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Abstract

Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human

health. Pharmaceutical mixtures have been widely reported in larger streams due to histori-

cal emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of

pharmaceutical exposures and potential effects in smaller headwater streams. In 2014–

2017, the United States Geological Survey measured 111 pharmaceutical compounds in

308 headwater streams (261 urban-gradient sites sampled 3–5 times, 47 putative low-

impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple

pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams

(248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cu-

mulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and

concentrations correlated to urban land use and presence/absence of permitted WWTP dis-

charges, but pharmaceutical mixtures also were common in the 75% of sampled streams

without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient

exposures with high probability of molecular effects to vertebrates. Considering the potential

individual and interactive effects of the detected pharmaceuticals and the recognized analyt-

ical underestimation of the pharmaceutical-contaminant (unassessed parent compounds,

metabolites, degradates) space, these results demonstrate a nation-wide environmental

concern and the need for watershed-scale mitigation of in-stream pharmaceutical

contamination.

Introduction

Human-use-pharmaceuticals in surface-water systems directly link human health with sur-

face-water food-web structure and function (aquatic-ecosystem health) [1–8]. Pharmaceutical

contaminants are intrinsic concerns in urban surface waters due to multiple wastewater point

PLOS ONE | https://doi.org/10.1371/journal.pone.0228214 January 30, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bradley PM, Journey CA, Button DT,

Carlisle DM, Huffman BJ, Qi SL, et al. (2020) Multi-

region assessment of pharmaceutical exposures

and predicted effects in USA wadeable urban-

gradient streams. PLoS ONE 15(1): e0228214.

https://doi.org/10.1371/journal.pone.0228214

Editor: Miguel Cañedo-Argüelles Iglesias,
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and non-point sources [2, 7, 9], aqueous mobility [10, 11], pH-variable activity [12], occur-

rence as complex mixtures [13], and designed biological activity [10, 11]; the latter often tar-

geted at highly-conserved biological endpoints [5, 14–18], increasing the potential for adverse

outcomes in multiple non-target organisms [1–4, 6, 18–24].

Wastewater treatment plants (WWTP) are generally cited as primary sources of pharma-

ceuticals to stream environments, in the United States (US) [7, 25] and globally [2, 10, 18, 26,

27]. Because WWTP surface-water outfalls are typically positioned to maximize dilution of

effluent, most investigations of pharmaceutical occurrence and potential effects in stream eco-

systems have focused on higher-order stream reaches [2, 10, 26, 27], despite the fact that head-

water streams are fluvial capillaries [28] that dominate total stream length [29–33] and

landscape-scale hydrologic connectivity [29–33] and provide critical habitat variability [30, 34,

35]. The US Geological Survey (USGS) National Water Quality Assessment (NAWQA) inves-

tigated pharmaceutical-contaminant concentrations in 59 wadeable headwater streams within

the Piedmont ecoregion southern “megalopolis” [36, 37] during 2014 (Southeastern Stream

Quality Assessment, SESQA [7, 38, 39]). The results illustrated that, while WWTP were indeed

important point sources, extensive and diverse pharmaceutical-contaminant mixtures also

were widely observed in urban stream settings with no National Pollution Discharge Elimina-

tion System (NPDES) permitted WWTP discharges, demonstrating the importance of non-

WWTP sources and broad-scale mitigation approaches [7]. Notable SESQA results, such as

the near-ubiquity of the anti-diabetic metformin, highlighted the fundamental biochemical

link between global human-health crises, like Type II diabetes, and aquatic-ecosystem health

and argued for assessment of headwater stream pharmaceutical exposures and potential effects

in other regions across the US [7].

Herein, we expand the assessment of stream-ecosystem pharmaceutical risk (exposure and

hazard) [40–42] to four US regions (including SESQA) sampled during 2014–2017 to test the

hypothesis that pharmaceutical contamination is common across the US in urban-gradient

headwater streams, including in those with no NPDES-permitted WWTP discharges. The

potential for cumulative-contaminant effects (hazard) to in-stream biota was assessed based

on 1) occurrence and cumulative concentrations of pharmaceutical mixtures, and 2) cumula-

tive Exposure Activity Ratios (∑EAR) [43–45] based on high-throughput screening data in Tox-

icity Forecaster [ToxCast™, 46], as described in [44].

Material and methods

Site description and analytical method

Filtered water samples (10 mL) were collected by the USGS NAWQA Regional Stream Quality

Assessments (RSQA) from perennial, wadeable (less than 10 m width and 1 m depth at base-

flow) headwater stream sites in watersheds with varying degrees of urban and agricultural land

use as part of four regional assessments (Pacific Northwest, PNSQA [47, 48]; California,

CaSQA [49]; Northeast, NESQA [50, 51]; and SESQA [38, 39]) (Fig 1, S1 Table). During each

regional water-quality assessment period (spring to summer), 3–5 water samples were col-

lected from sites representing region-specific gradients in urban and agricultural development

and a limited number of single samples were collected from nominal low-impact (low-devel-

opment) watershed sites. Site selection and sampling methodologies are as described [38, 48,

50]. Samples were syringe filtered (0.7 μm pore size glass-fiber) into baked (500 C) amber glass

vials and shipped on ice for analysis at the USGS National Water Quality Laboratory (NWQL)

in Denver CO. Direct aqueous injection (100 μL), isotope dilution, high performance liquid

chromatography tandem mass spectrometry (HPLC-MS/MS) was used to quantify an environ-

mentally-relevant, representative subset consisting of 111 human-use pharmaceutical and
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Fig 1. Cumulative maximum concentrations (ng/L) and numbers of pharmaceuticals detected at least once during the 2014–2017

synoptic samplings of water from wadeable streams in the Pacific Northwest (PNSQA, 2015; upper left), Northeast (NESQA, 2016;
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pharmaceutical degradate compounds [52]; among these, gabapentin, guanylurea, and

hexamethylenetetramine were added to the method in 2017 and analyzed only in CaSQA sam-

ples. Typically interpreted as a pesticide environmental contaminant, piperonyl butoxide also

is medically indicated for treatment of lice [53, 54] and, thus, retained herein. Two additional

analytes (atrazine, herbicide; methyl-1H-benzotriazole, solvent/deicing agent) included in the

NWQL pharmaceutical method are not recognized pharmaceutical agents and are not

included herein. Analytes, with Chemical Abstracts Services numbers and laboratory reporting

limits (RL), are listed in the supporting information (S2 Table).

Quality assurance quality control (QAQC)

HPLC-MS/MS pharmaceutical analysis included addition of 19 surrogate standards (400 ng/L

nominal final concentration) to field-filtered samples to evaluate whole-method recovery

(median = 102%, interquartile range [IQR] = 95–110%, range 2–320%). A total of 44 field

blanks were prepared across all regions by processing pesticide-grade blank water through all

field collection equipment and analyzing as above [52] for environmental samples. Only 9 of

the 88 pharmaceutical analytes detected at least once in environmental samples in this study

were also detected in field blanks. Among these, 6 (metformin, methadone, metoprolol, nevi-

rapine, norethindrone, and omeprazole/esomeprazole) were only detected in a single field

blank; corresponding environmental data were not blank adjusted, but interpretation of results

below blank detection levels warrants caution. Lidocaine, nicotine, and caffeine were detected

in 5 (11%), 5 (11%), and 2 (5%) field blanks, respectively; environmental concentrations less

than corresponding 90th percentile field blank concentrations were blank corrected to non-

detect (nd).

Data handling, statistics, and ∑EAR analysis

The reporting limits for pharmaceutical analytes were determined using DQCALC2 software,

a spreadsheet-based tool for graphically modeling relative standard deviation versus concen-

tration and assigning a data precision statement in water analytical methods [56](RLDQC; S2

Table). Laboratory-estimated water concentrations below the RLDQC (positive detections

with reduced quantitative certainty) were used as is (S3A–S5 Tables). Pharmaceutical results

were aggregated to estimate maximum- and median-concentration exposures relative to the

108 pharmaceutical analytes (111 for CaSQA). S3A and S3B Table include the sample and

detection counts, respectively, by compound and site for all pharmaceuticals detected at least

once in the study. S4 Table includes the maximum concentrations of each pharmaceutical

detected in this study by compound and site. S5 Table contains median concentrations (all

samples) by compound and site and only includes those pharmaceuticals that were detected in

at least half of the samples at one or more sites. S6 Table contains land-use/land-cover

(LULC), specific conductivity, and major ion (maximum and median concentrations of Ca,

Mg, Na, Cl, SO4, K) data.

As a first step, multivariate pharmaceutical detection or maximum/median concentration

data matrices were log-transformed and normalized, converted to respective Euclidean-dis-

tance dissimilarity (similarity) matrices, and explored in three dimensions using non-metric

multi-dimensional scaling (NMDS; Plymouth Routines in Multivariate Ecological Research,

PRIMER v7; PRIMER-E Ltd., Plymouth, UK)[57]. Based on suggestive NDMS patterns,

upper right), California (CaSQA, 2017; lower left), and Southeast (SESQA, 2014; lower right) regions as part of the USGS Regional

Stream Quality Assessment (RSQA). For site details see S1 and S6 Tables. North is at top. Base-map image is from the USGS National Map

[55].

https://doi.org/10.1371/journal.pone.0228214.g001
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permutation-based one-way analysis of similarity (ANOSIM; permutation N = 999) was

employed to test the null hypothesis (H0) of no difference between groups (i.e., that between-

group dissimilarity was equivalent to or less than within-group dissimilarity), for a priori site

groupings including study regions (CaSQA, NESQA, PNSQA, SESQA), urban centers (cities),

and broad land-use categories (high urban, low urban, low-impact reference)(S7 Table).

Cophenetic correlations between detection/concentration dissimilarity matrices and site-spe-

cific major ion or LULC Euclidean-distance dissimilarity matrices were assessed using the

RELATE (H0: rho (ρ) = 0; permutation N = 999) routine (PRIMER v7)[57](S7 Table). Subsets

of pharmaceutical, major ion, and LULC metrics that best explained the patterns in detection/

concentration dissimilarity matrices were then identified using the permutation-based step-

wise BEST(BVSTEP) (H0: ρ = 0; permutation N = 999) routine (PRIMER v7) with stop criteria

of ρ> 0.95 or delta ρ< 0.001 (S7 Table). Finally, bivariate correlations (H0: rho (ρ) = 0; per-

mutation N = 9999) between site-specific cumulative (sum of detected analytes) contaminant

metrics (median detections and concentrations) and individual pharmaceutical, major ion,

and LULC metrics identified above were assessed by nonparametric Spearman’s Rank-Order

Correlation (Paleontological Statistics, PAST v3.25)(S8 and S9 Tables)[58]. The permuted

(permutation N = 9999) probability that the centroids and dispersions of regional and

WWTP-related site groupings were the same (H0: no difference between groups) was assessed

using nonparametric One-way PERMANOVA on Euclidean distance [58–60].

Integrated effects of pharmaceutical contaminants were estimated, as described [44], using

the toxEval package [61] of the open source statistical software R [62] to sum (presumptive

additive effects [63–68]) individual EAR (ratio of detected concentration to activity concentra-

tion at cutoff (ACC) from Toxicity ForeCaster [ToxCast™; 46] high-throughput screening data

[69, 70]) to provide site-specific cumulative EAR (∑EAR)[43–45, 71–73]. EAR� 1 indicate

exposures reported to modulate molecular targets in vitro, whereas EAR� 1 suggest propor-

tionately lower probability of biological activity. A recent comparison of EAR and benchmark-

based Toxicity Quotients for select surface-water contaminants, for which both ToxCast and

aquatic-toxicity benchmark data exist, indicated agreement between the commonly-employed

0.1 benchmark-based Toxicity Quotient threshold of concern and EAR = 0.001 [45]. Non-spe-

cific-endpoint, baseline, and unreliable response-curve assays were excluded [as described in

43, 44, 45, 71–73](S10 Table). ∑EAR results are summarized in S11–S14 Tables.

No permits were required for this work. All data are also available from the USGS National

Water Information System (NWIS) [74] and from USGS ScienceBase [75].

Results and discussion

Pharmaceutical mixtures were common in all regions

Among the 308 wadeable streams sampled across all regions during the 2014–2017 RSQA stud-

ies, multiple pharmaceuticals (pharmaceutical mixtures) were detected at least once (maximum

exposure dataset) in 95% (248) of the 261 multiple-sample, urban-gradient sites and in 68% (32)

of the 47 single-sample, non-urban, presumptive low-impact, sites (Fig 1, S3B and S4 Tables).

Importantly, pharmaceutical mixtures were detected in at least half of the samples (median

exposure dataset) from 81% (212) of the multiple-sample, urban-gradient sites (S1 Fig, S5

Table). Cumulative (sum of detected pharmaceuticals) maximum and median detections ran-

ged 0–60 per site (median: 4; IQR: 2–8) and 0–43 per site (median: 2; IQR: 1–4), respectively,

with the centroid (mean) of cumulative pharmaceutical detections per site estimated (PERMA-

NOVA) to be greater (permutation N = 9999 probability of being the same = 0.0001) in eastern

(NESQA, SESQA) than in western (PNSQA, CaSQA) study streams (Fig 2A and 2B, S4 and S5

Tables). Site-specific cumulative maximum and median concentrations ranged nd-36,142 ng/L

Pharmaceuticals in USA urban-gradient streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0228214 January 30, 2020 5 / 25

https://doi.org/10.1371/journal.pone.0228214


Fig 2. Cumulative maximum (left) and median (right) concentrations (ng/L; bottom) and numbers of pharmaceuticals

detected in water samples from wadeable streams in each region (total sites in parentheses) as part of the USGS Regional

Stream Quality Assessment (RSQA). Circles indicate maximum (left) or median (right) data for sites sampled multiple times

(n = 3–5). Open triangles indicate data from single-sample sites and do not differ between maximum and median plots. Boxes,

centerlines, and whiskers indicate interquartile range, median, and 5th and 95th percentiles, respectively, for multiple-sample

sites (circles), only. For each plot, p is the permuted probability that the centroids and dispersions across all groups are the same

and different letters indicate groups with pairwise probabilities that are less than 0.05 (PERMANOVA) for multi-sample sites

only. Numbers above X-axes (bottom plots) indicate numbers of sites in each region with no detections (nd) under maximum

and median exposure conditions.

https://doi.org/10.1371/journal.pone.0228214.g002
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(median: 88 ng/L; IQR: 29–306) and nd-8,756 ng/L (median: 19 ng/L; IQR: 3–75 ng/L), respec-

tively (Fig 2C and 2D, S4 and S5 Tables). The cumulative maximum concentrations were not

clearly different (PERMANOVA; probability of being the same, p = 0.0812) between regions.

There is some evidence to suggest the centroid of cumulative median concentrations was

greater (permutation N = 9999 probability of being the same = 0.0154) in the eastern region

(NESQA, SESQA) streams than in PNSQA streams, with CaSQA streams intermediate, but

extensive overlap of the data distributions was apparent in all cases. The apparently greater

detections and, possibly, median concentrations of pharmaceuticals between eastern and west-

ern regions are consistent with reported differences in cumulative 2016 prescription drug sales

(87 vs 50 million US dollars [76]) and populations (79 vs 50 million people [77]) between corre-

sponding eastern and western region states, respectively.

Eighty-eight of the 108 pharmaceutical analytes (111 in CaSQA) were detected at least once

(Fig 3). Nicotine and its metabolite, cotinine, were detected at 70% and 47% of sites, respec-

tively. Consistent with the SESQA findings reported earlier [7], the type-II diabetes medicine,

metformin, was common (68% of sites) across all sites and regions. Caffeine-related com-

pounds, caffeine and 1,7-dimethylxanthine, were detected at least once at 42% and 10% of

sites, respectively. Other frequently detected (detected at more than 50 sites or 15% of sites)

compounds included lidocaine (intravenous/topical analgesic, 42%), carbamazepine (anti-sei-

zure medication, 41%), acetaminophen (oral analgesic, 26%), fexofenadine (anti-histamine,

21%), and tramadol (opioid analgesic, 17%); These pharmaceuticals also exhibited the highest

maximum and median concentrations observed in this study (Fig 3 and S2 Fig). The numbers

of frequently detected (detected at more than 15% of sites in the region) pharmaceuticals were

higher in eastern regions (NESQA: 14; SESQA: 29) than in western regions (PNSQA: 8;

CaSQA: 3), consistent with previously noted regional differences in cumulative 2016 prescrip-

tion drug sales [76] and population estimates [77].

Likewise, the spatial detection frequencies (the percentage of study sites at which analytes

were detected) of several individual pharmaceuticals and pharmaceutical groups differed

markedly between regions (Fig 3 and S2 Fig). For example, the antidepressants, venlafaxine

and desvenlafaxine, were detected at a substantially higher (approximately four times higher)

percentage of eastern region sites than western region sites. The percentages of eastern region

study sites, at which pharmaceuticals associated with seasonal and perennial allergies (fexofe-

nadine, pseudoephedrine/ephedrine, diphenhydramine, loratadine) were detected, were gen-

erally double those observed in the two western study regions (Fig 3), despite similar reported

percentages of hay fever and respiratory allergies for children [78] and adults [79] in the east-

ern and western US in 2018. Correlations between co-detected analytes are presented in S8

Table.

Land-use/land-cover and major ion predictors of pharmaceuticals

Frequent occurrence, multiple detections per site (median: 4 compounds per site across all

sites including in pre-selected low-impact watersheds), and elevated cumulative concentra-

tions (up to>36 μg/L per site) emphasize the need for identification, monitoring, and mitiga-

tion of pharmaceutical sources in wadeable-stream ecosystems. ANOSIM analysis of site-

specific pharmaceutical and LULC data matrices indicated marginal (Global R range: 0.043–

0.239) differences between RSQA study unit, urban-center, and ecoregion groupings (S7

Table). Likewise, weak correlations (RELATE; ρ range: 0.029–0.116) were found between

median pharmaceutical similarity matrices (detection/concentrations under median condi-

tions) and watershed LULC similarity matrices, with multiple individual urban development

metrics (e.g., percentage of developed industrial/military [Dev_IndusMilitary2012] and semi-

Pharmaceuticals in USA urban-gradient streams
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Fig 3. Maximum concentrations (ng/L) of 88 pharmaceuticals detected at least once (in order of decreasing number of detections

across all regions and samples) in water samples from wadeable streams in each region as part of the USGS Regional Stream Quality

Assessment (RSQA). Circles are data for individual sites. Boxes, centerlines, and whiskers indicate interquartile range, median, and 5th

Pharmaceuticals in USA urban-gradient streams
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developed anthropogenic other [SemiDev_AnthroOth2012] land cover from the National

Wall-to-Wall Anthropogenic Land Use Trends (NWALT) 1974–2012 database [80]; estimated

road density [RoadDensity2016] from the 2016 U.S. Census data [81]) and wastewater metrics

(e.g., number of NPDES-permitted wastewater facilities [NumFacilities2012] in 2012 [82])

consistently the strongest among the identified correlates (BEST routine; S7 Table).

Based on these suggestive multi-variate results, bivariate correlations between site-specific

summary metrics (cumulative detections/concentrations) under the estimated median expo-

sure conditions and readily available LULC metrics identified by BEST were further explored

using Spearman Rank-Order Correlation (S9 Table). Several watershed urbanization metrics

(e.g., percentage land cover as high-density urban development [DevelopedHigh2011] from

the 2011 National Land Cover Database [83]) correlated well with cumulative detections (ρ
range: 0.475–0.543) and concentrations (ρ range: 0.424–0.525) under median exposure condi-

tions (S9, S15 and S16 Tables). Weaker correlations (ρ range: 0.294–0.395) were observed

between various wastewater discharge metrics (e.g., number of NPDES-permitted wastewater

facilities [NumFacilities2012] in 2012 [82]) and cumulative median pharmaceutical detections

or concentrations (S9, S15 and S16 Tables). Differences (permutation N = 9999 probability of

being the same = 0.0001) in the centroids of cumulative median detections and concentrations

were observed between sites with (detections median: 3, IQR: 2–9; cumulative concentrations

median: 62 ng/L; IQR: 20–405 ng/L) and without permitted wastewater discharges (detections

median: 1, IQR: 0–3; cumulative concentrations median: 11 ng/L; IQR: 0–55 ng/L). These

results are consistent with the documented importance of WWTP discharges as pharmaceuti-

cal-contaminant sources [84, 85] and the substantial pharmaceutical-contaminant reductions

in urban-area wadeable streams following WWTP-treatment upgrades [84, 85] or WWTP clo-

sures [86, 87].

The pharmaceutical contaminants observed at the 75% of RSQA sites without NPDES-per-

mitted discharges, however, confirm previous conclusions that WWTP outfalls are not the

only important pathways of pharmaceutical contaminants to urban/suburban streams [1, 7,

88, 89]. Other potential urban-gradient sources of pharmaceuticals to streams include aging

sewer infrastructure [90, 91], combined (sanitary/stormwater) sewer overflows [92–96], pri-

vate septic and on-site waste-handling systems [97–99], gray-water systems [100–102], green

space and golf course wastewater reuse [103], and animal waste runoff [104–106]. Notably, a

recent national reconnaissance demonstrated that untreated stormwater can be an important

episodic source of mixed pharmaceuticals to surface waters, at levels comparable to and often

exceeding those in treated WWTP effluent [107]. Thus, these results reiterate the need for

whole-watershed, contaminant-mitigation approaches, including improved pharmaceutical

disposal practices, wastewater treatment and transfer systems, and stormwater controls.

More, the results argue for research and implementation of new high-frequency or continu-

ous sensor technologies for direct or indirect monitoring of pharmaceutical contaminants in

next generation water observing systems [e.g., 108, 109] in urban settings. Surface-water ions

(and related conductivity measures) have been suggested as potentially useful surrogates for

indirect monitoring of pharmaceutical contamination in streams [e.g., 110, 111], because

physiological ions (electrolytes) and pharmaceuticals are both primarily excreted in urine

[112–115] and are frequently reported together in wastewater-impacted streams at locally-ele-

vated concentrations [e.g., 92, 93]. The most useful monitoring approaches are expected to be

fixed-station or single watershed applications [111], due to the potential confounding effects

and 95th percentiles, respectively. Numbers to the right of each plot indicate the percentage of sites within the region at which the

compound was detected at least once. Gabapentin, guanylurea, and hexamethylenetetramine were analyzed only in CaSQA samples.

https://doi.org/10.1371/journal.pone.0228214.g003
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of site-to-site variability in non-wastewater sources of ions in urban-gradient streams [116,

117], including geologic minerals [118], fertilizer runoff [104], road salt [119, 120], and con-

crete infrastructure [121–123]. Nevertheless, the current multi-region dataset provides a

unique opportunity to test the broad geospatial validity of the approach by assessing the proba-

bility (p) of no correlation (H0: rho (ρ) = 0; permutation N = 9999; Spearman Rank-Order

Correlation) between in-stream pharmaceutical and ion concentrations (S9 Table).

The results support the potential utility of surface-water ions as surrogates for wastewater-

associated contaminants like pharmaceuticals [110, 111]. Although no relation (p� 0.2528)

was observed between specific conductivity and cumulative pharmaceutical metrics under

median exposure conditions, correlations were observed between pharmaceuticals and sodium

or chloride (p� 0.0182), with the strongest correlations observed for potassium (p� 0.0001).

Comparison of the Spearman correlation coefficients provided additional insight into the

importance of the yellow-water/wastewater pathway relative to potential confounders (i.e.,

non-wastewater sources [104, 116–123]). Correlations between median pharmaceutical met-

rics and median concentrations of sodium and chloride were weak (ρ� 0.202), consistent

with numerous confounding non-wastewater sources of these ions in urban settings [116, 119,

120]. However, promising correlations (ρ range: 0.314–0.328) were observed between median

concentrations of potassium and cumulative median detections and concentrations of phar-

maceuticals, indicating the potential for potassium as an indicator of in-stream pharmaceutical

contamination in fixed-place or single watershed applications and consistent with the strong

correlation (R2 > 0.89) reported between instream concentrations of potassium and pharma-

ceuticals in the Leine River watershed in Germany [111]. The stronger broad regional correla-

tion in this study between potassium and pharmaceuticals may reflect comparatively less

variability in non-wastewater potassium sources as well as the usage of potassium salts (e.g.,

ferrate, ferrocyanate) as floculants/coagulants in wastewater treatment [124]. Emerging sensor

technologies that hold promise for next generation monitoring of potassium (and other ions)

include recently described nanorod-based potassium ion sensors [125] and multi-parameter

potentiometric microanalyzers (lab-on-a-chip platforms) developed for space travel [126–128]

and environmental water quality monitoring [129, 130].

Potential for mixed-pharmaceutical biological effects

The 111-pharmaceutical analytical space assessed in this study is a fractional indicator of the

presumptive pharmaceutical-contaminant universe, with more than 4000 active ingredients

(parent compounds) [2, 131] in current use and an unknown chemical-space [132] of metabo-

lites and environmental degradates [13]. Given the breadth of species, life stages, biomasses,

and concomitant vulnerabilities present in urban-gradient aquatic food webs [133–136] and

the designed bioactivity of commercial pharmaceuticals [1–6, 14–17, 19–24, 137], their detec-

tion in RSQA headwater streams is prima facie evidence of the potential for molecular toxicity

and sub-lethal effects in non-target, organisms in urban-gradient headwater streams across the

US [138–141].

The in vitro ToxCast-based EAR approach provides an additional line of evidence for sub-

lethal effects at a reported concentration [43, 73], supports estimation of cumulative effects

(∑EAR) of mixed-contaminant exposures using the CA-model methodology [63–68], and pre-

dicts probable effects consistent with traditional in vivo water-quality benchmark-based toxic-

ity quotient (TQ) approaches (EAR = 0.001 comparable to commonly-employed TQ = 0.1

effects threshold) [45]. ToxCast [46] includes exposure-response metrics for 9000+ organic

chemicals and approximately 1000 standardized, predominantly-vertebrate, molecular bioas-

say endpoints (e.g., nuclear receptor, DNA binding) [70, 142, 143]. ToxCast EAR results for

Pharmaceuticals in USA urban-gradient streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0228214 January 30, 2020 10 / 25

https://doi.org/10.1371/journal.pone.0228214


estimated maximum and median pharmaceutical exposure conditions are summarized in Fig

4 and S11–S14 Tables. Given the diversity of organisms and concomitant range of vulnerabili-

ties in surface-water food webs [133–136], we employed the recently suggested effects-screen-

ing threshold of 0.001 [45], as described [44]. Of the 88 pharmaceuticals detected at least once

in this study, only 43% (38) had acceptable ToxCast data at the time of access. Under maxi-

mum exposure conditions, 63% (194) of study sites had one or more compounds with individ-

ual EAR greater than the 0.001 effects-screening threshold, 65% (201) had cumulative EAR

(SEARmax)� 0.001, and 3 sites had SEARmax� 1 (Fig 4). These results indicate transient

exposures with a probability of vertebrate molecular effects were common in urban-gradient

headwater streams across the US. Of the 62 pharmaceuticals in the estimated median exposure

dataset, 61% (38) had exposure-effects data in ToxCast. Approximately 25% of the study sites

had individual or cumulative EARmed� 0.001 under the estimated median exposure condi-

tions (Fig 4), indicating that sites with persistent exposures with a probability of molecular

effects were common in urban headwater streams across the US. Zebra fish (ZF; Danio rario)

embryo metrics in ToxCast inform organism-level as well as vulnerable, early-life-cycle effects

in fish [144, 145]. Thus, the results also indicate the potential for pharmaceutical effects to fish

at the organism level in at least some headwater streams, because 7 and 5 sites, respectively,

had SEARmax ZF and SEARmed ZF� 0.001 across all ZF endpoints.

Implications for stream ecosystem health and remediation

The results indicate substantial pharmaceutical-contaminant concerns in wadeable, urban-

gradient, headwater streams not only in SESQA [7], but in other regions across the US [1, 4, 6,

19], irrespective of WWTP discharge. Crucially, the pharmaceutical-analyte space [52]

assessed herein is an order(s) of magnitude underestimate of the presumptive pharmaceutical-

contaminant universe, with 4000+ parent compounds in current use [2] and unquantified

numbers of environmental metabolites/degradates [13, 132]. Considering only those pharma-

ceuticals assessed in this study, individual concentrations up to μg/L levels and multiple detec-

tions per site (median = 4 across all sites including pre-selected, low-impact watersheds) at

cumulative concentrations ranging more than 36 μg/L are notable concerns, given docu-

mented adverse impacts of individual pharmaceuticals at low ng/L concentrations [20] and the

widespread cumulative exceedances of in vitro molecular effects thresholds (∑EAR) observed in

these urban-impacted headwater streams.

Notably, these pharmaceutical results confirm earlier concerns about the linkage between

human- and aquatic-health [7, 27, 146, 147]. Echoing earlier SESQA-only results [7], the Type

II diabetes medicine, metformin again was the most consistently detected pharmaceutical

across all sites and samples (more than half of the samples at 57% of sites; detected at least

once at 68% of sites) at site-specific maximum concentrations ranging nd-3,077 ng/L (median:

11 ng/L; IQR: nd-46 ng/L), despite the fact that NPDES discharges occurred in only 25% of the

study watersheds. In 2017 when the metabolite, guanylurea, was added to the analytical portfo-

lio, metformin and guanylurea were detected at least once in 54% (46/85) and 5% (4/85) of

CaSQA sites, respectively. The anti-diabetic pharmaceuticals, sitagliptin and glyburide, also

were detected in 8% (23/308) and 1% (3/308) of the sites in this study, respectively. Impor-

tantly, a number of other potentially diabetes-related pharmaceuticals were widely detected in

this study, including several analgesics (e.g., tramadol [17% of sites], desvenlafaxine [14%],

venlafaxine [10%], gabapentin [2%], amitriptyline [2%]), prescribed for treatment of periph-

eral neuropathic pain, a common symptom of progressive Type II diabetes [148–152].

Metformin was the second most frequently detected pharmaceutical across all sites in this

study and the fourth most prescribed pharmaceutical in the US, with an estimated 81 million
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Fig 4. Cumulative maximum (left) and median (right) Exposure-Activity Ratios (SEAR) of ToxCast all (primarily

molecular, top) and zebra-fish only (bottom) endpoints for pharmaceuticals detected in water samples from wadeable

streams in each region (total sites in parentheses) as part of the USGS Regional Stream Quality Assessment (RSQA).

Boxes, centerlines, and whiskers indicate interquartile range, median, and 5th and 95th percentiles, respectively, for multiple-

sample sites (circles), only. For each plot, p is the permuted probability that the centroids and dispersions across all groups are

the same and different letters indicate groups with pairwise probabilities that are less than 0.05 (PERMANOVA) for multi-

sample sites only. Numbers above X-axes in each plot indicate number of sites with no significant activity (SEAR < 0.00001).

https://doi.org/10.1371/journal.pone.0228214.g004

Pharmaceuticals in USA urban-gradient streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0228214 January 30, 2020 12 / 25

https://doi.org/10.1371/journal.pone.0228214.g004
https://doi.org/10.1371/journal.pone.0228214


prescriptions in 2016 alone [153, 154]. US and global metformin usage is expected to increase,

as a first-line diabetes therapy [155–157] and treatment candidate for polycystic ovarian syn-

drome [158] and cancers [159]. Metformin is excreted essentially unchanged in human urine

[160], poorly removed by wastewater treatment technologies [161], considered environmen-

tally recalcitrant [161, 162], and increasingly reported in environmental samples [7, 9, 163].

Environmentally-relevant [161, 164, 165] metformin exposures in the μg/L range have recently

been shown to induce biological responses in fish [166–169], including up-regulation of vitel-

logenin mRNA [170, 171] and other gene targets [169, 171, 172], male intersex in fathead min-

now (Pimephales) [170], and behavioral modifications in Siamese fighting fish (Betta
splendens) [167]. Guanylurea, metformin’s only currently recognized persistent environmental

degradate, is often observed in surface waters at higher concentrations than metformin [155,

163–165] and, importantly, has been recently reported to cause growth effects in Japanese

medaka (Oryzias latipes) similar to metformin but at low (<10) ng/L concentrations [166].

Fish and fish-embryos are widely-used animal models in the pharmaceutical development

pipeline [173, 174], including for anti-diabetics [175, 176]; from this perspective, fish are argu-

ably pharmaceutical target organisms with unintended environmental exposures. Consistent

with this use, individual and simple mixtures of pharmaceuticals have been shown to cause

unintended effects to the health and behavior of laboratory and wild fish at environmentally-

relevant concentrations [24, 177–179] and the potential biological impacts of characteristically

complex environmental pharmaceutical cocktails are global concerns [64, 68, 180, 181]. In

light of the documented potential for pharmaceutical bioconcentration [182–184] and trophic

transfer [182] within aquatic food webs and for trophic transfer of pharmaceuticals from

aquatic to riparian food webs [185], measured water concentrations may substantially under-

estimate the ecological exposures and effects from in-stream pharmaceutical contaminants

[182, 185]. Thus, considering potential individual and interactive effects of the 88 pharmaceu-

ticals detected in headwater streams herein and the recognized orders-of-magnitude analytical

underestimation of the presumptive pharmaceutical-contaminant (parent compounds, metab-

olites, degradates) space, the results of the present study demonstrate a nation-wide need for

watershed-scale pharmaceutical-contaminant mitigation approaches that extend the current

emphasis on WWTP-effluent sources to include more broadly distributed inputs such as septic

systems, leaking wastewater transfer systems, and urban stormwater runoff.

Supporting information

S1 Fig. Cumulative median concentrations and detections of pharmaceuticals (ng/L)

detected in at least half of the water samples at one or more wadeable stream sites during

the 2014–2017 synoptic samplings in the Pacific Northwest (PNSQA, 2015; upper left),

Northeast (NESQA, 2016; upper right), California (CaSQA, 2017; lower left), and South-

east (SESQA, 2014; lower right) regions as part of the USGS Regional Stream Quality

Assessment (RSQA). For site details see S1 and S6 Tables. North is at top. Base-map image is

from the USGS National Map [55].

(XLSX)

S2 Fig. Median concentrations ng/L of pharmaceuticals detected in at least half of the

water samples (in order of decreasing number of detections across all regions and samples)

at one or more wadeable stream sites in the (left to right) Pacific Northwest (PNSQA,

2015), Northeast (NESQA, 2016), California (CaSQA, 2017), and Southeast (SESQA, 2014)

regions as part of the USGS Regional Stream Quality Assessment (RSQA). Circles are data

for individual sites. Boxes, centerlines, and whiskers indicate interquartile range, median, and

5th and 95th percentiles, respectively. Numbers to the right of each plot indicate the
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percentage of sites at which the compound was detected at least once. Gabapentin, guanylurea,

and hexamethylenetetramine were analyzed only in CaSQA samples.

(XLSX)

S3 Fig. Spearman rank-order correlation plot for cumulative median concentrations and

detections as well as median individual concentrations of pharmaceuticals (ng/L) detected

in at least half of the water samples at one or more wadeable stream sites during the 2014–

2017 synoptic samplings in the Pacific Northwest (PNSQA, 2015), Northeast (NESQA,

2016), California (CaSQA, 2017), and Southeast (SESQA, 2014) regions as part of the

USGS Regional Stream Quality Assessment (RSQA).

(XLSX)

S4 Fig. Spearman rank-order correlation plot for cumulative median concentrations and

detections of pharmaceuticals (ng/L), median concentrations of major ions, and GIS

LULC metrics at one wadeable stream sites during the 2014–2017 synoptic samplings in

the Pacific Northwest (PNSQA, 2015; upper left), Northeast (NESQA, 2016; upper right),

California (CaSQA, 2017; lower left), and Southeast (SESQA, 2014; lower right) regions as

part of the USGS Regional Stream Quality Assessment (RSQA).

(XLSX)

S1 Table. Site information and select summary analytical results (detections and concen-

trations in nanograms per liter, ng/L) for wadeable streams sampled during 2014–2017 as

part of the USGS Regional Stream Quality Assessment (RSQA) synoptic samplings in the

Pacific Northwest (PNSQA, 2015), Northeast (NESQA, 2016), California (CaSQA, 2017),

and Southeast (SESQA, 2014) regions.

(XLSX)

S2 Table. Pharamceutical compound information for analyses performed by the USGS

National Water Quality Laboratory (NWQL) as part of the USGS Regional Stream Quality

Assessment (RSQA) synoptic samplings in the Pacific Northwest (PNSQA, 2015), North-

east (NESQA, 2016), California (CaSQA, 2017), and Southeast (SESQA, 2014) regions.

Gabapentin, guanylurea, and hexamethylenetetramine were analyzed only in CaSQA samples.

(XLSX)

S3 Table. a. Number of pharmaceutical water samples collected during USGS Regional

Stream Quality Assessment (RSQA) synoptic samplings in the Pacific Northwest (PNSQA,

2015), Northeast (NESQA, 2016), California (CaSQA, 2017), and Southeast (SESQA, 2014)

regions. b. Number of detections for pharmaceuticals detected at least once during the USGS

Regional Stream Quality Assessment (RSQA) synoptic samplings in the Pacific Northwest

(PNSQA, 2015), Northeast (NESQA, 2016), California (CaSQA, 2017), and Southeast (SESQA,

2014) regions.

(XLSX)

S4 Table. Maximum detected concentration (nanograms per liter, ng/L) of pharmaceuti-

cals detected at least once during the USGS Regional Stream Quality Assessment (RSQA)

synoptic samplings in the Pacific Northwest (PNSQA, 2015), Northeast (NESQA, 2016),

California (CaSQA, 2017), and Southeast (SESQA, 2014) regions.

(XLSX)

S5 Table. Median detected concentration (nanograms per liter, ng/L) of pharmaceuticals

detected in at least half of the water samples during the USGS Regional Stream Quality

Assessment (RSQA) synoptic samplings in the Pacific Northwest (PNSQA, 2015),
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Northeast (NESQA, 2016), California (CaSQA, 2017), and Southeast (SESQA, 2014)

regions.

(XLSX)

S6 Table. Watershed-specific GIS metrics (see S15 Table for GIS data dictionary) and

median and maximum major ion concentrations (milligrams per liter, mg L-1) for wade-

able streams in the USGS Regional Stream Quality Assessment (RSQA) synoptic samplings

in the Pacific Northwest (PNSQA, 2015), Northeast (NESQA, 2016), California (CaSQA,

2017), and Southeast (SESQA, 2014) regions.

(XLSX)

S7 Table. Summary statistics for multivariate relations between pharmaceutical cumula-

tive detection/concentration (log-transformed and normalized) data matrices (Euclidean

distance) and site-specific LULC or major ion data matrices (Euclidean distance) assessed

by non-metric multi-dimensional scaling (NMDS), one-way analysis of similarity (ANO-

SIM), and permutation-based (permutations = 999) cophenetic correlation (RELATE) rou-

tines.

(XLSX)

S8 Table. Spearman rho (r) rank-order correlation coefficients (r; lower triangle) and

2-tail probability (permutation N = 9999) that no correlation exists (upper triangle) for

site-specific cumulative pharmaceutical detection and concentrations and individual phar-

maceutical concentrations (nanograms per liter, ng/L) under estimated maximum (max)

or median (med) exposure conditions.

(XLSX)

S9 Table. Spearman rho (r) rank-order correlation coefficients (r; lower triangle) and

2-tail probability (permutation N = 9999) that no correlation exists (upper triangle) for

site-specific cumulative median pharmaceutical detections or concentrations (nanograms

per liter, ng/L), major ions, and select GIS metrics identified by multi-variate RELATE

and BEST analyses.

(XLSX)

S10 Table. Compound:Endpoint combinations excluded from ToxCast evaluation due to

unreliable concentration-response relationship and resulting lack of confidence in activity

concentration at cutoff (ACC).

(XLSX)

S11 Table. Site-specific Exposure Activity Ratios (EAR) under Maximum exposure condi-

tions for those compounds with exact Chemical Abstract Service (CAS) number matches

and with reliable concentration-response relationship and ACC data in ToxCast.

(XLSX)

S12 Table. Site-specific Exposure Activity Ratios (EAR) under Maximum exposure condi-

tions for all bioassay endpoints within each class shown. Data are for those compounds with

exact Chemical Abstract Service (CAS) number matches and with reliable concentration-

response relationship and ACC data in ToxCast.

(XLSX)

S13 Table. Site-specific Exposure Activity Ratios (EAR) under Median exposure conditions

for those compounds with exact Chemical Abstract Service (CAS) number matches and

with reliable concentration-response relationship and ACC data in ToxCast.

(XLSX)
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S14 Table. Site-specific Exposure Activity Ratios (EAR) under Median exposure conditions

for all bioassay endpoints within each class shown. Data are for those compounds with exact

Chemical Abstract Service (CAS) number matches and with reliable concentration-response

relationship and ACC data in ToxCast.

(XLSX)

S15 Table. Data dictionary describing metrics in S9 Table. Additional citation details pro-

vided in S16 Table.

(XLSX)

S16 Table. Additional citation information for metrics in S9 and S15 Tables.

(XLSX)
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105. Margalida A, Bogliani G, Bowden CGR, Donázar JA, Genero F, Gilbert M, et al. One Health approach

to use of veterinary pharmaceuticals. Science. 2014; 346(6215):1296–8. https://doi.org/10.1126/

science.1260260 PMID: 25477214

106. Boxall ABA. Veterinary Medicines and the Environment. In: Cunningham F, Elliott J, Lees P, editors.

Comparative and Veterinary Pharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p.

291–314. https://doi.org/10.1007/978-3-642-10324-7_12.

107. Masoner JR, Kolpin DW, Cozzarelli IM, Barber LB, Burden DS, Foreman WT, et al. Urban Stormwater:

An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United

States. Environ Sci Technol. 2019; 53(17):10070–81. https://doi.org/10.1021/acs.est.9b02867 PMID:

31432661

108. U.S. Geological Survey. Next Generation Water Observing System: Delaware River Basin 2020 [cited

2020 December 30]. Available from: https://www.usgs.gov/mission-areas/water-resources/science/

next-generation-water-observing-system-delaware-river-basin?qt-science_center_objects=0#qt-

science_center_objects.

109. U.S. Geological Survey. USGS Next Generation Water Observing System (NGWOS) 2020 [cited

2020 December 30]. Available from: https://www.usgs.gov/mission-areas/water-resources/science/

usgs-next-generation-water-observing-system-ngwos?qt-science_center_objects=0#qt-science_

center_objects.

110. Bai H, Zeng SY, Dong X, Chen JN. Research of potassium flow and circulation based on substance

flow analysis. Huanjing Kexue/Environmental Science. 2013; 34(6):2493–6.

111. Nödler K, Licha T, Fischer S, Wagner B, Sauter M. A case study on the correlation of micro-contami-

nants and potassium in the Leine River (Germany). Appl Geochem. 2011; 26(12):2172–80. https://doi.

org/10.1016/j.apgeochem.2011.08.001.

112. Winker M, Vinnerås B, Muskolus A, Arnold U, Clemens J. Fertiliser products from new sanitation sys-

tems: Their potential values and risks. Bioresour Technol. 2009; 100(18):4090–6. https://doi.org/10.

1016/j.biortech.2009.03.024 PMID: 19375910

113. Winker M, Faika D, Gulyas H, Otterpohl R. A comparison of human pharmaceutical concentrations in

raw municipal wastewater and yellowwater. Sci Total Environ. 2008; 399(1):96–104. https://doi.org/

10.1016/j.scitotenv.2008.03.027.

114. Jönsson H, Stenström T-A, Svensson J, Sundin A. Source separated urine-nutrient and heavy metal

content, water saving and faecal contamination. Water Sci Technol. 1997; 35(9):145–52. https://doi.

org/10.2166/wst.1997.0338.

115. Lienert J, Bürki T, Escher BI. Reducing micropollutants with source control: substance flow analysis of

212 pharmaceuticals in faeces and urine. Water Sci Technol. 2007; 56(5):87–96. https://doi.org/10.

2166/wst.2007.560 PMID: 17881841

116. Kaushal SS, McDowell WH, Wollheim WM. Tracking evolution of urban biogeochemical cycles: past,

present, and future. Biogeochemistry. 2014; 121(1):1–21. https://doi.org/10.1007/s10533-014-0014-y.

117. Kaushal SS, Likens GE, Pace ML, Utz RM, Haq S, Gorman J, et al. Freshwater salinization syndrome

on a continental scale. Proc Natl Acad Sci. 2018:201711234. https://doi.org/10.1073/PNAS.

1711234115.

118. Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Ameri-

can journal of science. 1987; 287(5):401–28. https://doi.org/10.2475/ajs.287.5.401.

119. Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD. A fresh look at road salt: aquatic toxicity and

water-quality impacts on local, regional, and national scales. Environ Sci Technol. 2010; 44(19):7376–

82. https://doi.org/10.1021/es101333u PMID: 20806974

120. Corsi SR, De Cicco LA, Lutz MA, Hirsch RM. River chloride trends in snow-affected urban watersheds:

increasing concentrations outpace urban growth rate and are common among all seasons. Sci Total

Environ. 2015; 508:488–97. https://doi.org/10.1016/j.scitotenv.2014.12.012 PMID: 25514764

121. Davies PJ, Wright IA, Jonasson OJ, Findlay SJ. Impact of concrete and PVC pipes on urban water

chemistry. Urban Water Journal. 2010; 7(4):233–41. https://doi.org/10.1080/1573062X.2010.484502.

122. Kaushal SS, Duan S, Doody TR, Haq S, Smith RM, Newcomer Johnson TA, et al. Human-accelerated

weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl

Geochem. 2017; 83:121–35. https://doi.org/10.1016/j.apgeochem.2017.02.006 PMID: 30220785

123. Connor NP, Sarraino S, Frantz DE, Bushaw-Newton K, MacAvoy SE. Geochemical characteristics of

an urban river: Influences of an anthropogenic landscape. Appl Geochem. 2014; 47:209–16. https://

doi.org/10.1016/j.apgeochem.2014.06.012.

Pharmaceuticals in USA urban-gradient streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0228214 January 30, 2020 22 / 25

https://doi.org/10.1007/s11252-011-0189-0
https://doi.org/10.1007/s11252-011-0189-0
https://doi.org/10.1126/science.1260260
https://doi.org/10.1126/science.1260260
http://www.ncbi.nlm.nih.gov/pubmed/25477214
https://doi.org/10.1007/978-3-642-10324-7_12
https://doi.org/10.1021/acs.est.9b02867
http://www.ncbi.nlm.nih.gov/pubmed/31432661
https://www.usgs.gov/mission-areas/water-resources/science/next-generation-water-observing-system-delaware-river-basin?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/next-generation-water-observing-system-delaware-river-basin?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/next-generation-water-observing-system-delaware-river-basin?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?qt-science_center_objects=0#qt-science_center_objects
https://doi.org/10.1016/j.apgeochem.2011.08.001
https://doi.org/10.1016/j.apgeochem.2011.08.001
https://doi.org/10.1016/j.biortech.2009.03.024
https://doi.org/10.1016/j.biortech.2009.03.024
http://www.ncbi.nlm.nih.gov/pubmed/19375910
https://doi.org/10.1016/j.scitotenv.2008.03.027
https://doi.org/10.1016/j.scitotenv.2008.03.027
https://doi.org/10.2166/wst.1997.0338
https://doi.org/10.2166/wst.1997.0338
https://doi.org/10.2166/wst.2007.560
https://doi.org/10.2166/wst.2007.560
http://www.ncbi.nlm.nih.gov/pubmed/17881841
https://doi.org/10.1007/s10533-014-0014-y
https://doi.org/10.1073/PNAS.1711234115
https://doi.org/10.1073/PNAS.1711234115
https://doi.org/10.2475/ajs.287.5.401
https://doi.org/10.1021/es101333u
http://www.ncbi.nlm.nih.gov/pubmed/20806974
https://doi.org/10.1016/j.scitotenv.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25514764
https://doi.org/10.1080/1573062X.2010.484502
https://doi.org/10.1016/j.apgeochem.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30220785
https://doi.org/10.1016/j.apgeochem.2014.06.012
https://doi.org/10.1016/j.apgeochem.2014.06.012
https://doi.org/10.1371/journal.pone.0228214


124. Jiang J-Q, Wang S, Panagoulopoulos A. The exploration of potassium ferrate(VI) as a disinfectant/

coagulant in water and wastewater treatment. Chemosphere. 2006; 63(2):212–9. https://doi.org/10.

1016/j.chemosphere.2005.08.020 PMID: 16213564

125. Ahn M-S, Ahmad R, Yoo J-Y, Hahn Y-B. Synthesis of manganese oxide nanorods and its application

for potassium ion sensing in water. J Colloid Interface Sci. 2018; 516:364–70. https://doi.org/10.1016/

j.jcis.2018.01.081 PMID: 29408124
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