further information, such as the EEG. It is worth
to stress once again that our results were based on a quantitative
evaluation, while many of the diagnostic characteristics of SPECT
are based on expert ratings. The sensitivity of these ratings
was found to be negatively correlated with the importance the
expert attributed to regional hypoperfusion in the parietal lobes
(Dougall et al., 2004b).

The contribution of HMPAO SPECT to the differentiation of
DCI and other forms of cognitive impairment is well in line with
the finding, that depression and specifically treatment-resistant
depression shows significant alterations in circumscribed brain
regions such as the hippocampus and the amygdala (Bonne et al.,
1996; Mozley et al., 1996; Hornig et al., 1997; Kowatch et al.,
1999; Cho et al., 2002). In patients with AD and depression, a
selective hypoperfusion in the anterior and posterior cingulate
gyrus and in the precuneus was reported (Liao et al., 2003). A
direct comparison between patients with AD and DCI showed
differences in perfusion in the left parieto-occipital lobe (Stoppe
et al., 1995). Thus, it is likely that the contribution of SPECT
to EEG can be explained by complementary information about
regional abnormalities in DCI that differ from those of AD.
Indeed, the regions that differ between aMCI and AD are also
most informative when differentiating AD from DCI. Future
work should have a closer look at the distinctive characteristics of
DCI, where only a narrow range of publications have identified
promising biomarkers.

4.4. Limitations
Firstly, this retrospective study cannot indicate which markers
are important for prognostic questions. Nevertheless, prognosis
is the most important question in this patient population.
Therefore, future studies with longitudinal, prospective design
are needed to clarify the role of EEG and SPECT in these respects.

Secondly, the ground truth of our sample is based on
multimodal clinical assessment. That is, we have no post-mortem
determination of definitive AD. This implies that the ground
truth is somewhat unclear and that the diagnoses that were
used for classification are not all correct. In addition, this
means that SPECT and sometimes also EEG were part of the
basis on which the clinician defined the diagnosis, which is
in turn, our ground truth. This is the typical scenario in the
clinics, but still, a drawback of retrospective studies. However, as
described in Section 2.2, the EEG examination was not used to
define one of the examined diagnoses, but to disclose epilepsy
or other disorders that could cause the amnestic symptoms.
Similarly, SPECT was only included in the diagnostic process

for differential diagnosis of disorders that were not included in
the presented analysis. Moreover, the examination of EEG and
SPECT at the time of diagnosis was performed only qualitatively,
while the present work was based on quantitative analysis, only.
In sum, we estimate the bias in our ground truth to be very small.

Third, the present study emphasizes that the EEG can be
useful at the stage of aSCC. However, our study did not provide
data from a healthy control group, mainly because it is difficult
to obtain SPECT from healthy controls. Future studies using
EEG will more easily recruit healthy controls and provide
longitudinal data. The latter is important in order to demonstrate
the predictive value of the identified biomarkers.

Fourth, we could not report the medication history of the
patients but we assume that only a minority of them were drug-
naive at the time of examination. Specifically antidepressants are
commonly prescribed in the elderly and it is possible that they are
prescribed more likely in the group of DCI, since these patients
might have consulted the general practitioner before visiting the
memory clinic.

Finally, there are other diagnostic modalities such as structural
MRI which show a very high diagnostic accuracy and increasing
relevance in amnestic populations (Teipel et al., 2013). However,
the purpose of this study was not to show the best method in
order to contribute to the diagnosis, but to show whether the
combination of EEG and SPECT is a valid approach. Especially
EEG is a cheap and one of the most easily available diagnostic
methods that could be integrated into the routine process of
memory clinics.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

HMPAO SPECT alone cannot reliably identify AD and related
disorders with memory problems, but its additive value in
combination with other modalities is well acknowledged. Also
the examination of the EEG has identified several useful
biomarkers that could be considered for use in differential
diagnosis of cognitive impairment in the elderly population.

Our data show that EEG outperforms SPECT in several
differential diagnoses. We suggest that direct combination of
these twomodalities is very helpful since they are complementary
to each other. Both EEG and SPECT are not the gold standard for
the diagnosis of AD and aMCI; however, they are widely used and
cost effective. Furthermore, EEG is a non-invasive investigation
technique which can be administered many times during the
course of the disease. It proved to be more discriminative even
at the stage of aSCC. Combining SPECT with EEG should also be
subject of further investigations, in order to technically optimize
the diagnostic accuracy.
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