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Abstract: Image fusion is a process that integrates similar types of images collected from
heterogeneous sources into one image in which the information is more definite and certain. Hence,
the resultant image is anticipated as more explanatory and enlightening both for human and machine
perception. Different image combination methods have been presented to consolidate significant
data from a collection of images into one image. As a result of its applications and advantages
in variety of fields such as remote sensing, surveillance, and medical imaging, it is significant to
comprehend image fusion algorithms and have a comparative study on them. This paper presents a
review of the present state-of-the-art and well-known image fusion techniques. The performance
of each algorithm is assessed qualitatively and quantitatively on two benchmark multi-focus image
datasets. We also produce a multi-focus image fusion dataset by collecting the widely used test
images in different studies. The quantitative evaluation of fusion results is performed using a set of
image fusion quality assessment metrics. The performance is also evaluated using different statistical
measures. Another contribution of this paper is the proposal of a multi-focus image fusion library,
to the best of our knowledge, no such library exists so far. The library provides implementation of
numerous state-of-the-art image fusion algorithms and is made available publicly at project website.

Keywords: image fusion; pixel-level image fusion; spatial domain; transform domain; quality
assessment matrices

1. Introduction

Cameras usually have limited focusing capabilities. These limitations exist due to the limited
depth of field (DOF) of the optical lenses of traditional cameras. Limited DOF means that the cameras
can focus a particular area and the rest of the scene remains unfocused [1,2]. Entities that are at a
certain interval or in focus of the camera are captured clearly and sharply, but the objects that are in
front or behind the focus of the camera lens remain blurry [3–5]. However, in many fields e.g., medical
imaging, geographical imaging, remote sensing, and image transmission [6–11], there is a need of
such images that are clear and sharp so that the interpretation and the analysis of images for different
purposes can be done more efficiently and effectively. Image fusion can be used to merge multiple
images captured from same or different modalities to gather additional information. For example,
in medical, some tests provide information about the bony structure and some about the tissues of a
certain organ, but it will be helpful if the doctor can have a single image that describes both functional
and anatomical information which can be used for assessment and to plan surgical procedure [12,13].
Similarly, radiologists prefer to use integrated images for diagnostic and treatment of cancer.

In remote sensing, a remote location is analyzed and examined by satellite e.g., to estimate or
detect damages in an area that is exposed to an earthquake. The equipment used does not provide
convincing data. The studies have established the fact that image processing in different fields
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also needs images with both high spatial and spectral resolution [14–16]. Hence, images captured
from different satellites, such as SPOT PAN, LANDSAT are fused to generate an image with high
resolution [16–19]. When camera types come into consideration, each type provides us images with
different information such as the image captured by infrared camera offers information that lies in
the infrared spectrum and digital color camera includes information that lies in the visible spectrum.
Both of these sensors complement each other’s information, e.g., in surveillance applications, a better
assessment can be done with image having both type of information. Hence, merging of images can
be done for effective analysis and to have the better understanding of situation [20–22]. The fused
images not only overcome the focus constraint, they can also be easily interpreted by both human
and machine.

Image fusion not only makes interpretation better for the machine and human but also reduces
the image transmission cost [6,23,24]. This reduction can be achieved by fusion, as after that there is
no need to transmit multiple images of the same scene having the different part in focus. There will
be a single image that is all-in-focus. A general multi-focus image fusion algorithm estimates a focus
map for each input image. This focus map categorizes each pixel in the image as focused or defocused,
discretely or continuously. The maps are used to define a fusion rule which is responsible for creating
an all-in-focus image. A block diagram of such an algorithm is shown in Figure 1.

Source Image 1

Source Image 2

Fused Image

Focus Map 
Estimation

Fusion 
Rule

Figure 1. General image fusion process using two multi-focus images.

Multi-focus image fusion has received significant research efforts lately resulting in the proposal
of numerous techniques e.g., [25–32]. In this paper, we review the recent literature on multi-focus
image fusion and evaluate their performance visually and objectively. The performance of image
fusion quality assessment metrics is also evaluated by computing different correlations. Moreover,
we also present a library which offers the implementation of 24 well-known multi-focus image
fusion algorithms.

The rest of the paper is organized as follows. In Section 2, we describe the criteria of effectiveness
of an image fusion algorithm and group the existing techniques into different categories. Transform
domain based image fusion techniques are reviewed in Section 3 and spatial domain based approaches
are discussed in Section 4. The objective evaluation and the visual comparison of the results of
compared methods are presented in Section 5. Section 6 introduces the proposed multi-focus image
fusion library, and Section 7 draws the conclusions of this research.

2. Image Fusion Approaches and Criteria of Effectiveness

There are different algorithms to perform fusion, but fusion technique that needs to produce
effective results should satisfy the following conditions as recommended in [24,33,34]:
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• The relevant information of the source images should remain preserved.
• There should not be any inconsistencies in the fused image.
• The noise and irrelevant information should be removed or minimized as much as possible.

Numerous image fusion methods have been proposed in the recent years. Based on their
representation, they are categorized into two main groups: spatial domain and transform
domain [20,35,36]. The spatial domain methods involve direct execution of any calculation or
procedure on the original value of the pixel. The spatial domain fusion is achieved by using localized
spatial features such as pixel or regions of images [32]. The fusion procedure in spatial domain
includes the combination of pixels or features that depict focused parts of the source images. Focus
measures such as the energy of Laplacian or spatial frequency are used to make decisions about the
focused parts of the image. We further categorized the spatial domain methods by different image
representations and processing levels into three classes: pixel level fusion [28,31,36], feature level
fusion [37,38], and decision level fusion [39].

The transform domain based image fusion involves conversion of source images into
transformation coefficients [18,32]. These coefficients are than fused together to get the fused image
coefficients which are given to inverse transform to get resultant image. Wavelets transform [29,40,41],
discrete cosine transform [42], etc. are some example of transform domain fusion. Researchers moved
from spatial domain to transform domain because the latter is considered to represent the salient
features of images clearly and accurately as compared to former one. However the transform domain
fusion also follows the categorization as that of spatial domain fusion—pixel, feature, and decision
level fusion. In the sense of its implementation, it is more significant to classify them on the basis of the
transform used in fusion e.g., wavelets transform based image fusion [28,37,38,43], curvelet transform
based fusion, and discrete cosine transform based image fusion [44]. Figure 2 shows our categorization
of multi-focus image fusion algorithms in to different groups.
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Figure 2. Categorization of multi-focus image fusion algorithms. The algorithms are divided into two
main categories: Spatial domain based algorithms and Transform domain based algorithms, which are
divided into further sub-categories. Spatial domain based algorithms: Pixel based Fusion [20,34,45–60],
Feature based Fusion [21,24,33,61], Decision based Fusion [39,62–64]. Transform domain based algorithms:
Wavelets based Fusion [24,40,44,56,65,66], Curvelet based Fusion [18,44], DCT based Fusion [22,42,67,68].

3. Multi-Focus Image Fusion in Transform Domain

Transform domain based multi-focus image fusion involves the conversion of source images into
transformation coefficients and after applying fusion procedure the image is converted back to its
own space. We broadly categorized the transform based image fusion techniques into three groups:
wavelets based, curvelet based, and DCT based fusion.
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3.1. Wavelets Based Image Fusion Techniques

The wavelet transform has been extensively explored for image fusion resulting in the proposal of
a number of algorithms. The image fusion algorithm proposed in [24] converts the source images in to
smaller wavelets by using filters. The images are first exposed from low-pass and high-pass filters
horizontally and vertically along-with donwsampling. The fused image is generated by averaging
approximation bands ILL of the original images and by taking the largest coefficient of each detailed
sub-band. The wavelet based statistical sharpness measure (WSSM) [65] exploits marginal distribution
to extract the local content information. The input images are decomposed and wavelet coefficient
distribution is generated using two-component Laplacian model. Later, the approximation subband of
the fused image is generated by taking the weighted average of region entropy that is calculated for
each approximation coefficient using its detail subband’s coefficient. In [66], the source images are
decomposed to low and high subbands. The fused sparse vector is obtained by selecting the maximum
of the sparse vectors of both images. For high pass bands, the coefficient with the maximum value
is selected as fused high pass band coefficient. In Non-Subsampled Contourlet Transform method [56],
for each source image low pass sub band and band-pass directional sub band coefficients are generated.
Then these sub bands are exposed to fusion rules.

3.2. Curvelet Based Image Fusion Techniques

In [18], it is demonstrated that the wavelets may not be effective when the images do not show
isotropic scaling. To this end, curvelet transform based image fusion algorithm is proposed in [44].
They claim that curvelet transform is best suited for edge representation, moreover its coefficients are
not affected by noise. The source images are transformed into coefficients using curvelet transform
which are given as an input to the wavelet transform. The inverse curvelet transform is applied on
coefficients obtained from inverse wavelet transform to get the final fused image.

3.3. Discrete Cosine Transform Based Image Fusion Techniques

Discrete cosine transform (DCT) [69] is a popular mean for image fusion due to its energy
compactness property. In image fusion using discrete cosine transform based laplacian pyramid
(DCTLP) algorithm [42], DCT is used as a reduction function to form the Laplacian pyramid. For each
level, only the first half in both directions of the source image is taken as input for each next level
pyramid image. The highest pyramid level is fused using the average rule i.e., the average of both
band pass images is computed to obtain the next level image. The process is repeated till the last level.
In [22], the discrete cosine wavelet coefficients of a particular image are calculated, then on each of
the subbands DCT is applied. After computing all coefficients, the two images are fused using pixel
significance details which are computed as the ration between wavelet coefficients at each level. The
DCT based image fusion is efficient and time-saving but it has some limitations, such as, blocking
artifacts generation and blurriness [67]. To this end, DCT with variance is implemented for fusion
in [67].

4. Multi-Focus Image Fusion in Spatial Domain

The spatial domain based multi-focus image fusion algorithms operate directly on the image
pixels to obtain all-in-focus image. We divide these approaches in to three categories: pixel-based,
feature-based, and decision-based.

4.1. Pixel Based Multi-Focus Image Fusion Techniques

Pixel-based methods are the lowest level of fusion techniques in which the image focused data
are taken from every pixel. Many multi-focus image fusion techniques suffer from different artifacts
such as ringing and misregistration of boundary pixel. The dictionary based sparse representation
algorithms [34,46,47,70] perform better in such cases. Sparse representation, however, has limited
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adeptness in detail preservation and high sensitivity to misregistration [20]. To solve these issues,
convolutional sparse representation (CSR) is proposed in [20] which computes the sparse coefficients
of the whole image rather than patches. It is shift invariant which helps to improve quality
in misregistered regions. The guided filtering [45] is used mostly in applications when edges are
needed to be preserved. In the guided filtering fusion (GFF) of images [49], the images are decomposed
into the base and detail layers by using average filters. A focus map is constructed using the saliency
map computed by applying Laplacian and Gaussian low pass filters on input images.

The image fusion using matting (IFM) [50] differentiates the foreground from the background
using image matting and this division is used to fuse the source images. Image matting [51] measures
the transparency of foreground known as alpha matte. The cross bilateral filtering (CBF) based fusion
method [52] considers both geometric and gray level properties of images for integration. In [53],
quad tree decomposition is used and decision is taken based on the gradient information in each patch.
Self-similarity and depth information (SSDI) approach [54] identifies the similarity between the visual
articles in the images which are used to obtain the fused image.

Image orientation information (OI) and pulse-coupled neural network (PCNN) is used for
fusion in [55,56], respectively, by taking the orientation information of source images as a feature.
In [57], gradient based focus measure is calculated for each region and a decision map is created by
coping indices of regions with greater focus. In [58], fusion is done by finding two focus measures
using gradient. One is used to find exact focus parts from source images whereas other one is used to
find boundary pixel values. In the fusion method in [59], the decision map is computed using pixel
luminance and gradient.

4.2. Feature-Based Multi-Focus Image Fusion

In feature based image fusion, the features such as edge details, texture, etc. are extracted from
the source images and used to construct the fused image. There are numerous feature-based multi-focus
image fusion algorithms e.g., DSIFT [33]. In DSIFT, local feature descriptors are extracted using the SIFT
algorithm [71]. Activity level features are computed based on the local gradient and a patch is marked
as focus if the average of its coefficients is greater than the corresponding patches in the other images.
The focus map is then used to perform the fusion. The principal component analysis (PCA) based
image fusion [24] uses co-variance and eigenvectors to get fused images. The multi-exposure fusion
method proposed in [61] estimates the fused map using local contrast, exposure quality, and spatial
consistency. The method in [21] uses independent component analysis to get the fused image.

4.3. Decision-Based Multi-Focus Image Fusion

In decision level fusion, the source images are exposed to different algorithms who act as local
decision makers e.g., genetic algorithm [39]. In this method, the edges in the source images are detected
and used with genetic search to find optimum weights from set of features, mean, standard deviation,
and three central moments. These features are given as input to genetic search and after multiple
iterations of searching it returns two optimum weights for each image. These two optimum weights
are than multiplied with respective images and added to generate the fused image. The decision-based
fusion algorithms are also exploited for sensor data and biometric data fusion e.g., [62–64].

5. Performance Evaluation

In this section, we evaluate the performance of 24 mulit-focus image fusion algorithms. The list of
selected methods is presented in Table 1.
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Table 1. List of multi-focus image fusion (MIF) algorithms used in this study. Category represents the
category of the algorithm: S for spatial and T for transform domain-based method, the the sub-category
of the algorithm is provided in parenthesis.

Method Category Reference

CSR S (Pixel-based) Convolutional Sparse Representation [20]
PCA S (Feature-based) Principle Component Analysis [24]
DSIFT S (Feature-based) Dense SIFT [33]
DCTLP T (DCT) Discrete Cosine Transform with Laplacian Pyramid [42]
WSSM T (DWT) Wavelet based Statistical Sharpness Measure [65]
ICA S (Feature-based) Independent Component Analysis [21]
DCHWT T (DCT) Discrete Cosine Harmonic Wavelet Transform [22]
GFF S (Pixel-based) Guided filtering [49]
IFM S (Pixel-based) Image matting [50]
GIF S (Pixel-based) Guided filtering [67]
CBF S (Pixel-based) Image fusion based on cross bilateral filter [52]
DCTV T (DCT) DCT with variance [66,67]
IFGD S (Pixel-based) Gradient domain [59]
MSMFM S (Pixel-based) Multi-scale Morphological Focus Measure [57]
MSTSR T (DWT) Multi-scale Transform and Sparse Representation [66]
MWGF S (Pixel-based) Multi-scale weighted gradient-based fusion [58]
OI S (Pixel-based) Orientation Information and Pulse Coupled Neural Net.[55]
NSCT T (Contourlet) Neural Net. in Nonsubsampled Contourlet Transform [56]
QTD S (Pixel-based) Quadtree-based multi-focus image fusion [53]
IFC T (DCT) DCT Domain and Harmonic wavelet [22]
MSMFMg S (Pixel-based) Boundary based focus measurement [57]
SSDI S (Pixel-based) Fusion using self-similarity and depth information [54]
DSIFT2 S (Feature-based) Dense SIFT for ghost-free multi-exposure fusion [61]
GRW S (Pixel-based) Generalized Random Walks for Fusion [72]

The evaluation is performed qualitatively and quantitatively. In particular, we used 12 objective
fusion quality assessment metrics to extensively evaluate their results. We also rank the algorithms
using the Borda count technique [73–75] to find the top performers. Moreover, an analysis of the
fusion quality assessment techniques is also presented. A time complexity analysis is also carried out
to measure the overall effectiveness of the algorithm.

5.1. Performance Evaluation Datasets

The performance of MIF algorithms is evaluated on two datasets: Lytro [33] and Grayscale [60].
The former contains 20 pairs of colored multi-focus images, the dimension of each image is 520 × 520.
Grayscale dataset consists of 11 widely used pairs of multi-focus images collected from different
sources. Their dimensions vary from 160 × 160 to 944 × 736. These datasets contain indoor, outdoor,
and aerial images. The image pairs are registered and each image pair has different level of details.
The images in each pair are complimentary i.e., the focus region in one image is defocus in the other
and vice-versa. Thumbnails of both datasets are shown in Figures 3 and 4. To perform the qualitative
and objective evaluations, the fused images are obtained using each algorithm on each multi-focus
image set. Most of the results reported in this paper are generated from the source code provided
directly by authors of the respective papers. There are only few algorithms that are coded by us or their
implementations provided by third party are used. In either case, the same parameters recommended
in the respective papers are used to obtain the results. Moreover, most of the algorithms do not report
the results on all images or on both datasets used in our study, the results obtained on the common
images are compared to verify the correctness of the implemented algorithm.
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Figure 3. Sample multi-focus images from Grayscale dataset.

Figure 4. Sample images from Lytro multi-focus image fusion dataset.

5.2. Qualitative Evaluation

The qualitative evaluation is performed by comparing the visual quality of the fused images.
To perform this comparison, we carefully evaluated the results achieved by the compared methods on
all test image pairs. However, for conciseness, we chose one representative image from both datasets
and report the comparison of the results achieved by the competing algorithm. From Lytro dataset,
the ‘fence’ image set is selected as the fence has cross-section areas which give us more details of
edge and boundary information. From Grayscale dataset, the ‘clock’ image pair is selected which
has been widely used in the image fusion literature for performance evaluation. To better express
the outcomes of the visual inspection, the regions with artifacts are highlighted with red rectangles.
Note that the image fusion algorithms QTD, SSDI, MSMFMg, NSCT, and OI use intensity images as
input and therefore the resultant fused images are grayscale.

Figure 5 shows the fusion results achieved by the compared methods on the fence image
set. The results show that the fused images generated by MSMFM, MSMFMg, IFGD, and SSDI
methods have unfocused fence regions as highlighted in Figure 5. In the results of CSR, few parts of
the foreground are not sharp enough as in original images. Furthermore, the boundary of foreground
and background regions are little blurred, and the color of the floor exhibits the reduction in contrast
and brightness. In the DCT based approaches, DCHWT, DCTLP, and PCA, misregistration of edges
is evident. The fused images look distorted, the correlation between colors also not appeared to be as
agreeable as in focused part of source images. In addition to that, the ringing artifact is visible on the
wall and around the boundaries of the fence.

In the fusion results of DCHWT method, the rippling artifacts appeared near the edges. Moreover,
the details are not sharp, e.g., net’s pillar and people standing at the distance from the camera are
indistinct-able. In case of DSIFT, in the fused image the top middle part of the fence is blurred.
The foreground image is not fused well, there are solid lines, and the boundaries of focused and
unfocused regions are over sharpened. The GFF method has adequate results but in this technique,
fence joints are blurred and foreground image is little brighter too. However, the GFF preserves color
contrast and brightness. The result of ICA exhibits blurriness near shooter’s head, near the boundaries
of focused and unfocused regions and the door. The foreground is transparent near the ball. The IFM
results suffer from the color distortion on the fence and the ball. Details of girl’s face are also missing.
It appears that it is merged with the wall’s color and contrast.

The fused images created by the PCA algorithm are highly blurred and exhibits the ringing effect.
In this example, the edges of the fence are not defined and the brightness of the image is reduced.
The fusion results of WSSM method show that the edges are not fused perfectly. The fence is distorted
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and suffer from ghost effect at a number of regions. Moreover, the fused image has ringing effect near
the wall. In the results of GIF, the fence is not clear—it is transparent and unfocused at some regions.
The results of MWGF and NSCT methods still have minor unfocused regions as highlighted with red
rectangles in Figure 5. The results of CBF algorithm suffer from the face over sharpening, reduction in
color contrast, transparency and existence of unfocused regions at different sections. Similar artifacts
can be spotted in in the fusion results achieved by the DSIFT2 and GRW methods. The results of DCTV
and OI algorithms are very poor, resultant images have spherical artifacts, unfocused regions, and over
sharpening of edges. The results show that the QTD algorithm performs better than other compared
methods, its fusion results are free from most artifacts.

(a) CBF (b) CSR (c)
DCHWT

(d)
DCTLP

(e)
DCTV

(f)
DSIFT

(g)
GFF

(h) GIF (i) ICA (j)
IFGD

(k) IFM (l) PCA

(m)
WSSM

(n)
GRW

(o)
DSIFT2

(p)
MWGF

(q)
MSTSR

(r)
MSMFM

(s)
NSCT

(t) OI (u)
MSMFMg

(v) IFC (w)
SSDI

(x)
QTD

Figure 5. Visual comparison compared multi-focus image fusion methods on the fence image set of
Lytro dataset.

The performance of multi-focus image fusion approaches on the Grayscale dataset is discussed
with the help of the clock test image pair. This image pair shows two clocks, one image shows the
foreground clock in focus and in the other image the background clock is focused. The results achieved
by the compared methods on this image pair are shown in Figure 6. The result shows that MSMFM
and MSMFMg techniques do not exhibit any type of undecided pixel focus as well as no ghost effected
area exists. Moreover, the ringing effect does not appear in the resultant images. The SSDI algorithm
also shows good visual result, the only problem it faces is a small unfocused portion at the bottom
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left boundary of the foreground clock. A number of regions are not in focus in QTD and IFGD results.
The fused image created by CSR algorithm exhibits distortion on the left boundary of the smaller
timepiece. The result obtained from DCHWT approach has certain horizontal and vertical artifacts on
the lower side and the upper side of the image respectively. The upper region of the clock is pixelated
and similar horizontal and vertical lines are also visible.

(a) CBF (b) CSR (c)
DCHWT

(d)
DCTLP

(e)
DCTV

(f)
DSIFT

(g)
GFF

(h) GIF (i) ICA (j)
IFGD

(k) IFM (l) PCA

(m)
WSSM

(n)
GRW

(o)
DSIFT2

(p)
MWGF

(q)
MSTSR

(r)
MSMFM

(s)
NSCT

(t) OI (u)
MSMFMg

(v) IFC (w)
SSDI

(x)
QTD

Figure 6. Visual comparison compared multi-focus image fusion methods on clock image set of the
Grayscale dataset.

The fused image generated by the DCTLP algorithm does not have color contrast as that exists
in the original images. The DSIFT fused image exhibits good quality except few regions are grainy
and has blurriness at the boundary of focused part of the foreground and the background image.
The blurriness can also be spotted in the fusion results of GFF, GIF, and IFM techniques. The PCA and
WSSM do not show convincing results as can be seen from Figure 6, the PCA fused image is blurry and
color contrast is also not appropriate. Whereas, WSSM and MWGF exhibit structural distortion and
ghost regions on the right side of the foreground clock and upper side of background clock. The fusion
results achieved by CBF and MSTSR techniques suffer from color distortion and the so called grainy
effect due to imperfect fusion maps. The fusion results of DCTV and OI technique are blurry and suffer
from structural distortions.
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From the visual comparison of the results achieved by the compared methods presented in
Figures 5 and 6, we conclude that considering both datasets, the visual comparisons come to the
agreement that DSIFT, QTD, GFF, NSCT, and MSTSR are among the five best fusion methods for the
Lytro dataset and MSMFM, MSMFMg, DSIFT, QTD, and SSDI are the best five for the Grayscale dataset.

5.3. Quantitative Evaluation

It is not easy to evaluate the performance of fusion algorithms. For investigation of effectiveness
and evaluation of performance, two practices can be followed. First is to compare the fused image
with a ground truth image (reference image), but in most practical applications, the ground truths are
not available. Due to this reason the second practice came into existence, which is to assess the fused
image blindly without using reference images. To validate the performance of an algorithm, along with
the visual assessment the objective assessment is necessary. Therefore, numerous objective assessment
models for evaluation of fusion parameters are proposed e.g., [76–80].

An extensive objective evaluation is performed to assess the fusion quality of the compared
multi-focus image fusion algorithms. In particular, we used 12 different objective fusion quality
assessment metrics in this evaluation. These metrics use various image characteristics to assess its
quality and based on these characteristics they are divided in to four groups [77].

• Information theory based metrics measure the quality of the fused image using probability based
methods i.e., mutual information, divergence, and correlation, between the fused image and the
source images.

• Feature based metrics estimate the quality of a fused image by considering different type of features,
such as, gradient, edge information, spatial frequency, etc.

• Structural similarity based metrics compare the structural information of the fused image and the
source images to estimate the fusion quality.

• Human perception based metrics consider the contrast, overlapping regions, misregistration of
pixel, and edge information in estimating the quality of the fused image with respect to the
source images.

The metrics used in this evaluation with their respective category are listed in Table 2.

Table 2. Objective image fusion quality assessment metrics used in performance evaluation of the
compared methods.

Metric Abbr. Metric Reference

Information theory based metrics

QM Normalized mutual information [78,79]
QNCIE Non-linear correlation metric [81]
QTE Tselli’s entropy [82]

VIFF Visual information fidelity metric [80]

Feature based metrics

QG Gradient based metric [76]
QSF Spatial frequency based metric [83]
QM Multi-scale metric [84]

QP
Moments based metric [85]

Structural similarity based metrics

QS Variance based metric [86]

QY
Yang’s metric [87]

Human perception based metrics

QCV Chen Varshney’s metric [88]
QCB Chen Blum’s metric [89]
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The fusion results obtained by each algorithm on both datasets are evaluated using all 12 objective
quality assessment metrics listed in Table 2. In this evaluation, the fusion quality assessment library
proposed in [77] is used. The detailed evaluation results on the Grayscale dataset are presented in
Figure 7 and on the Lytro dataset are shown in Figure 8. The QMI evaluates the fused images on the
basis of joint and marginal probability distribution of the fused image and the source images. It ranks
MSMFMg, DSIFT, and QTD as the three best algorithms for the Grayscale and QTD, MSMFM, and SSDI
for Lytro. The QNCIE metric takes non-linear correlation coefficient into account while evaluating
the fused image. It ranks OI, MSMFM, and QTD as top algorithms for both datasets. The QTE uses
entropy to calculate quality of fused images and it ranks OI, DSIFT2, and NSCT on top of ranking
for the Grayscale dataset. It evaluates ICA, GFF, and DSIFT2 as the top performing algorithms for
the Lytro dataset. VIFF uses different models such as Gaussian scale mixture model for evaluating
fused image quality. According to VIFF metric evaluation, IFGD, ICA, and MSTSR are ranked as the
best performers for Grayscale whereas IFGD, MSTSR, and QTD for the Lytro dataset. The Table 3
summarizes the evaluation results based on information theory metrics and presents the best three
image fusion algorithms for both datasets.

The QG metric calculates edge preservation using Sobel edge detection operator as well as
orientation to evaluate the fused image quality. According to this metric, MSMFMg, GIF, and QTD
are amongst the best for the Grayscale dataset and MSMFM, DSIFT, and QTD for the Lytro dataset.
The QSF metric takes gradient information in four different directions of fused image and source images
in consideration. In evaluations QSF ranked IFGD, ICA, and DCTV as are the best three algorithms for
the Grayscale dataset, whereas for the Lytro dataset, DSIFT, DCTV, and IFM are top ranked. The QP
uses the phase congruency information of the fused and source images to assess the quality. On the
basis of its evaluations GIF, DSIFT, and MSMFMg are the top performing algorithms on the Grayscale
dataset and GFF, GIF, and MSMFM for Lytro dataset. The QM uses edge information calculated by low-
and high-pass components of wavelet. The results of feature based metrics evaluation are summarized
in Table 4 that shows that DSIFT, QTD, and DCTV are amongst the best algorithms for both the
Grayscale and Lytro datasets. The same results are also identifiable in our visual inspection.
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Figure 7. Performance of different image fusion algorithms on the Grayscale dataset using objective
fusion quality assessment metrics.
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Figure 8. Performance of different image fusion algorithms on the Lytro dataset using objective fusion
quality assessment metrics.

Table 3. Summary of performance evaluation using information based metrics. For each metric,
the numbers (1), (2), and (3) show the three best performing algorithms, respectively.

Metric Grayscale Lytro

QMI (1) MSMFMg (2) DSIFT (3) QTD (1) QTD (2) MSMFM (3) SSDI
QNCIE (1) OI (2) MSMFMg (3) QTD (1) OI (2) MSMFM (3) QTD
QTE (1) OI (2) DSIFT2 (3) NSCT (1) ICA (2) GFF (3) DSIFT2
VIFF (1) IFGD (2) ICA (3) MSTSR (1) IFGD (2) MSTSR (3) QTD

Table 4. Summary of performance evaluation using feature based metrics. For each metric, the numbers
(1), (2), and (3) show the three best performing algorithms, respectively.

Metric Grayscale Lytro

QG (1) MSMFMg (2) GIF (3) QTD (1) MSMFM (2) DSIFT (3) QTD
QM (1) DSIFT (2) QTD (3) DCTV (1) QTD (2) DSIFT (3) DCTV
QSF (1) IFGD (2) ICA (3) DCTV (1) DSIFT (2) DCTV (3) IFM
QP (1) GIF (2) DSIFT (3) MSMFM (1) GFF (2) GIF (3) MSMFM

The structural similarity based metric QS evaluates the fused image quality on the basis of
variance. It ranks ICA, DSIFT2, and CBF as the best algorithms for the Grayscale dataset and ICA, CBF,
and MSTSR for the Lytro dataset. The QY which takes other statistical features such as correlation,
co-variance, and edge dependent information into account too while evaluating the fused image
quality. It ranks GIF, MSMFMg, and QTD as the top algorithms for the Grayscale dataset and MSMFM,
QTD, and DSIFT for the Lytro images. The results of structural similarity based metrics are shown
in Table 5.

The summary of performance evaluation using human perception based metrics QCV and QCB
is presented in Table 6. The QCV metric considers the edge quality, similarity measurement of local
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regions, and global quality measurement of non-overlapping regions in evaluating the fused image
quality. This metric ranks IFGD and OI as the best algorithms for both the Lytro and Grayscale datasets.
The QCB metric uses contrast based features to assess the fusion results. It assesses GIF, MSMFMg,
and QTD as the best for the Grayscale and MSMFM and DSIFT for the Lytro dataset.

Table 5. Summary of performance evaluation using structural similarity based metrics. For each metric,
the numbers (1), (2), and (3) show the three best performing algorithms, respectively.

Metric Grayscale Lytro

QS (1) CBF (2) DSIFT2 (3) ICA (1) ICA (2) CBF (3) MSTSR
QY (1) GIF (2) MSMFMg (3) QTD (1) MSMFM (2) QTD (3) DSIFT

Table 6. Summary of performance evaluation using human perception based metrics. For each metric,
the numbers (1), (2), and (3) show the three best performing algorithms, respectively.

Metric Grayscale Lytro

QCV (1) IFGD (2) OI (3) DCTV (1) IFGD (2) OI (3) PCA
QCB (1) GIF (2) MSMFMg (3) QTD (1) QTD (2) MSMFM (3) DSIFT

5.4. Borda Count Ranking of Image Fusion Algorithms

The Borda count [73–75] is a voting technique that ranks candidates according to voters preferences.
The preferences are converted to scores and the candidate that has maximum score becomes the winner,
the second highest scorer gets the second spot and so on. We use this technique here to rank the image
fusion algorithms based on their ratings determined by the objective image fusion quality assessment
metrics. In the present scenario, since there are 24 algorithms being evaluated, therefore an algorithm is
assigned an integral value between 1 and 24 based on its performance measured by an objective quality
metric. The scores are given to each algorithm in reverse proportion to their ranking. That is the best
performing approach is assigned score 24 and the worst is assigned 1 score. For each fusion algorithm,
these scored are accumulated to obtain an aggregated score which decides its rank.

The Borda count scores that each algorithm received on the Grayscale and Lytro datasets are
presented in Table 7. The statistics reveal that for the Grayscale dataset MSMFM, MSMFMg, QTD,
DSIFT, and GIF algorithms are the best five, highlighted in bold. Interestingly, these results are the
same as those obtained from visual evaluation. On the Lytro dataset, the Borda count rated QTD,
DSIFT, MSMFMg, MSMFM, and SSDI as the best five fusion techniques. To get an overall picture of
this analysis, the scores obtained by a method on each dataset are aggregated. The algorithms are
ranked based on the aggregated scores and the results are presented in Figure 9. The results show that
MSMFMg is rated as the best algorithm with an aggregate score of 462, followed by QTD, MSMFM,
and DSIFT with very close scores of 459, 454, and 453, respectively.
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Figure 9. Borda count results on both dataset. The number at the column top shows its rank among the
24 compared methods.
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Table 7. Borda count results on test datasets. BC represents the cumulative Borda count score of each algorithm. The best five algorithms are marked in bold.

Metric CBF CSR DCHWT DCTLP DCTV DSIFT GFF GIF ICA IFGD IFM PCA WSSM GRW DSIFT2 MWGF MSTSR MSMFM NSCT OI MSMFMg IFC SSDI QTD

Grayscale dataset:

BC 131 112 39 71 178 227 182 210 151 97 207 86 58 52 150 163 170 237 143 172 238 106 188 232

Rank 16 17 24 21 9 4 8 5 13 19 6 20 22 23 14 12 11 2 15 10 1 18 7 3

Lytro dataset:

BC 149 115 56 53 168 226 197 206 145 76 199 54 103 81 158 182 176 217 134 136 224 111 207 227

Rank 13 17 22 24 11 2 8 6 14 21 7 23 19 20 12 9 10 4 16 15 3 18 5 1
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5.5. Summary

A summary of the findings of qualitative and quantitative evaluations is presented in Table 8.
It shows that the results of both evaluations on each dataset and also an overall assessment. On the
Grayscale dataset, the results of the visual and objective evaluations are the same except the visual
evaluation includes SSDI where as the objective assessment brings GIF in the five best algorithms.
On the Lytro dataset, the lists visually and objectively five best algorithms are the same except three
differences, the qualitative list includes MSTSR, GIF, and NSCT whereas the objective list includes
MSMFM, SSDI, and MSMFMg. The overall evaluation considering both datasets is the same as that
of the Grayscale dataset. That is, the list of the best five algorithms contain approximately the same
methods with slightly different ordering. From the statistics presented in Table 8, it can be noted
that the results of the visual and the objective evaluations mostly agree, confirming the results and
authenticating the effectiveness of the best rated image fusion methods.

Table 8. Summary of qualitative and quantitative performance evaluation results. Only the five best
performing methods are considered. In the case of quantitative evaluation, the metrics are ranked from
high to low. Whereas in the case of qualitative evaluations, this ranking is not vivid—few algorithms
might be indistinguishable by the visual evaluation.

Dataset Evaluation Methods

GS
Qualitative MSMFM, MSMFMg, SSDI, QTD, DSIFT
Quantitative MSMFMg, MSMFM, QTD, DSIFT, GIF

Lytro
Qualitative QTD, DSIFT, MSTSR, NSCT, GFF
Quantitative QTD, DSIFT, MSMFMg, MSMFM, SSDI

Both
Qualitative MSMFM, DSIFT, QTD, MSMFMg, SSDI
Quantitative MSMFMg, QTD, MSMFM, DSIFT, GIF

Another interesting fact notable from Table 8 is that all the best performing methods are spatial
domain based. To investigate it further, in Table 9, we list the five best performing MIF algorithms
of each category with their Borda count based rank (Figure 9). The results reveal that the best eight
methods among the 24 compared methods are spatial domain based algorithms. In the transform
domain based methods, DCTV is the best performing and ranked at number 9 among the compared
methods. Since we grouped the methods in each category into different groups, the best ranked
algorithm in each group with its BC ranking is presented in Table 10. These statistics further shed light
on the most suited domain/representation for efficient multi-focus image fusion. The results show
that in spatial domain, the pixel based MIF algorithms are particularly performing better than other
groups. Moreover, in the transform domain, the DCT based method is of particular interest. These
are very interesting facts which need further investigation to discover the limitations of the frequency
domain for multi-focus image fusion. We observed that the better performance of the spatial domain
based methods is due to their accurate detection of focused and defocused regions which leads to crisp
fusion results; such precise segmentation is not witnessed in most frequency domain methods that
suffer with different artifacts e.g., ghost effect.
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Table 9. Five best performing MIF algorithms in each category; spatial domain and transform domain.

Category Method Rank

Spatial Domain

MSMFMg 1
QTD 2
MSMFM 3
DSIFT 4
GIF 5

Transform Domain

DCTV 9
MSTSR 10
NSCT 16
DCHWT 18
WSSM 20

Table 10. The best performing MIF algorithm in each group.

Category Group Method Rank

Spatial Domain Pixel based Fusion MSMFMg 1
Featurebased Fusion DSIFT 4

Transform Domain
DCT based Fusion DCTV 9
Wavelets based Fusion MSTSR 10
Contourlet/Curvelet based Fusion NSCT 16

5.6. Computational Time Complexity Comparison

We also evaluate the image fusion algorithms on their computational time complexity. To this
end, the execution time of each algorithm is computed on all multi-focus image pairs of the Grayscale
and Lytro datasets. All algorithms were executed with the default parameters as described in the
respective papers. The evaluation is performed in Matlab environment on Intel c©CoreTMi5 processor
with 4 GB RAM and 64-bit Windows 10 operating system. The execution times reported here do not
include the file I/O time.

For each dataset, the execution time for each image set is computed and averaged. The average
execution time over both datasets is calculated for each method and the results are reported in Figure 10.
To ease the analysis, the results are arranged in non-decreasing order of average time for both datasets,
the bars are in blue. The results show the as many as 10 algorithms take around 1 s on average to fuse
a pair of images. Seven algorithms perform fusion in average from 1 to 10 s and the other 7 methods
are computationally expensive consuming 40 to 430 s per image pair. These techniques are mostly
sparse representation based e.g., CSR, MSTSR, others use wavelets with pyramid e.g., WSSM which
significantly increases their execution time. The method NSCT uses curvelet in combination with
wavelet method and consumes more time than simple wavelet methods because of two multi-scale
decomposition procedures.
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6. Fusion Library

We also introduce a multi-focus image fusion library which provides the implementation of all
the 24 multi-focus image fusion algorithms selected for evaluation in this paper, listed in Table 1.
The library is implemented in MATLAB and is provided as a standalone component which contains
all the dependencies, making it extremely easy to use. The current version of the proposed library
supports more than 24 image fusion methods. However, this library will be kept updated by including
the support for more image fusion techniques. We also encourage the multi-focus image fusion research
community to provide their contributions in this field to be included in this library. The multi-focus
image datasets and the library is available free at the project web-page: http://www.di.unito.it/~farid/
Research/FusionLib.html.

7. Conclusions

The multi-focus image fusion techniques merge focused part of images of the same scene that
are captured with different focus settings to obtain a single all-in-focus image. The fused image
has extended depth and is effortless to be interpreted by both human and machine. The main goal
of image fusion is to incorporate complementary parts of different images to get the advantageous
understanding of a scenario. It increases the detail of an image and improves result’s reliability.
In this study, numerous multi-focus image fusion techniques are reviewed and tested on two datasets
for comparison and analysis of their performance. For evaluation of results both qualitative and
quantitative approaches are considered. The second contribution of this paper is the proposal of
an image fusion library. The library provides implementation of 24 image fusion methods. It is easy to
use, implemented in Matlab and released free for public and peer use.
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