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Abstract

Colon crypts are recognized as a mechanical and biochemical Turing patterning

model. Colon epithelial Caco‐2 cell monolayer demonstrated 2D Turing patterns via

force analysis of apical tight junction live cell imaging which illuminated actomyosin

meshwork linking the actomyosin network of individual cells. Actomyosin forces act

in a mechanobiological manner that alters cell/nucleus/tissue morphology. We

observed the rotational motion of the nucleus in Caco‐2 cells that appears to be dri-

ven by actomyosin during the formation of a differentiated confluent epithelium.

Single‐ to multi-cell ring/torus‐shaped genomes were observed prior to complex frac-

tal Turing patterns extending from a rotating torus centre in a spiral pattern consis-

tent with a gene morphogen motif. These features may contribute to the well‐
described differentiation from stem cells at the crypt base to the luminal colon

epithelium along the crypt axis. This observation may be useful to study the role of

mechanogenomic processes and the underlying molecular mechanisms as determi-

nants of cellular and tissue architecture in space and time, which is the focal point

of the 4D nucleome initiative. Mathematical and bioengineer modelling of gene cir-

cuits and cell shapes may provide a powerful algorithm that will contribute to future

precision medicine relevant to a number of common medical disorders.
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1 | GENERAL HYPOTHESIS

Alan Turing made the initial proposal that it is feasible to mathemati-

cally model specific patterns observed in multicell systems in his

1952 seminal paper “The Chemical Basis of Morphogenesis”.1 He

mentioned that “The purpose of this paper is to discuss a possible

mechanism by which the genes of a zygote may determine the

anatomical structure of the resulting organism.”, he also suggested

that “The genes themselves may also be considered to be mor-

phogens.”.1 Turing was limited by the lack of availability of

appropriate data: “There are probably many biological examples of

this metabolic oscillation, but no really satisfactory one is known to

the author.”.1 The NIH launched the 4D Nucleome program to

understand the principles behind the 3D organization of the nucleus

in space and time (the 4th dimension), the role nuclear organization

plays in gene expression and cellular function, and how changes in

the nuclear organization affect normal development as well as vari-

ous diseases. Following Turing's inspiration, 3D‐FISH has been

employed to track movements of oscillatory genes in synchronized

cells to generate data required for producing 4D Nucelome
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algorithms of the genome.2,3 Smale and Rajapakse expanded the Tur-

ing “gene morphogen” proposal in publications that updated mathe-

matical models able to handle extra dimensions in addition to 2D

Turing pattering and proposed implications relevant to the 4D Nucle-

ome initiative.2,4,5 Colon crypts are viewed as a 2D Turing patterning

multicell system based on cell‐cell junctional forces or transcription

factors HES1 and MATH1 mathematical analysis.6,7 The neuroecto-

derm Turing patterning Delta‐Notch lateral inhibition mechanism has

been mathematically verified in colon crypts.6 Relevant to this article,

overexpression of colon epithelial cell tight junction protein CLDN1

(claudin 1) increases Notch activity measured by HES1 and MATH1

expression.8 Notch signalling target HES1 transcription can be trig-

gered by mechanical forces that pull cells apart which activate Notch

cleavage.9 CLDN1 holds cells together which counteracts the pulling

force. These features provide a potential linkage between oscillatory

actomyosin forces and oscillatory HES1 expression.10,11 Gene regula-

tory circuits containing cell and developmental stage‐specific tran-

scription factors forming “a two‐gene network with two repressors”
that bind each other's promoters have been proposed as “hard-
wiring” required for stable equilibrium of cell types in “Mathematics

of the Genome” involving “n‐Dimensional Dynamical Systems”.5 We

observed potential “toggle gene circuits” as proposed involving the

transcription factors HES1 and NR3C1 (glucocorticoid receptor, GR)

that regulate CLDN1 along the human colon crypt axis, and in vitro

Caco‐2 cell differentiation.5,12-14 We propose that modelling the 4D

Nucleome dynamics, 4D mRNA distribution and actomyosin forces

that regulate tight junction protein expression and function will pre-

dict the self‐organizing of epithelial cells in a cell type‐, developmen-

tal stage‐specific manner. This information will be useful in

generating a precise mathematical model of human colon crypts,

which could be employed as a powerful algorithm to help design pre-

cision medicine approaches for targeted, disease‐specific treatments

in a variety of medical ailments, including functional bowel disorders

(FBD) and colorectal cancer (CRC).5,12,14-16

To generate “proof of concept” data, we tracked the formation of

a coordinated epithelial cell sheet during Caco‐2 cell differentiation on

a smooth, flat and hard glass surface that recapitulates known gene

expression patterns that occur along the colon crypt axis. Detailed in‐
depth description and discussion of the rotational 3D mechanoge-

nomic Turing patterns observed during differentiation are included in

the supplementary and online material (Figure 1 and S1) (http://

www.socr.umich.edu/projects/3d-cell-morphometry/data.html).17-20

2 | SOME POTENTIAL APPLICATIONS OF
TURING PATTERN ANALYSIS IN
GASTROINTESTINAL DISORDERS

2.1 | Functional bowel disorders (FBD) and
colorectal cancer

Functional bowel disorders including irritable bowel syndrome (IBS)

represent dysfunction in the bidirectional brain‐gut axis, intestinal

barrier integrity and interactions with the microbiota and dietary

factors.21 Clinical colonoscopy biopsies harvested from diarrhoea‐
predominant IBS (IBS‐D) patients demonstrated decreased CLDN1

levels, while CLDN1 was increased in constipation‐predominant IBS

(IBS‐C) patients.22 The CLDN1 promoter is under the dual reciprocal

regulation by HES1 and NR3C1 in Caco‐2 cells and a validated

chronic, intermittent water avoidance (WA) stress rat model of

stress‐induced enhanced abdominal pain that mimics several clinical

features observed in IBS‐D patients.12 We observed down‐regulation
of both HES1 and NR3C1 via a glucocorticoid negative feedback

pathway in WA‐stressed rat colon crypts, and similar trends were

observed in the hippocampus in a validated restraint‐stress mouse

model demonstrating anxiety and depression‐like behaviours.12,23

Deletion of the Notch signalling ligand Delta‐like 2 (DLK2) increased

anxiety and depressive‐like behaviours and altered the vulnerability

to restraint stress, and reversed stress‐induced down‐regulation of

NR3C1 and HES1.23 HES1 is responsible for maintaining gut home-

ostasis via preventing microbial dysbiosis in the mouse, and HES1‐
knockout altered colon crypt morphology.24 The probiotic combina-

tion of Lactobacillus helveticus and Bifidobacterium longum helped

reverse WA‐stress‐induced changes in the mouse hypothalamic‐pitui-
tary‐adrenal axis and WA stress‐induced visceral hyperalgesia by

blocking decrease of NR3C1 in the hypothalamus, hippocampus and

prefrontal cortex.25 These reports support the potential of HES1‐
CLDN1 and NR3C1 acting as equilibrium maintaining gene circuits

consists of three genes that regulate each other in a cyclical manner

and their potential roles in homeostasis of the Microbiota‐Gut‐Brain
Axis. Future advances in personalized probiotics based, in part, on

4D Nucleome algorithms represent a potentially promising therapeu-

tic area.21,25

Colorectal cancer is the second most common cancer in women

and the third most common in men, CLDN1 is recognized as a

potential biomarker.26 Overexpression of CLDN1 induced elevated

levels of Wnt and Notch signalling, promoted colon tumorigenesis in

mice, and altered goblet cell differentiation, which conforms to 2D

colon crypt Delta‐Notch lateral inhibition Turing patterning.6,8 Turing

models of metabolism in colon cancer link Wnt signalling and gene

circuits. We propose that these gene circuits represent potentially

promising novel colon cancer targets to model mathematically.12,27 A

preclinical confocal colonoscopy study demonstrated that a CLDN1‐
binding peptide can visualize overexpressed CLDN1 in colonic ade-

nomas in vivo, and actomyosin meshwork measurements have been

used to demonstrate morphogenesis. Therefore, it is feasible to com-

bine these techniques to assess tight junction geometric patterns

potentially useful to monitor the transformation of normal to abnor-

mal (e.g. cancer) actomyosin meshwork pattern(s).3,28,29 Human colon

epithelium demonstrates various patterns during colonoscopy that

correlate with different physiological and pathological conditions,

which can be recognized using recently developed artificial intelli-

gence algorithms.16,29 2D/3D patterns consistent with Turing's

hypothesis appear to be present in our clinical data set (Fig-

ure 2A).30,31 We propose that these distinctive colon mucosa pat-

terns support the presence of morphogenetic feedback mechanisms

which are hypothesized to regulate the topological architecture of
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F IGURE 1 Fractal rotational patterns of tight junctions and nucleus DNA. Caco-2 BBe cells on day 6 cover clips are labelled with OCLN
protein and DNA. Yin-yang (YY) shapes, small YY (A) in big YY (B). YY shape may correlate with rotational motion and symmetry breaking.
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tissues.3,32 Integrating our knowledge about gene circuits and tissue

topology mathematically may help to guide the development of

novel interventions targeting the glucocorticoid/Notch/Wnt path-

ways.8,13,27,33 Dynamic 4D Nucleome algorithms may provide a more

powerful predictive model of colon cancer with the applications of

machine learning methods.16

2.2 | Analysis and bioengineering of human colon
crypts

In addition to robust‐omics analysis including RNA‐seq, emerging 4D

Nucleome algorithms demonstrate the potential application to phar-

macogenomics.34 Clinical colonoscopy biopsies can be used to iso-

late intact crypts with the structure similar to gastrulation as

mentioned by Turing.1 Given biopsy samples, clumps of normal/can-

cer cells can be fixed and imaged using the same confocal micro-

scopy methods used for the coverslip. Then, the same protocol for

automated cell and subnuclear structure labelling can be applied to

generate solid volumetric masks of nuclear components. Our pipeline

workflow protocol may need to be tailored to each new imaging

data format; however, the overall design of the protocol is not

expected to drastically change.17-20,35 Application of BAC‐FISH
methods to study colon crypts is feasible in our pilot study (Fig-

ure 2B). Correlating morphogenesis with oscillatory gene movement

and expression including clarification of the biophysical mechanisms

that determine DNA‐histone interactions and their regulation by

cooperative transcription factors will be required to generate con-

vincing proof of Turing's “gene morphogenesis hypothesis” in pri-

mary cells and tissue models.1-3,14,36

We anticipate that application of in vitro mechanobiology culture

methods to isolated human colon crypts and stem cells will replace

the Caco‐2 cell model in testing the gene morphogen hypothesis

with programmable morphogenesis parameters.37,38 Readily available

biopsy specimens demonstrating distinct epithelial lumen surface

Turing patterns can be used to isolate crypts to study stem cells pre-

sent at the crypt base from healthy normal and abnormal epithelium

using in vitro organoid preparations (Figure 2A).39 We anticipate the

programmable “gut‐on‐a‐chip” methodology will demonstrate epithe-

lium morphology similar to the colon lumen surface. This system can

be used to study the topology of colon epithelium in response to

morphogens including FGF2/glucocorticoids/microbiome, etc.25,40-42

High‐throughput “gut‐on‐a‐chip” array methods allow automated

experimental designs incorporating various chemical, medicinal and

mechanical morphogen conditions. These approaches will generate

large datasets requiring the concurrent development of machine

learning algorithms to expedite analysis, and potentially confirmation

of the “gene morphogen hypothesis”.16,43,44

2.3 | Mathematical/computational problems
unresolved by Alan Turing's Model

Testing the hypothesis presented in this communication will require

advanced analytical techniques to generate the relevant information

regarding the determinants of cell and tissue morphology patterns

under physiologic and pathophysiologic conditions. Prior computa-

tional models suggested considering the nucleus as a “cellular deci-

sion‐making unit” that is a pivotal component in “cellular decision‐
making networks”.45 Computational modelling of cellular “decisions”
in response to multiple biochemical and biophysical cues will require

a level of mathematics capable of “handling” multiple dimensions.45

Advanced mathematical methods including chaos theory and fractal

geometry, in addition to the “relatively elementary” linear models

and differential equations used by Alan Turing will be required to

explore “The Secret Life of Chaos” of gut homeostasis.1,4,5,46 Fractal

geometry was developed to understand self‐similar structure at mul-

tiple scales. It provides the powerful strategies for analysing self‐
similar shapes using efficient computational algorithms. Growth spiral

A

B

F IGURE 2 Human colon crypts could be isolated form Turing
patterning epithelium for 4D‐nucelome analysis. A, An example of
colonoscopy image containing 2D/3D Turing patterns.30,31 B, An
example of BAC‐FISH analysis of 3D human colon crypts isolated
from clinical biopsy

ZHENG ET AL. | 6383



(Logarithmic Spiral) is a self‐similar spiral curve which often appears

in nature, it is frequently used to demonstrate fractal geometry

which was known as known as expanding symmetry or evolving

symmetry. Self‐similar spirals with various parameters are used to

illustrate bifurcation of two‐gene networks responsible for cellular

decision‐making and “tissue homeostasis”.4,5 Self‐similar genome

(DNA) and tight junction shapes are observed in our preliminary

study, rotational motion of the nucleus, HES1 mRNA/protein distri-

bution, tight junction shapes labelled with occludin antibody seems

contributed to those shapes (Figures 1, S1-S5 and S9). Correlating

visionary mathematical idealization and real subjects is very intrigu-

ing and challenging, we hope our observation and thoughts could

benefit future studies.
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