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Abstract

Accumulating evidence from human-based research has highlighted that the prevalent one-

size-fits-all approach for neural and behavioral interventions is inefficient. This approach

can benefit one individual, but be ineffective or even detrimental for another. Studying the

efficacy of the large range of different parameters for different individuals is costly, time-con-

suming and requires a large sample size that makes such research impractical and hinders

effective interventions. Here an active machine learning technique is presented across par-

ticipants—personalized Bayesian optimization (pBO)—that searches available parameter

combinations to optimize an intervention as a function of an individual’s ability. This novel

technique was utilized to identify transcranial alternating current stimulation (tACS) fre-

quency and current strength combinations most likely to improve arithmetic performance,

based on a subject’s baseline arithmetic abilities. The pBO was performed across all sub-

jects tested, building a model of subject performance, capable of recommending parameters

for future subjects based on their baseline arithmetic ability. pBO successfully searches,

learns, and recommends parameters for an effective neurointervention as supported by

behavioral, simulation, and neural data. The application of pBO in human-based research

opens up new avenues for personalized and more effective interventions, as well as discov-

eries of protocols for treatment and translation to other clinical and non-clinical domains.

Author summary

The common one-size-fits-all approach used in biological and behavioral research has

shown to be inefficient. This is especially the case in the field of brain stimulation, where

many different combinations of stimulation parameters (i.e., frequency and current

strength of the applied current) can be used for restorative or enhancement purposes, in

clinical and non-clinical populations, respectively. Even intervention protocols that have
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reported to be effective for certain individuals can be detrimental for others. Here we pres-

ent an active machine learning method, personalized Bayesian optimization (pBO) that

successfully searches, learns, and recommends neurostimulation parameters across indi-

viduals. Based on an individual’s baseline cognitive ability, the pBO identifies specific

combinations of transcranial alternating current stimulation parameters, which are most

likely to improve cognitive performance, in which case arithmetic problem solving. This

timely approach provides a possible solution for the pressing need for personalization in

different disciplines including medicine, psychology, and education.

Introduction

There is no doubt that the human organism is complex, and the impact of nature and nurture,

as well as their interaction, increases variability between humans. It is therefore not surprising

that interventions aimed at altering human behavior are not effective for all individuals. This

variability in effectiveness is partly due to the one-size-fits-all approach that currently domi-

nates behavioral intervention research. Accumulating evidence has indicated that this

approach is inefficient, and that a treatment that benefits one individual can be ineffective or

even detrimental for another individual [1–8]. Personalized medicine aims to address this

challenge by adjusting treatments to the individual or to a subset of patients [9,10]. Due to the

complexity of individual differences, there is an increasing need for personalized medicine for

a wide range of drugs, biomedical treatments, and diseases. Without this, the one-size-fits-all

approach often only alleviates symptoms in clinical studies without curing the disease [11].

This demand for personalization is especially true in the field of transcranial stimulation,

where electrical currents targeting specific brain regions are used to alter behavior. Whilst tai-

loring a stimulation protocol is ideal, identifying the optimal stimulation protocol for an indi-

vidual proves problematic in large parameter spaces, where the systematic testing of each

parameter combination can lead to overly costly and time-consuming protocols. For instance,

one stimulation technique that is gaining popularity is transcranial alternating current stimu-

lation (tACS) [12]. tACS utilizes an alternating current delivered via multiple electrodes placed

on the scalp, which is capable of propagating through the scalp and modulating the activity of

the underlying neurons. The applied alternating current promotes oscillatory activity at the

stimulation frequency [13], allowing direct modulation of brain oscillations that subserve cog-

nitive processes [14]. Through this process, tACS provides an attractive way to investigate

causal predictors of behavior and to use such knowledge to improve human capabilities or

health. However, exploring the effects of all tACS parameters on the performance of different

individuals requires an exhausting amount of testing when considering different current (0–2

mA) and frequency (0–100 Hz) combinations.

One recently proposed method for selecting parameters in brain stimulation is Bayesian

optimization (BO) [15,16]. BO is an active machine learning technique that aims to find the

global optimum of a black-box function f(x) by making a series of evaluations. To select the

next evaluation, BO first constructs a probabilistic model (surrogate model) for f(x) and

exploits this model to make decisions. This results in a procedure that can find the maximal

value of difficult non-concave functions with relatively few evaluations, at the cost of perform-

ing more computations to determine the next point (at minimal cost when compared with the

effort of evaluating the function at more points) [17]. Hence, BO is particularly valuable when

there is a need to explore a large experimental space in as few evaluations as possible. Gener-

ally, BO involves two procedures: 1) fitting an appropriate model to function f(x) and 2)
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choosing an acquisition function α(x) that steers sampling in the direction where improve-

ment over the current best evaluation is most likely. It should be mentioned that other brain

state-dependent stimulation methods that included personalized real-time electrophysiological

(EEG) correlates show promising results [18].

The present work was inspired by previous work that used BO in human-based research

[15,16,19–21]. In these previous BO studies, all iterations of the process are run on the same

individual, allowing the experimenters to achieve person-specific results. However, to do this,

the entire BO process must be run for each individual that requires stimulation—a lengthy

and costly process. A workable solution is to base the algorithm on a measurable characteristic

that varies across subjects, such as baseline ability in the behavioral task of interest. Therefore,

we developed a novel personalized (p)BO for human-based research. In pBO, the algorithm is

trained on an initial small set of data (burn-in phase), and then iteratively selects stimulation

parameters across subsequent subjects, with the aim of identifying the optimal stimulation

parameters for improving behavioral performance, whilst considering personalized informa-

tion. i.e. baseline arithmetic ability (Fig 1).

This BO algorithm can incorporate personalized information [22], including an individu-

al’s data, such as age, gender, neural activity or cognitive profile. Based on the vast literature

that highlights the impact of individual differences on stimulation efficacy [23,24], we person-

alized the BO to subject’s cognitive ability in this study. We focused on optimizing arithmetic

performance considering its importance in the success of one’s future career and socio-eco-

nomic status [25] and its impairment in acquired and congenital brain disorders [26]. Skills

needed for solving arithmetic problems vary greatly in the typical and atypical populations

[27,28]. Similarly, a recent study on arithmetic skills highlighted the individual differences in

both neural correlates and behavioral response in healthy people [29]. The left frontoparietal

network has been implicated in playing an important role in arithmetic processing and can be

targeted by tACS [30,31]. We recognize that other brain stimulation techniques have been

used in the field of arithmetic [32–37], for reviews see [31,38,39]. However, we utilized tACS

since this method allows for stimulation at a range of specific frequencies to explore those that

might impact arithmetic performance.

Fig 1. Illustration of the personalized Bayesian optimization procedure of theoretical values. a) The Gaussian

process (GP) is fitted to the existing data and models the expected performance along parameter and personalized

dimensions. b) The acquisition function identifies the next point to evaluate along the value of the personalized

variable relevant to the participant. c) Once the data is collected at this new point the GP is updated and a new point

selected. d) This cycle continues until either a new subject is tested, in which case a different value for the personalized

variable will be recorded. e) a pre-set stopping criterion is reached, such as the number of subjects to be tested; or until

the potential improvement is considered negligible (convergence). In this study, we utilized a pre-set stopping criterion

of 50 subjects, after which testing was ceased.

https://doi.org/10.1371/journal.pcbi.1008886.g001
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We examined whether we could tailor tACS parameters to improve arithmetic performance

using a pBO that takes baseline ability into account in healthy subjects. To do this, the individ-

ual’s baseline arithmetic ability was initially measured, after which the stimulation parameters

to be used were automatically selected either at random, if subjects were in the initial burn-in

phase (initialization phase), or by the pBO algorithm. Subjects then completed a block of the

arithmetic behavioral task whilst receiving stimulation using the selected parameters (Fig 2).

Stimulation parameter selection and behavioral testing were repeated in each subject until

three blocks of different arithmetic problems were completed. Note that these three blocks

were included to select more samples to allow optimization based on the pBO across subjects,

rather than optimizing performance over these three iterations. The tACS parameters that

were altered were current intensity and frequency, and the pBO algorithm aimed to identify

the optimal parameter combination for improving arithmetic ability given a subject’s baseline

arithmetic ability. To target the ability to solve arithmetic problems more precisely we used dif-

fusion modeling, which allowed us to incorporate human performance while taking into

account measures of both accuracy and reaction time in its calculation, a measure of cognitive

ability, rather than auxiliary components such as non-decision response time or response con-

servativeness [40]. Furthermore, we ran different computational simulations to demonstrate

the efficiency of our proposed pBO in comparison to random sampling and a standard BO

algorithm (i.e., pBO without a personalized variable). We also recorded electrophysiological

Fig 2. An overview of the experimental paradigm. a) An overview of the behavioral paradigm. Subjects (n = 50) watched a

fixation point that indicated the start of a trial. After 3000 ms an arithmetic multiplication was shown with two possible

answer options on the left and right side with a difference of 10 to keep consistency in task difficulty. Subjects responded by

pressing either the left or right button on a response box as quickly and accurately with no time limit present. Lastly, subjects

received either ‘correct’ or ‘incorrect’ as feedback to continuously capture attention. b) Subjects first completed a baseline rs-

EEG of four minutes, after which 10 practice trials of multi-digit times single-digit multiplications were presented of four

minutes. This was followed by the baseline task of 10 minutes, which comprised five blocks of 10 different multiplications.

Subjects had a short break (~3 minutes) between baseline and the pBO. Three different tACS frequency-current

combinations were proposed by the pBO algorithm after the completion of each sequence of 50 trials of the multiplication

task which was approximately 30 minutes in total. Between these tACS combinations, post-block rs-EEGs of four minutes

were recorded before the subjects moved on to the next tACS combination. Validation of the blinding of the stimulation and

perceived sensations were assessed after completion of a stimulation block. c) An illustration of the tACS electrode montage.

Stimulation was applied over the left frontoparietal area (F3 and P3) with one return electrode (Cz). d) A top down topoplot

showing both the stimulation electrodes (red and blue) and the EEG electrode placing (turquoise).

https://doi.org/10.1371/journal.pcbi.1008886.g002
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frequency band power and connectivity at baseline and after applying combinations of tACS

parameters to link behavioral changes to EEG outcomes, while we report this finding, we note

that it is not the main focus of the present study.

Results

Personalized Bayesian optimization

Baseline ability is a continuous parameter and it should be considered that the best inferred

tACS combination differs along this continuum. Following the suggestion of Aiken, West, and

Reno [41] to allow for further visual inspection, we visualized the continuum at three different

points: low (mean -1 SD), mean and high (mean +1 SD) baseline ability. As Fig 3 shows, the

optimal stimulation parameters depended on the participants’ baseline ability: we found a shift

from higher frequencies and currents in lower (poor) baseline abilities, to lower frequencies

and currents in higher (better) baseline abilities (mean - 1SD (38.67 Hz, 0.97 mA), mean

(16.67 Hz, 0.88 mA), mean + 1SD (18 Hz, 0.6 mA), mA values are peak-to-peak).

A more in-depth visualization of the efficacy of the pBO procedure revealed that the overall

fluctuation in performance improvement (e.g., normalized to the baseline performance with-

out stimulation) across subjects with low and high baseline abilities was similar (Fig 4A). This

result indicates that the success of our approach is equally effective for people with either low

or high arithmetic baseline ability. The optimal frequency-current tACS parameter combina-

tions proposed by the pBO algorithm confirms a shift from higher frequencies and currents in

low-baseline ability subjects to lower frequencies and currents when baseline ability increases

(Fig 4B; see also Fig 3). The behavior of the pBO algorithm can be seen in Fig 4C as the pre-

dicted best performance dramatically increases a number of times over the course of one itera-

tion. This is where a beneficial stimulation combination is identified. Further, the predicted

best performance tends to decrease soon after as that point is retested, and a more accurate

estimation of the performance is identified. The best performance predicted by the GP was cal-

culated as the highest value (i.e. “the best”) that the GP predicted across the frequency-current

combinations. In addition, the black-box function f(x) is reliably optimized over the course of

the iterations, as shown by an increase in the individual’s ability to solve arithmetic problems

(Fig 4C).

Fig 3. Results of the personalized Bayesian optimization model at several different baseline abilities (n = 49). The

figure shows the predictions from the Gaussian process model for low baseline ability (panel a: 1 standard deviation

(SD) below the mean), mean baseline ability (panel b: mean = 0.055), and for high baseline ability (panel c: 1 SD above

the mean). The y-axis shows the frequency range of the applied stimulation (0–50 Hz) and the x-axis the current of the

stimulation (0–1.6 mA, peak-to-peak). Arithmetic performance is indicated in color based on the normalized drift

rates (tACS block/baseline block). Low drift rates are shown in dark blue and high drift rates in yellow. A best-inferred

point for arithmetic performance according to a specific frequency-current combination is indicated by a red square in

all three panels. Note that this figure is not based on different groups of participants as in moderation analysis, but

represents a three dimensional view of the GP’s surrogate surface at three different points for visualization purposes.

https://doi.org/10.1371/journal.pcbi.1008886.g003
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Based on the suggestion of one of the anonymous reviewers, we also performed cross-vali-

dation as a resampling procedure to evaluate our pBO algorithm on a limited data sample. We

performed cross-validation by randomly splitting 80% of the participants into a training group

and the remaining 20% into a testing group. In this regression problem, the input included the

current intensity, frequency and baseline ability. The output was the performance score in

drift rate. The aim was to estimate how the model was expected to perform in general when

used to make predictions on data not used during the training of the model. Using the Gauss-

ian process for regression, we measured the Mean Squared Error (MSE) which is the average

error between the true value against the predicted value. The results of this analysis showed an

MSE of 0.3 for this validation task. To put this MSE score into context, the (arithmetic) perfor-

mance score from this experiment ranges from 0.5 to 3.8 with a standard deviation of 0.54. We

can see that the MSE of 0.3 is reasonable given the unavoidable measurement noise which is

common in the field of experimental psychology.

Fig 4. Results of optimizing behavior with personalized Bayesian optimization (pBO) (n = 49). a) In-depth

visualization of the normalized performance according to baseline ability during pBO. Normalized performance was

calculated as the drift rate of the performance block divided by the drift rate of the baseline block. Subjects on the lower

part of the baseline ability spectrum showed a similar arithmetic performance improvement during tACS compared to

subjects on the higher baseline ability spectrum. Note that a normalized performance score of 1 indicates no difference

with baseline arithmetic performance when no stimulation was applied. A normalized performance score higher than

1 indicates improved performance as measured with drift rate. The blue shaded area indicates 95% credibility intervals.

b) The change in frequency-amplitude tACS parameters proposed by the pBO algorithm based on the individualized

baseline ability in arithmetic at the end of optimization. c) Predicted best performance at each iteration (i.e., different

blocks), calculated as the best performance predicted by the GP at any parameter combination. Subjects were added

sequentially, with three subsequent iterations were assessed for each participant. For example, iterations 148–150,

represents blocks 1–3 for the 50th subject. Surrogate uncertainty is shown by the shaded area in pink. Note that during

some iterations uncertainty is higher due to new baseline abilities introduced in the pBO and due to outliers. These

outliers are retested later which then reduces uncertainty.

https://doi.org/10.1371/journal.pcbi.1008886.g004
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Personalized Bayesian optimization simulation analysis

To demonstrate the efficiency of our proposed pBO, we examined the optimization perfor-

mance on a Hartmann 3-dimensional function [42]. This 3-dimensional function is a suitable

benchmark representing our real experiments including three variables (frequency, current,

and baseline ability). When running a Hartmann 3-dimensional optimization using the

expected improvement (EI) [43] as an acquisition function in the pBO algorithm, the pBO

algorithm outperformed a standard BO algorithm as well as random sampling (Fig 5). Whilst

this is a comparison of a model with 3 parameters (pBO) outperforming a model with 2

parameters (BO), this simulates the additional data incorporated into the pBO model in the

form of a relevant personalized variable, which is not present in standard BO. The results of

this comparison show that higher drift rate values are attained more quickly when using the EI

pBO procedure in comparison with BO and random sampling (Fig 5A), and the pBO algo-

rithm was shown to identify an optima closer to the true optima of the Hartmann function

(Fig 5B). When the noise variance s2
n increases, the pBO performance is closer to the perfor-

mance of random sampling and standard BO (Fig 5). As further mentioned in section ‘Acqui-

sition function’ relating to hyperparameter considerations, the estimate of s2
n from our

observed data which varies by iterations ranged between 0.01 and 2.

Thus, if the behavioral evaluations of the experimental procedure are too noisy, the pBO

procedure’s ability to make correct judgements about the optimum parameters is diminished

but it is still able to outperform random sampling. Critically, as Fig 5 illustrates within these

estimated noise variance ranges, our pBO leads to improved optimization compared with the

standard BO approach that does not take baseline ability into account. In particular, the stan-

dard BO is unable to enhance performance, thus highlighting the benefit of personalization vs.

the one-size-fits-all approach.

Baseline electroencephalography and arithmetic ability

To examine whether our results are supported by neurophysiology we used baseline electroen-

cephalography (EEG). Previous EEG studies suggest a positive relationship between left fron-

toparietal theta (4–8 Hz) connectivity and high-level cognitive processing [44–48]. However,

none was found when running a regression model trying to predict baseline arithmetic ability

from baseline left frontoparietal connectivity in the theta range (all p> .3). The same applied

to frontal theta power (p = .88), theta/beta ratio, and beta (14–30 Hz) connectivity (all p> .1).

However, our findings from the pBO models highlight an optimal performance effect in the

beta frequency range (14–30 Hz) in subjects with average and high baseline ability, whilst low

baseline ability individuals benefit from stimulation in the gamma frequency range (> 30 Hz).

We therefore examined the relationship between baseline ability and baseline frontal beta

power in an exploratory manner. Higher (gamma) frequencies could not be recorded reliably

with the equipment. We found that subjects with higher arithmetic baseline ability have higher

baseline beta power in comparison to subjects with lower arithmetic baseline skills (non-

parametric (Spearman) correlation: rs = .29, p = .03). This neurophysiological finding corrobo-

rates the group-level pBO model results, where the pBO algorithm chose the tACS frequency

that mirrors baseline neurophysiological activity in those individuals.

Discussion

Most interventions in humans are not tailored to the individual’s characteristics, such as

behavior or brain function, but use a one-size-fits-all approach that leads to inefficient or even

ineffective interventions [1–8]. This lack of progress is rooted mainly in the complexity of
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Fig 5. Results of simulating the ability of pBO, BO and random search algorithms on identifying the optima in the Hartmann

3-dimensional surface. The simulation was run 30 times on each of the six different levels of noise, lines represent the mean

performance and shaded areas the standard deviation of 30 repeats. a) Shows the best found value identified by each algorithm at each

iteration, demonstrating that the pBO algorithm is able to find higher values more quickly than the BO and random search algorithms.

b) Shows the Euclidean distance of the identified optima from the true optima of the Hartmann function (i.e., accuracy of the

algorithm). The pBO algorithm is shown to be more accurate than the BO and random search algorithms, except at very high levels of

noise, where they are comparable.

https://doi.org/10.1371/journal.pcbi.1008886.g005
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personalizing interventions, due to the immense burden on time and resources. The results of

the empirical and simulation experiments performed in the present study demonstrate that

our pBO algorithm is capable of tailoring different current strengths and frequencies of tACS

to an individual’s baseline ability. Specifically, we demonstrated that the optimal stimulation

parameters, determined by the pBO algorithm, differ in low and high arithmetic baseline indi-

viduals. This suggests that there are either different cognitive processes involved or differing

effects of stimulation in these groups. For example, a recent multiplication study indicated

possible behavioral constraints of a one-size-fits-all brain stimulation protocol on performers

in a certain subgroup of the population (e.g., high performers) [48]. Notably, the present

results cannot be explained by a placebo (sham) stimulation, as we controlled for placebo

effects of stimulation by including 0 mA in the search space of the pBO algorithm, as well as

other very weak currents that are assumed to be ineffective. In addition, if our effects could be

explained by a placebo effect, it should have led to the parameters that yielded the strongest

sensation, which was not the case (S2 and S4 Figs). Similarly, our results cannot be attributed

to the participants learning effects as improvement in arithmetic performance was based on an

improvement across participants, and not within.

Highlighting the significance of our results, the majority of previous brain stimulation stud-

ies that aimed to determine stimulation parameters have only tested a small number of different

parameters to observe their differential effects [31]. However, this approach leaves a large

amount of stimulation parameter combinations unexplored, as such exploration is both expen-

sive and time consuming. Whilst a small number of studies have utilized BO, they have focused

on running the entire BO paradigm on one individual to find their best stimulation parameters

[15,16]. This approach, while providing many advantages, does not allow for the convenient

transfer of parameters optimized for one subject to new subjects, and does not allow its usage in

contexts that do not permit repeated sampling in the same individual due to ethical constraints,

potential side effects, or time pressure. Additionally, the need to sample to the parameter space

during the initial burn-in phase increases the sample size required to identify optimal stimulation

parameters. In contrast, our pBO algorithm provides further advancements by including the fol-

lowing novel processes. Firstly, our algorithm receives personalized data, in this study baseline

cognitive data from a subject, and suggests the stimulation parameters to test that are condi-

tioned on the baseline data. Due to the ability to recommend personalized stimulation parame-

ters solely based on a baseline measure, our work on a pBO algorithm represents a significant

advance in this area. To illustrate, our experimental findings demonstrate that pBO preferentially

selects more successful tACS parameters to optimize the interventional outcome, in this case

arithmetic performance (Fig 4). Secondly, our study shows that non-personalized interventions,

as in standard BO, are ineffective due to the inability to optimize performance effectively (Fig 5).

Our simulations further show that pBO is reliable even when there is a considerable amount of

noise present in the models. Previously, most BO applications have been in a noise-free context,

in contrast with human-based studies that are prone to noisy evaluations. More precisely, as

noise increases, the pBO algorithm is less able to evaluate the stimulation parameters correctly,

but still outperforms random sampling and the standard BO algorithm. This furthermore applies

to the estimated noise variance ranges that were observed from our data.

In addition, the behavioral and simulation results support our electrophysiological evidence

that pBO can provide new protocols for intervention as well as mechanistic insights. In the present

study, pBO highlighted the importance of frontal beta frequencies (14–30 Hz) as indicated by the

BO group-level model in subjects with average and high arithmetic abilities. In line with our

group-level pBO models, we showed that high baseline ability subjects have higher frontal beta

power in comparison with low baseline ability subjects. In addition, subjects with low baseline

abilities benefit more from tACS in the gamma frequency range, which is in line with responses
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linked to spike timing dependent plasticity (STDP) [49]. However, gamma frequencies could not

be recorded reliably with EEG due to low-pass filtering properties of the skin and skull together

with a low signal-to-noise ratio [50], and was therefore not statistically explored. This limitation

can be overcome by magnetoencephalography (MEG), as was shown by a study indicating fre-

quency-specific neural entrainment by tACS [51]. The overlap of our pBO model with the base-

line EEG correlates provides a causal inference of the involvement of baseline oscillatory brain

activity (notably beta activity) in mathematics performance, a relation that was only known to be

correlational in the field of mathematical cognition until now [31,52].

One constraint of this approach that should be considered, is that the distribution of subject

baseline abilities in this study was weighted towards the lower end of the ability range, leading

to fewer subjects with higher baseline ability being tested (S1 Fig). Therefore, results in the

lower baseline ability spectrum are of higher confidence regarding an estimation of the opti-

mum frequency-current tACS combination. This notion is especially relevant on account of

the similar results in our group-level pBO model for the mean and high baseline abilities.

Additionally, the subjects that participated were mainly university (under)graduates, which

might have led to a small arithmetic ability range when compared to the population. A possi-

bility exists that our pBO models will differ slightly when testing more subjects with higher

baseline abilities. Moreover, while we demonstrated the personalization of intervention based

on two dimensions (i.e., the current and frequency of tACS) and a personalized feature, our

algorithm allows for the inclusion of many more dimensions (e.g., phase, brain region, and

duration of stimulation) in future interventions. Additionally, the personalized variables are

pervasive in human-based research and can include multiple variables such as behavioral data,

neural activity, age, and gender. For example, the presented findings could translate to other

neurointerventions, such as other forms of transcranial electrical stimulations, transcranial

magnetic stimulation (TMS) or to sensing-enabled brain stimulation such as deep brain stimu-

lation (DBS) and the responsive neurostimulation system (RNS). Similar to tACS, these inter-

ventions use a broad range of stimulation parameters whereby it is uncertain which

parameters are more successful to optimize the interventional outcome due to individual dif-

ferences in healthy subjects or patients [53–55]. Our pBO approach overcomes this limitation

by personalizing the intervention based on the selection of stimulation dimensions together

with a personalized feature. Taken together, the use of our pBO approach is widely applicable,

and can simultaneously model multiple dimensions together with a wide range of choices of

personalized variables. Further investigations into closed-loop algorithms for individualized

interventions may greatly improve the reliability of those interventions. This is particularly

important in a clinical setting where the aim is to optimize symptom improvement.

To conclude, we have demonstrated a more efficient research process, taking as a working

model the field of brain stimulation to overcome the problem of selecting stimulation parame-

ters for each individual. The method we suggest here can be extended with minimal or no

changes to different fields in which the optimal parameters are unknown and/or expensive to

assess, including drug discovery, invasive and non-invasive brain stimulation, and physical

and mental training in both typical and atypical populations.

Methods

Subjects and ethics statement

Fifty subjects gave written consent before the start of the study. All met the safety criteria for

transcranial electrical stimulation (tES) and received financial compensation of £20. In addi-

tion to this compensation, subjects had the chance of winning an additional £50 based on their

performance (the winner was randomly drawn from the best 10 performers over the three
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blocks). Behavioral data from all 49 subjects aged between 18–30 years old (31 of whom were

female) were used for the pBO (mean age = 22.52 ± standard deviation (SD) = 4.09). All were

right-handed. One completed their education at GCSE level, 14 at A-level, 17 were undergrad-

uates and 18 were postgraduates. In the UK educational system GCSE refers to secondary edu-

cation and A-level refers to an advanced level that can lead to university. All subjects reported

no contraindications to electrical stimulation or any history of dyscalculia, dyslexia or atten-

tional deficits. The proposed study received ethical approval from The University of Oxford

Medical Sciences Interdivisional Research Ethics Committee (protocol number: MSD-I-

DREC-C2-2014-033). Additionally, we pre-registered the present study on the Open Science

Framework; see https://osf.io/bg2pd.

Overview of experimental paradigm and stimuli

The study was conducted in an electrically shielded lab space at the University of Oxford,

where environmental influences (i.e., lighting, seating, EEG cap) were kept constant through-

out the experiment. Over the course of the experiment, subjects completed four blocks of fifty

multiplication problems—one baseline block and three stimulation blocks (see Fig 2). After

recording an initial 4-minute baseline resting state EEG, the task was explained to the subjects

and they completed 10 practice trials of approximately 4 minutes, followed by the baseline

block of 10 minutes during which no tACS was administered. In each block, subjects had to

indicate which answer was correct as accurately and as fast as possible with no time limit pres-

ent (see Fig 2A). Subjects indicated the correct answer by pressing either the left or the right

button on a response box situated in front of them. They underwent three blocks of multiplica-

tions of 30 minutes in total in which they received tACS. Prior to each tACS block, the pBO

algorithm was run (<5 seconds) to determine the stimulation parameters (current intensity

and frequency) to be delivered during the upcoming experimental block based on the individ-

ual subject’s performance in the baseline block. The stimulation parameters were automatically

selected by the algorithm and administered whilst maintaining blinding in both the subject

and experimenter (for a complete list of the applied current and frequency, see S1 and S2

Tables). Rs-EEG of 4 minutes was recorded again after each stimulation block. Note that the

stimulation electrodes were integrated in the EEG cap which allowed us to use the same elec-

trodes for both EEG recording and stimulation.

Behavioral stimuli

Arithmetic performance was tested using an arithmetic calculation paradigm, consisting of prob-

lems involving a single-digit number multiplied by a two-digit number, with a three-digit outcome.

This paradigm was presented using Matlab’s psychtoolbox version 3. A calculation paradigm was

used instead of a retrieval paradigm since calculation has been associated with an increased activa-

tion in the frontoparietal network [30,56,57]. None of the multiplications included operands with

the digits 0, 1, or 2 to prevent variations in difficulty. In addition, the two-digit operand was not

smaller than 15, did not use repeated digits, and was not a multiple of 10. Subjects were visually

presented with a multiplication problem on a screen with a correct and incorrect answer posi-

tioned under the multiplication problem on the left and right side. The position of the correct and

incorrect answer was randomly allocated to the right and left sides of the screen and they always

differed by 10. Each problem was presented only once, and their order was randomized.

Measurement of baseline abilities

An arithmetic baseline task containing 50 different arithmetic multiplications was presented

to measure individual arithmetic ability in terms of response times and accuracy.
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Subsequently, baseline drift rates were calculated for each subject according to the two-choice

EZ-diffusion model [40]. This approach allowed us to dissect the different components in the

chain of information processing by modeling the decision process and targeting the cognitive

component of interest (the drift rate, which reflects ability and task difficulty by modeling

response time and accuracy), rather than auxiliary components [40,58]. This model was cho-

sen to combine reliably the response time and accuracy in one outcome that could be opti-

mized through the pBO procedure. The 50 trials completed in the baseline block were

randomly divided into two sets, and for both sets a separate drift rate was calculated. One was

used as a measure of the subject’s baseline ability, whilst the other was used to normalize the

drift rates calculated during the optimization phase (e.g., during the experimental procedure

of the pBO). This was done to eliminate dependency between the subject’s baseline ability

score and the normalized score in each stimulation block [59]. To reduce fatigue, subjects had

a break of 30 s after every 10 trials. After completing the baseline task, subjects had a short

break (~3 minutes) before they continued with the experimental procedure of the pBO.

Experimental procedure of the pBO

Before the start of the pBO procedure, a burn-in phase was used that consisted of 60 random

tACS parameters assigned to the first 20 subjects to initiate the pBO procedure. The pBO code

(i.e., coded stimulation parameters, for example, 1 mA and 10 Hz has been coded as 320) was

manually initiated before each performance block and took<5 seconds to run. The stimula-

tion parameters selected by the algorithm, based on an individual’s baseline ability, were auto-

matically saved and passed to the stimulation software to maintain double blinding. The pBO

algorithm selected stimulation parameters for the subject, with the aim of improving behav-

ioral performance given their baseline ability. This was done in an iterative process across 30

subjects, with the algorithm’s estimate of the optimal stimulation parameter, at any given base-

line ability, becoming more accurate as more subjects were tested. At each run of the pBO

algorithm, all previously collected data was used, including data collected in the burn-in phase

and the GP was refitted to model all the data. As we a priori defined in our preregistration, we

utilized a pre-set stopping criteria of 50 subjects, after which testing was ceased.

Our rationale to set the sample size to 50 subjects was as follows: For BO without noise [60],

n = 10–20 per dimension is often used. For BO with noise, a recent work set the number of

evaluations to 25 per dimension [61]. However, to take into account the possibility that we

might deal with increased noise in the present study, we set it to n = 50 per dimension (50 sub-

jects x 3 blocks each, equals 150 evaluations to account for three dimensions (frequency, cur-

rent, and baseline ability).

In total, 150 diverse multiplication problems (three blocks of 50 trials) were administered

during the experimental procedure. After each block, performance drift rates were calculated

immediately, another rs-EEG was measured for four minutes, and then for the next block the

combination of tACS parameters (frequency and current) was changed. Thus, behavioral per-

formance optimization relied on the frequency and current of tACS together with the baseline

cognitive ability as indicated by the drift rate. Each subject received three different frequency-

current tACS combinations.

Transcranial alternating current stimulation

The alternating current stimulation was administered over the left frontoparietal network (see

Fig 2C). The tACS was delivered via two stimulation (3.14 mm diameter) NG Pistim Ag/AgCl

electrodes (F3 and P3) with one return electrode (Cz) using the Starstim 32 (Neuroelectrics,

Barcelona). The conductive interface used was electrode gel Signagel. The impedances of the
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electrodes were held at< 10 kΩ. The stimulation intensity ranged between 0.1–1.6 mA peak-

to-peak in steps of 0.1 for the burn-in phase of the study. For the optimization phase, 0 mA

was added to control for possible sham influences. We chose the maximum stimulation inten-

sity based on a small pilot study on three subjects to determine the maximum comfortable

intensity. Different combinations of frequencies in the range from 5–50 Hz and intensity in

the range from 0–2 mA peak-to-peak were tested. Subjects indicated by means of verbal com-

munication their highest tolerable intensity, where 1.6 mA was chosen as the maximum inten-

sity. The stimulation frequency ranged between 5–50 Hz in steps of 1 Hz for the whole

experiment.

Stimulation was administered in a double-blind manner during the three experimental

blocks with a maximum of 10 minutes for each block. Stimulation started 45 s before the start

of the block and changed after every block. If the subjects received a stimulation intensity of 0

mA during a block (sham stimulation), a ramp-up and a ramp-down of 30 s was initiated to

provide the initial skin sensations during stimulation to ensure blinding. When the subject

completed a block within 10 minutes, stimulation was ramped down for 30 s and the subject

proceeded to the four-minute rs-EEG. Note that in cases where subjects completed the task in

under 10 minutes, they did not receive the full length of stimulation. These stimulation blocks

did not differ from the stimulation block in which the subject received the full length of stimu-

lation except for performance. Twenty-four of the 150 stimulation blocks had a duration of

less than 10 minutes but more than 7.50 minutes, and 126 stimulation blocks had a duration of

more than 10 minutes. This posed no problem, since the present study only investigated the

online effects of tACS on arithmetic behavior. After completing a block related to one tACS

combination, the subjects filled out a questionnaire in which they were asked several questions

designed to gauge the level of sensation experienced during stimulation (see S1 Questionnaire

Items). We used this data to assess the relationship between the intensity rating of every sensa-

tion and tACS amplitude.

Resting state-EEG recordings and pre-processing

Resting state-EEG recordings were made at the start of the study (before baseline measure-

ments) and immediately after every stimulation block. Electrophysiological data were obtained

with eight gel Ag/AgCl electrodes (F3, P3, F4, P4, Fz, Cz, Pz, AF8) according to the interna-

tional 10/10 EEG system using the wireless Starstim R32 sensor system (Neuroelectrics, Barce-

lona, Spain), with no online filters. The conductive interface used was electrode gel Signagel.

The ground consisted of adhesive active common mode sense (CMS) and passive driven right

leg (DRL) electrodes which were positioned on the right mastoid. All EEG measurements had

a duration of four minutes in which the subjects had their eyes open while watching a fixation

point in the middle of the screen. Raw EEG data were recorded and used for offline analysis

using EEGLAB 13.6.5b [62], which is an open source toolbox running on Matlab R2018b [63].

Data were high-pass filtered at 0.1 Hz, and low-pass filtered at 50 Hz (using a finite impulse

response filter). Visual inspection was carried out to remove artefacts caused by muscle move-

ment. We rejected an EEG recording from analysis if more than 25 percent of the data in a

given block were removed. This resulted in the EEG data from four stimulation blocks being

rejected (2% of the data). Independent component analysis was used to remove blinks and

noisy components. On average, 1.23 ± 0.62 SD components were rejected per subject, with a

maximum of three components and a minimum of zero.

Note that our EEG recording and preprocessing pipeline was unsuited to analyzing gamma

frequency activity for a number of reasons. Firstly, we used a conservative pipeline to ensure

the removal of noise from our data instead of removing relevant brain activity. Additionally,
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the short recording time of 4 minutes used in this study is inadequate to reliably measure

gamma activity [64], as well as the unavoidable use of resting recordings leading to a lack of

task-evoked gamma peak, which would be much more reliably detected than resting state [65].

However, we would like to reinstate that the EEG outcomes are not the main focus of the pres-

ent study.

Sensation analysis

In line with a previous study [66], and as stated in our pre-registration, we expected higher

sensitivity ratings of the tACS parameters with higher current values compared with lower cur-

rents. Therefore, we predicted a positive correlation between the intensity rating for itching,

pain, burning, phosphenes, warmth, and fatigue. We performed a separate correlation analysis

to calculate the bivariate Pearson’s coefficient (r) or Spearman’s rho (rs) depending on normal-

ity to assess the relationship between the intensity of different sensations induced by tACS and

height of tACS current (S2 and S4 Figs).

Bayesian optimization

Bayesian optimization uses f to denote an unknown objective function (e.g., black-box func-

tion) for which we do not have a closed-form expression, but we could have an infinite number

of queries. Furthermore, this black-box function is expensive and time costly to evaluate. For-

mally, let f: X!R (R is the set of all real numbers, representing the values from −1 to +1) be

a well-behaved function, defined on a subset X� Rd whereby d is the number of dimensions.

The standard BO approach is aimed at solving the following global optimization problem:

x� ¼ argmax
x2X

f ðxÞ ð1Þ

The BO algorithm is aimed at finding the global optimum of arithmetic performance, as

indicated by drift rates, of the black-box function f(x) by making a series of evaluations at x1,

x2,. . .,xT (see S1 Mathematical Variables).

Personalized Bayesian optimization

While our approach could personalize a given treatment based on any individual characteris-

tic, such as neural or biometric data, we chose cognitive ability, as the literature provides more

supporting evidence for its moderating effect [1–3,7,8,46,67], especially as it is closely related

to our desired behavioral outcome. Each subject has their individual arithmetic baseline abil-

ity: this value is considered as the personalized value. We needed to measure this value p sepa-

rately for every subject, as was done during the baseline task. We expected to see that the

optimal parameters will vary with different baseline abilities. That is, the optimal parameter x�

depends on the different values of p. For this reason, the standard BO presented in the previous

section may not have been appropriate. Therefore, we proposed to solve the following optimi-

zation problem, defined formally as:

x�ðpÞ ¼ argmax
x2X

f ðx; pÞ ð2Þ

where p is the baselines ability given for each subject. The optimal parameter x� is not defined

globally, but specifically to a variable p. This is the key difference of our pBO in comparison

with the standard BO, while we acknowledge related research in BO with environmental vari-

ables [21,68,69].
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Objective function

In the present tACS study, we used the following objective function f(x,p):

f x; pð Þ ¼
Vstim
Vbase

where Vstim is the drift rate during the 50 trials of an arithmetic multiplication block normal-

ized by the Vbase (the drift rate calculated over 25 random trials from the baseline task). To

determine improvement between the baseline and the stimulation block, a second Vbase was

calculated over the other 25 trials from the baseline task. A Pearson correlation was calculated

to determine if the two drift rates from the baseline and the one used for the improvement

index are related (r = 57, p< .001). The acquisition functions are carefully designed to allow a

trade-off between exploration of the search space and the exploitation of current promising

regions. A burn-in phase of 60 random tACS frequency-current combinations was used.

These were assigned to the first 20 subjects of the BO design to determine the amount of varia-

tion induced by stimulation. We decided to use a large burn-in in our paradigm to design a

reliable BO algorithm that was based on a large amount of data.

Personalized Gaussian process for joint modeling of target function and

baseline ability

Standard BO models f with a GP, f~GP(m, k), where m is the mean function and k is the

covariance function [69]. This flexible distribution allowed us to associate a normally distrib-

uted random variable at every point in the continuous input space. Therefore, we obtained the

predictive distribution for f at a new observation x that also follows a Gaussian distribution. Its

mean (μ) and variance (σ2) are given by:

mðx0Þ ¼ kðx0;XÞKðX;XÞ� 1y

s2ðx0Þ ¼ kðx0; x0Þ � kðx0;XÞKðX;XÞ� 1kðx0;XÞT ð3Þ

where K(U; V) is a covariance matrix whose element (i; j) is calculated as ki,j = k(xi; xj) with xi 2
U and xj 2 V. Behavioral observations are typically associated with noise that can be accommo-

dated in a GP model. Namely, every f(x) processes extra variance due to independent noise:

yi ¼ f ðxiÞ þ �i where �i � Nð0; s2

nÞ and s
2

n is the noise variance: ð4Þ

When considering noise, the output follows the GP as y � GPðm; kþ s2
ndi;jÞ, where δi,j = 1

if i = j is the Kronecker’s delta. The covariance function for a noisy process becomes the sum

of the signal covariance and the noise covariance. Specifically, the exponentiated-quadratic

covariance function between two observations can be computed as:

k xi; xj
� �

¼ exp �
ðxi � xjÞ

2

2s2
l

 !

þ s2

ndi;j ð5Þ

For a more elaborate overview of GPs, we refer the interested reader to Rasmussen and Wil-

liams [70].

In our personalized setting, one of the possible solutions is to build a GP and optimization

for each value p. However, such a simplistic approach faces a critical problem of data effi-

ciency, because the number of data samples is not sufficient to estimate each value p separately.

Therefore, we extended the GP surrogate to jointly model our target function f and the

PLOS COMPUTATIONAL BIOLOGY Personalized brain stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008886 September 9, 2021 15 / 24

https://doi.org/10.1371/journal.pcbi.1008886


additional personalized dimension p, rather than using a separate GP for every subject. Specifi-

cally, the GP covariance becomes:

kðfxi; pig; fxj; pjgÞ ¼ kðxi; xjÞ � kðpi; pjÞ ð6Þ

where k(xi, xj) is defined in Eq (5) and k pi; pj
� �

¼ exp � ðpi � pjÞ
2

2s2
p

� �
. These covariance functions

correspond to the parameters and baselines, respectively. We note that the length scale param-

eter s2
p used in k(pi, pj) is different from s2

x used in k(xi, xj). For example, if the baseline ability

length-scale s2
p is extremely large, it means the performance is not changing with respect to the

baseline performance. On the other hand, if s2
p is small, it means the performance function is

changing rapidly with the baseline performance. We later maximized the marginal likelihood

to estimate these length scale parameters directly from the data [70]. Under our modification

for the GP, we could estimate the predictive mean and predictive variance:

mðx; pÞ ¼ kðfx; pg;ZÞKðZ;ZÞ� 1y

s2ðx; pÞ ¼ kðfx; pg; fx; pgÞ � kðfx; pg;ZÞKðZ;ZÞ� 1kðfx; pg;ZÞT ð7Þ

Where we denoted Z = [X, P], the personalized covariance matrix k is defined in Eq (6).

Acquisition function

To select the next point to evaluate, the acquisition function α(x) was chosen to construct a

utility function based on the GP surrogate model mentioned above. Instead of maximizing the

expensive original function f, we maximized the cheaper acquisition function to select the next

most optimal point:

xtþ1 ¼ argmax
x2X

aðxÞ

In this auxiliary maximization problem, the acquisition function form is known and can be

easily optimized by standard numerical techniques. One of the most common choices for the

acquisition function is the GP upper confidence bound (GP-UCB):

aðx; pÞ ¼ mðx; pÞ þ k� sðx; pÞ

where μ(x, p) and σ(x, p) are the GP predictive mean and variance defined in Eq (7) and κ is the

hyperparameter controlling the exploration-exploitation trade-off. One can follow Srinivas et al.

to specify the value of κ to achieve the theoretically-guaranteed performance [69]. The second

common acquisition function is the expected improvement (EI) [43]. The EI finds the next sam-

pling point given the highest chance of expectation to improve upon the best-found value so far.

Using the analytical expression of Gaussian distribution, we have the EI in closed-form as:

aEIðx; pÞ ¼ ½mðx; pÞ � f þ� � FðzÞ þ sðx; pÞ � �ðzÞ

where z ¼ mðx;pÞ� fþ

sðx;pÞ and f+ is the best observed value up to the current iteration,F(z) is the stan-

dard normal cumulative distribution function and ϕ(z) is the standard normal probability den-

sity function. When the uncertainty is zero σ(x, p) = 0, the αEI(x,p) = 0.

Hyperparameters considerations

Personalized Bayesian optimization relies on a personalized Gaussian process surrogate model

to select a next point for testing. This personalized GP model (defined in section ‘Personalized
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Gaussian process for joint modeling of target function and baseline ability’.) involves several

hyperparameters including the length scales σl in Eq (5), σp in Eq (6), and the noise variance s2
n

in Eq (4). We make use of the property of the Gaussian process to estimate these hyperpara-

meters directly from the observed data by maximizing the log marginal likelihood of a GP

model [70]. For robustness, we have also normalized the input x 2 [0,1]2, p 2 [0,1] and stan-

dardized the output score N(0,1) as popularly used in previous work [71]. Given this normal-

ized space, the estimated hyperparameters vary by iterations within the range as follows σl 2
[0.03,0.4], σp 2 [0.07,0.5] and s2

n 2 ½0:01; 2�.

One can optimize the EI [43,72] over the current best result or the GP-UCB. In short, it is

more likely that the UCB selects evaluations with both a high mean and high variance. The EI

and UCB have been shown to be efficient in the number of function evaluations required to

find the global optimum of many multimodal black-box functions [43,73]. During the present

study, the EI was applied to find the optimum in arithmetic performance. Lastly, we decided

to remove one extreme drift rate value of 3.6 during the experimental procedure due to possi-

ble ceiling effects of the BO for sampling the same stimulation parameters. However, the inclu-

sion of this data point did not significantly alter our results. For similar results without

exclusion of this data point, see S5 Fig. In total, we acquired 148/150 iterations. In addition,

due to technical problems another data point was not included in the BO procedure.

Simulation analysis

Simulations were run to validate the pBO procedure during arithmetic performance and

tACS. This analysis aimed to show that pBO can outperform both a ‘standard’ BO algorithm

and random sampling when identifying an optima in a noisy environment. Note that the pres-

ent study contained three dimensions, namely frequency, current, and individualized baseline

ability. Therefore, we utilized a Hartmann function [42] that included four local minima in

three dimensions as an example, to enable our simulations to be comparable to our experi-

mental data. As human-based studies are prone to noisy evaluations, we decided to introduce

noise in the simulation by running the same Hartmann 3-dimensional function whilst adding

different noise variation values (s2
n). The pBO algorithm presented in this work was compared

to a standard BO algorithm which did not incorporate the personalized dimension into its

evaluations, as well as a random sampling algorithm. Performance in these simulations was

compared in terms of the best found value at each of the 60 iterations, as well as the distance

from the known optima location with the Euclidean distance as a metric. Each simulation was

repeated 30 times at each level of noise, and the three algorithm’s mean performance and stan-

dard deviation over these repeats was calculated. Note that it is not possible to calculate the

Euclidean distance between subsequent stimulation pairs due to the inclusion of a personalized

variable.

EEG analysis of spectral power and frontoparietal theta connectivity

The rs-EEG data of the remaining datasets were separated in 2 second segments with an over-

lap of 1 second and windowed with a Hann window. Subsequently, data were transformed

into the frequency domain via fast Fourier transformation (FFT). Theta (4–8 Hz) and beta

(14–30 Hz) frequency bands were calculated according to their relative power (μV2) and nor-

malized by dividing the absolute frequency power of each frequency band by the average abso-

lute power in the 1.5–30 Hz range. In addition, we also normalized the power by dividing the

absolute frequency power by the average absolute power in the 4–50 Hz range. The weighted

phase lag index (wPLI) in the theta and beta range was computed to determine the phase lag

synchronization between the left frontal and parietal areas at baseline and after every tACS
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block. This computation was made for the complementary channels F3 and P3. The theta

wPLI was calculated for 4–8 Hz in steps of 1 Hz and the beta wPLI was calculated from 14–30

Hz in steps of 4 Hz. Furthermore, we normalized wPLI by calculating the wPLI at the applied

tACS frequency divided by the baseline wPLI at the same frequency.

First, outliers were removed with Cook’s distance before running statistical models. To

focus on the relation between arithmetic baseline ability and spectral power, separate regres-

sion models were run with theta and beta power as dependent factors. Likewise, we tested

whether there was a relation between frontoparietal theta and beta connectivity scores by run-

ning several regression models in steps of 1 Hz for theta wPLI and steps of 4 Hz for beta wPLI.

Statistical analysis

All the reported inferential statistical analysis was done with RStudio version 1.2.5042 with sig-

nificance defined as p� 0.05 [74]. All data is presented as mean ± SD with n = 50 for electro-

physiology analysis and n = 49 for the pBO analysis. Pre-processing of electrophysiological

data was done with EEGLAB 13.6.5b [62] which is an open source toolbox running on

MatlabR2018b [63]. Subsequently, normalized electrophysiological data was checked for outli-

ers with Cook’s distance and entered in log-transformed regression models using the stats

package [74] with spectral power or connectivity measures as dependent variables and arith-

metic baseline ability as independent variable. A correlation analysis on normally distributed

datasets was run to calculate the bivariate Pearson’s coefficient (r) to investigate differences in

sensation and blinding, and a non-parametric (Spearman’s rho (rs)) correlation on non-nor-

mally distributed variables. Generalized linear mixed effects models (GLMM) were run with

the nlme package [75] to explore EEG changes induced by tACS during arithmetic perfor-

mance (see S1 Text). The pBO algorithm and simulations were run with Python version 3.6

[76], using the SciPy, NumPy and Scikit-learn libraries [77–79]. Note that no inferential statis-

tics such as a GLMM is able to reliably investigate performance gains due to the inability to

disentangle the exploration and exploitation trade-off of the pBO algorithm between blocks.

Supporting information

S1 Fig. Histogram plot showing the number of subjects in every baseline ability (n = 50).

More subjects were on the lower part of the spectrum of the baseline ability range than the

higher part.

(TIF)

S2 Fig. Side effects of different tACS current intensities. Different side-effects are shown

according to the indicated sensation on a scale from 1–10 (n = 150 based on 50 subjects). 1 was

indicated as a low sensation (‘I did not feel the sensation’) and 10 is a strong sensation (‘I felt

the sensation to a considerable degree’). The high value for fatigue at 0.1 mA is likely to be due

to the low number of subjects (n = 2) who received this stimulation, and it might reflect a gen-

eral state.

(TIF)

S3 Fig. Side effects of different tACS frequency intensities. Different side-effects are shown

according to the indicated sensation on a scale from 1–10 (n = 150 based on 50 subjects). 1 was

indicated as a low sensation (‘I did not feel the sensation’) and 10 is a strong sensation (‘I felt

the sensation to a considerable degree’).

(TIF)

S4 Fig. Blinding efficacy of tACS. The figure shows the percentage of correct indications that

stimulation was real for every applied current (n = 150 based on 50 subjects). Blinding efficacy
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of tACS is at change level (~50%).

(TIF)

S5 Fig. Best found value of the personalized Bayesian optimization (pBO) procedure with-

out exclusion of data point 46 (n = 50). Arithmetic performance in terms of drift rate for

every best-found value for f(x) and for every iteration of the pBO procedure during stimulation

without exclusion of data point number 46.

(TIF)

S6 Fig. The interaction between EEG power, current, and frequency in predicting arithme-

tic performance for subjects with low arithmetic baseline ability (n = 25). Arithmetic per-

formance (log transformed drift rates) during stimulation is shown on the y-axis and the

normalized (post stimulation/pre stimulation) EEG power μV2/Hz (log transformed) based on

the applied tACS frequency after stimulation is shown on the x-axis for four different tACS fre-

quencies (4 Hz, 15 Hz, 30 Hz, and 50 Hz). Current intensity is indicated by the blue line (0.1

mA), the black line (1 mA), and the grey line (1.6 mA). Shaded areas indicate 95% confidence

intervals. Note that different tACS categories and current intensities are presented for visuali-

zation purposes, to allow a better grasp of an interaction that is based on continuous variables.

(TIF)

S1 Table. Number of subjects (n) according to the different currents (mA) received in one

stimulation block.

(DOCX)

S2 Table. Number of subjects (n) according to the different frequencies (Hz) received in

one stimulation block.

(DOCX)

S3 Table. Fixed effects of the mixed effects model for arithmetic performance in low ability

subjects (n = 25). Note: ��p< 0.05; ��p<0.01.

(DOCX)

S4 Table. Fixed effects of the mixed effects model for arithmetic performance for high abil-

ity subjects (n = 24). Note: ��p< 0.05; ��p< 0.01.

(DOCX)

S1 Text. Supplementary results and discussion.

(DOCX)

S1 Mathematical Variables. All mathematical variables used in the present study clarified.

(DOCX)

S1 Questionnaire. Questionnaire items used to assess sensation levels during stimulation.

(DOCX)
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