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Therapeutic Advances in 
Musculoskeletal Disease

Introduction
Imaging plays an important role not only in oste-
oarthritis (OA) research in general1 but specifi-
cally also in disease-modifying OA drugs 
(DMOAD) clinical trials.2 Although the OA 
research community has been aware of the limita-
tions of conventional radiography as an imaging 
tool,3 magnetic resonance imaging (MRI) and 
other more advanced modalities have not resulted 
in regulatory approval of a DMOAD to date. 
MRI enables detailed structural assessment of 
OA-affected joints that is not possible using radi-
ography.4,5 Despite decades of research efforts 
and multiple clinical trials to try to develop 

efficacious DMOADs, we still do not have a drug 
that has been approved by regulatory agencies.

It has been discussed that the radiography-based 
definition of structural eligibility is one of the rea-
sons for failure of DMOAD trials.6–10 Several 
plausible explanations exist to elaborate on this 
statement. First, the definition of OA disease 
severity based on radiography is limited due to 
lack of reproducibility of radiographic joint space 
measurements.3 Second, there are only weak 
associations between radiography-depicted struc-
tural changes and pain.11 Third, radiography can-
not depict potentially detrimental findings, which 
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indicate an increased risk of articular collapse or 
rapid disease progression.2 Last, radiography can-
not depict most of the articular and periarticular 
tissues [such as menisci, cartilage, bone marrow 
lesions (BMLs), ligaments, and synovitis].3

In this perspective article, we will describe how 
we can wisely utilize available imaging modalities 
and techniques for DMOAD trials, with an 
emphasis on MRI and knee OA. We will explain 
available MRI-based semiquantitative (SQ) scor-
ing systems that can be applied to DMOAD tri-
als, how to select appropriate MRI pulse 
sequences depending on the specific target tissue 
of the trial, how radiography can still be utilized 
in DMOAD trials in combination with MRI, and 
the need to consider different phenotypes of OA 
when designing DMOAD trials.

X-ray-based patient selection/screening for 
DMOAD trials
Radiographic SQ assessment of knee radiographs 
is typically performed to select/screen participants 
for DMOAD trials. Structural disease severity of 
OA is defined by the Kellgren and Lawrence 
(KL)12 grading system, which assigns a score 
based on the presence or absence of osteophytes 
and joint space narrowing. Investigators can strat-
ify patients into those who are eligible (the pres-
ence of definite OA but not end-stage OA) and 
those who are ineligible (the absence of definite 
OA or the presence of end-stage OA). Subjects 
who have mild OA (KL grade 2) and moderate 
OA (KL grade 3) are usually enrolled in DMOAD 
trials. Because the radiographic appearance of 

joint space width (JSW) can vary significantly 
depending on the knee positioning or angulation 
of the X-ray beam, it is important to acquire 
standardized weight-bearing anteroposterior 
bilateral knee X-rays at the time of eligibility 
screening.13 For this purpose, positioning devices 
such as Synaflexer™ should be used, or fluoros-
copy-guided X-ray acquisition should be per-
formed.3,14 Despite using positioning devices, 
false-positive or false-negative longitudinal 
change in JSW may be observed as shown in 
Figure 1 in an exemplary fashion.

At baseline, JSW should be measured as a surro-
gate for the integrity of cartilage and menisci. There 
are pros and cons for selecting low or high JSW 
thresholds for enrolling patients, and there is mixed 
literature evidence to support either choice. On one 
hand, investigators may wish to include knees with 
sufficiently preserved cartilage, especially for study-
ing potential anti-catabolic drug effects on articular 
cartilage. For example, prior DMOAD trials have 
used a threshold value of the remaining medial JSW 
to be ⩾2 mm or 2.5 mm.15–17 Using ⩾2 mm minimal 
JSW (mJSW) will lead to inclusion of a higher pro-
portion of knees because a larger number of KL 
grade 2/3 patients (including those with diffuse full-
thickness chondral loss) would fulfill that crite-
rion.16,17 On the other hand, a recent clinical trial of 
Sprifermin showed that selection of patients with 
low minimum JSW and moderate to high knee pain 
at baseline resulted in more rapid progression of 
OA and knees with advanced OA showed symptom 
modification by the drug.18 Furthermore, KL grade 
3 knee OA was shown to progress more rapidly 
than KL grade 2 knee OA.19

Figure 1.  Reproducibility limitations of radiography and superiority of magnetic resonance imaging (MRI) in 
depicting osteoarthritis as a whole-joint disease. (a) Baseline anterior–posterior (a.p.) radiograph shows a 
normal medial tibiofemoral joint space width (arrows). (b) At 2 years follow-up, there is apparent definitive 
joint space narrowing (arrowheads). Soft tissues are not assessable on the radiograph. (c) Baseline MRI of the 
same knee shows discrete superficial cartilage thinning of the medial tibia (arrowhead) while the cartilage of 
the medial femur is apparently normal. There is minimal medial meniscal extrusion of 2 mm still considered 
physiologic. (d) Two years later, no definite cartilage loss is observed (arrowheads) and meniscal extrusion has 
not progressed (arrow). Apparent progression on the a.p. radiograph is due to positioning errors with minimal 
change in beam angulation leading to false-positive joint space narrowing.
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Trained and experienced musculoskeletal radiol-
ogists play a key role in X-ray-based screening for 
DMOAD trials. First, they should perform the 
X-ray-based eligibility reading in a centralized 
fashion14 based on KL grading to exclude sub-
jects without radiographic OA (KL grade 0 or 1) 
or end-stage OA (KL grade 4). Second, they 
should perform the assessment of the minimum 
JSW, although the same task may also be per-
formed in a semi-automated fashion using vali-
dated tools being quality checked by expert 
readers after the initial assessment. Third, they 
should exclude additional subjects at eligibility 
who meet predefined radiographic exclusionary 
findings described below. These exclusionary 
findings include advanced osteonecrosis, sub-
chondral insufficiency fractures, severe varus or 
valgus malalignment, large subchondral cysts 
which may have a high risk of collapse during a 
trial, femoral or tibial fracture, and radiographi-
cally appreciable rheumatic/neoplastic/metabolic 
disease.2

MRI-based eligibility screening and 
phenotypic stratification of subjects
Following successful radiography-based screen-
ing and consideration of relevant exclusionary/
inclusionary criteria, MRI should be utilized as an 
additional eligibility screening tool. ROAMES20 
is a relatively new scoring system (published in 
January 2020) and data from clinical trials using 

ROAMES are yet to be published. In ROAMES, 
SQ assessment of cartilage, menisci, BMLs, oste-
ophytes, synovitis (‘Hoffa-synovitis’), and joint 
effusion (‘effusion-synovitis’) is performed. 
Moreover, diagnoses of exclusion including sub-
chondral insufficiency fractures and meniscal 
root tears are recorded as ‘present’ or ‘absent’ 
(Figure 2). An important aim of ROAMES is to 
perform phenotypic stratification (Table 1) of 
potentially eligible participants and to detect 
exclusionary findings which cannot be depicted 
by radiography.20,21 A recent study showed that it 
is uncommon to find high-risk exclusionary MRI 
findings that potentially precludes safe participa-
tion in a DMOAD trial.22 However, such exclu-
sionary findings are found in about 3% of KL 
grade 2 knees and about 12% of KL grade 3 
knees. This study highlights the value of using 
MRI screening.22

Based on the aim of DMOAD trials and types of 
agents being tested, several factors should be con-
sidered when deciding patients belonging to 
which phenotype will be most suitable for inclu-
sion in a trial. Of note, in this article, we focus our 
discussions to structural phenotypes that are rel-
evant to imaging-based outcome criteria. 
However, there are clinical phenotypes (intra-
articular/extra-articular/secondary/age-related 
and systemic) and molecular endotypes (bone 
and cartilage/inflammatory/low repair/metabolic) 
of OA that are of interest to the broader OA 

Figure 2.  Diagnoses of exclusion using MRI as an instrument to define patient eligibility. (a) Axial T2-
weighted MRI shows a complete posterior root tear of the medial meniscus (arrows). (b) Corresponding 
coronal intermediate-weighted fat-suppressed image shows corresponding medial meniscal extrusion due 
to mechanical instability of the medial meniscus (arrow). Root tears are considered high-risk findings for 
rapid progression of cartilage loss and subsequent articular collapse. For this reason, patients exhibiting root 
tears should not be included in clinical DMOAD trials as joints exhibiting root tears are likely not amenable to 
any pharmacologic DMOAD effects. (c) Coronal intermediate-weighted fat-suppressed image shows articular 
collapse due to subchondral insufficiency fracture of the medial femoral condyle. There is an osteochondral 
depression at the fracture site (arrow) and corresponding large bone marrow edema (asterisk). In addition, 
there is a large nonspecific subchondral cyst (arrowhead). Bone cysts that potentially increase the risk for 
fracture are considered exclusionary at screening.

https://journals.sagepub.com/home/tab


Therapeutic Advances in 
Musculoskeletal Disease Volume 15

4	 journals.sagepub.com/home/tab

research community, and those are described in 
other dedicated publications.23,24 If one is testing 
a compound that is aimed to regenerate cartilage, 
there should be enough cartilage remaining in the 
knee joint so the drug’s efficacy in cartilage regen-
eration at the site of cartilage damage can be 
demonstrated. Inclusion of knees with the ‘carti-
lage-meniscus’ phenotype is likely to be most rel-
evant for such a study. However, in a recent 
FNIH study, only 5% of 485 subjects (after 
excluding KL grade 1 knees and those having 
meniscal root tears) fulfilled the cartilage/menis-
cus phenotype based on the original ROAMES 
definition.21 These knees had diffuse full-thick-
ness chondral damage and meniscal tears/macer-
ation in medial and lateral tibiofemoral 
compartments. Application of a less stringent 
definition with a single compartment needing to 
demonstrate meniscal tear, the number of partici-
pants classified as cartilage-meniscus phenotype 
rose to 21%. A recent analysis based on the FNIH 
cohort showed phenotypic stratification of the 
cartilage-meniscus phenotype in various subtypes 
can be done, and may help to define trial cohorts 
at the time of screening.25 In that analysis, KL 
grade 2 knees and all definitions demonstrated 
raised odds of progression, while KL grade 3 
knees demonstrated an apparent protective effect. 
This latter finding was likely because KL grade 3 
knees stratified by the suggested definitions had 
relatively mild chondral defects at the time of 
screening.25

ROAMES is a tool that can be used to perform 
for phenotyping of knees that exhibit severe 
BMLs (=predominant subchondral bone 
changes), (severe BMLs), severe effusion/synovi-
tis (=predominant inflammatory changes), or 
mixture of structural phenotypes in different 
combinations (e.g. mixed cartilage-meniscus/sub-
chondral bone and mixed subchondral bone/
inflammatory). Depending on the exact type of 
DMOAD under investigation, one must deter-
mine whether severe synovitis or BMLs are con-
traindicated for therapy, or they may interfere 
with the desired effects of the compound. Figure 3 
shows examples of subchondral BMLs in the con-
text of phenotypic stratification. Using ROAMES 
one can stratify phenotypes to determine whether 
the efficacy of the drug differs in various 
phenotypes.

Choice of MRI sequences suitable for 
screening and evaluation of different 
outcome measures
There are two ways of performing MRI screening 
at the time of eligibility assessment of trial partici-
pants. One may choose to obtain a complete 
series of MRI sequences for a comprehensive 
whole joint assessment at the time of eligibility 
screening. In this case, the investigators must 
accept the risk of incurring extra cost of imaging 
for those who are excluded after screening pro-
cess. A benefit of this approach is simplified 

Table 1.  Phenotypes of knee OA based on ROAMES.

Inflammatory The maximum grade of 3 of either Hoffa-synovitis or effusion-synovitis and at 
least grade 2 in the respective other feature based on MOAKS

Cartilage-meniscus Presence of a meniscus score of at least grade 3 (i.e. any type of meniscal 
substance loss/maceration) in the medial or lateral compartment and at least 
grade 1 (any type of tear) in the other compartment, respectively, and presence 
of cartilage damage grades 2.1, 2.2, 3.2, or 3.3 according to MOAKS

Subchondral bone Subregional bone marrow lesion size of grade 3 in at least one of three knee 
compartments

Atrophic Osteophytes ⩽1 in all locations of the TFJ and cartilage damage of grade 3 in at 
least one MOAKS subregion of one or both compartments of the TFJ

Hypertrophic At least one osteophyte grade 3 in the medial TFJ or lateral TFJ and PFJ; 
cartilage damage not more than grade 1 in any subregion of the same 
compartment of the TFJ

MOAKS, Magnetic resonance Osteoarthritis Knee Score; OA, osteoarthritis; PFJ, patellofemoral joint; ROAMES, Rapid 
OsteoArthritis MRI Eligibility Score; TFJ, tibiofemoral joint.
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logistics and patient convenience. Alternatively, 
an abbreviated protocol with two quick sequences 
[i.e. a sagittal and coronal PDW FS or IW FS,22 
or a 3 min three-dimensional (3D) FSE sequence, 
e.g. SPACE and VISTA] can be used at the time 
of eligibility screening, and if a patient is indeed 
eligible for inclusion, the patient will then return 
to complete a full set of sequences of comprehen-
sive whole joint MRI assessment. This option is 
logistically more challenging because there is a 
need for two visits for included subjects in a rela-
tively short period. Some patients might decline 
to return for the second full exam. So long as 
there is sufficient budget, the first option would 
be a preferable option for both the participants 
and the researchers.

For the full MRI protocol, appropriate technical 
considerations should be given. A dedicated knee 
coil should be used to ascertain the best image 
quality. Optimization of all MRI acquisition 
parameters should be performed, including, but 
not limited to, patient positioning, signal homo-
geneity, image orientation, and spatial resolution 
and signal-to-noise ratio. This is an important 

step to optimize quality of imaging and minimize 
image degradation secondary to artifacts.26 
Additional factors to consider are minimization of 
patient discomfort during the MRI scan without 
sacrificing image quality, and imaging cost within 
the budgetary constraint. From the radiological 
point of view, the most important issue is the 
choice of most appropriate pulse sequences for 
each specific pathological feature to be evaluated. 
The use of an incorrect pulse sequence will pre-
clude the meaningful interpretation of acquired 
images. Table 2 presents the summary of sug-
gested MR pulse sequences for optimum SQ 
analysis of each knee OA feature, based on the 
available literature evidence and authors’ own 
expertise.26–28 Suggested protocols are optimally 
performed on a 3T scanner, using multichannel 
phased-array extremity coils for an optimal sig-
nal-to-noise ratio.29 However, 1.5T scanners will 
also provide images with sufficient quality to per-
form reproducible SQ analyses.26

Fluid-sensitive fast spin echo (FSE) or turbo spin 
echo (TSE) sequences [which include, for exam-
ple, T2-weighted, intermediate-weighted, or 

Figure 3.  Subchondral bone phenotype of knee osteoarthritis. Phenotypic stratification may help in 
selecting patients most likely to benefit from a specific candidate DMOAD molecule. Compounds targeting 
the subchondral bone may have an impact on bone marrow lesions. For this reason, knees with large bone 
marrow lesions or those with multiple lesions are included in such trials. (a) Sagittal intermediate-weighted 
fat-suppressed image shows a large bone marrow lesion in the medial femoral condyle fulfilling the definition 
of the subchondral bone phenotype (arrows). In addition, there is a minor subchondral cyst and widespread 
full-thickness cartilage damage. Note that knees with extensive widespread full-thickness cartilage loss are 
likely not responsive to any anti-catabolic mode of action as there is not sufficient cartilage to preserve and 
measure structural DMOAD effects. Phenotypes may overlap and one knee may exhibit more than one specific 
phenotype. This knee also exhibits large effusion-synovitis and thus fulfills the inflammatory phenotype, in 
addition. (b) Sagittal intermediate-weighted fat-suppressed MRI of another patient shows several tibial and 
femoral bone marrow lesions (arrows). In comparison with the bone marrow lesion in (a), these are smaller in 
size or volume but numerous and thus defining this knee as exhibiting the subchondral bone phenotype. Note 
that bone marrow lesions are nonspecific findings and multiple differential diagnoses apply. In this case, there 
is an identical-appearing signal change at the femoral metaphysis consistent with red marrow conversion in 
the typical location. In contrast, subchondral OA-related bone marrow lesions are localized directly adjacent to 
the subchondral plate.
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proton density (PD)-weighted fat-suppressed 
sequences] obtained in three orthogonal planes are 
time-efficient to deploy and particularly important 
for evaluation of BMLs.30 Use of GRE sequences 
for BML assessment31 is less suitable for SQ assess-
ment than fluid-sensitive fat-suppressed FSE/TSE 
sequences because GRE sequences are relatively 
insensitive to BMLs and can lead to underestima-
tion of the lesion size.32,33 A direct comparison of 
BML visualization using GRE and FSE/TSE 
sequences is shown in Figure 4.

GRE sequences are ideally deployed for 3D quan-
titative cartilage analysis (e.g. thickness and volu-
metric measurements), but not for focal cartilage 
defects which should be evaluated using fluid-
sensitive FSE/TSE or short-tau inversion recov-
ery sequences.34,35 Another thing to consider is 
that GRE sequences are prone to magnetic 

susceptibility artifacts. One should be aware that 
intra-articular vacuum phenomenon is depicted 
as linear or punctate hypointensity within the 
joint space, and misinterpreting such artifact as 
meniscal damage or a chondral defect must be 
avoided.36

Addition of a T1-weighted FSE/TSE or Dixon 
sequence allows evaluation of subchondral sclero-
sis or intra-articular loose bodies with high sensi-
tivity. Angulating the imaging plane specifically 
for certain structures to be assessed may be help-
ful, for example, paracoronal T2-weighted 
sequence is helpful for differentiating anterior 
cruciate ligament partial tears versus complete 
tears. Fat-suppressed 3D FSE/TSE sequences 
can be used as an alternative triplanar two-dimen-
sional (2D) TSE sequences. Both these tech-
niques can provide comparable results for SQ 

Table 2.  List of MRI pulse sequences that are suitable for evaluating various OA features using 
semiquantitative scoring.

OA feature Imaging planes Pulse sequences (without intravenous 
contrast unless otherwise stated)

Bone marrow lesions Axial/sagittal/coronal 
(at least two orthogonal 
planes)

T2-weighted FS TSE/FSE or STIR
Intermediate-weighted FS TSE/FSE or STIR
PD-weighted FS TSE/FSE or STIR

Osteophytes Axial/sagittal/coronal 3D high-resolution GRE (e.g. FLASH, DESS, 
SPGR) and non-FS short TE-weighted (T1 is 
preferred over PD)

Cartilage Variable 3D high-resolution GRE (e.g. FLASH, DESS, 
SPGR) and T2-weighted* TSE, Intermediate-
weighted* TSE, or
PD-weighted* TSE (*FS or non-FS depending 
on the specific research question)

Meniscus Sagittal/coronal T1-weighted FS, T2-weighted FS, PD-weighted 
FS

Ligaments Axial/sagittal/coronal Intermediate-weighted FS TSE, PD-weighted 
FS TSE

Popliteal cyst Axial T2-weighted, PD-weighted

Synovitis on contrast 
enhanced MRI

Axial/sagittal/coronal Pre- and post-contrast T1-weighted FS

Hoffa-synovitis on 
noncontrast MRI

Mid-slices of the 
sagittal plane

T2-weighted FS TSE, intermediate-weighted 
FS, TSE, or PD-weighted FS TSE

Effusion synovitis on 
noncontrast MRI

Axial T2-weighted* TSE, Intermediate-weighted* 
TSE, or PD-weighted* TSE (*FS or non-FS 
depending on the specific research question)

DESS, dual echo steady state; FLASH, fast low-angle shot; FS, fat-suppressed; GRE, gradient echo; MRI, magnetic 
resonance imaging; OA, osteoarthritis; PD, proton density; SPGR, spoiled gradient echo; STIR, short-tau inversion 
recovery; TE, time of echo; TSE/FSE, turbo spin echo/fast spin echo.
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assessment of knee OA, although 3D TSE 
sequences exhibit different image characteristics 
(e.g. increased blurriness).37

Thanks to modern advanced MRI techniques, 
highly accelerated acquisition of imaging became 
possible and scan time can be decreased to a frac-
tion of conventional scanning method. Examples 
of such techniques include parallel imaging and 
improvements in 3D FSE imaging, which enables 
the acquisition of triplanar MRI of the knee in 
less than 5 min.38–40 Artificial intelligence shows 
additional promise regarding image accelera-
tion41,42 (Figure 5).

Imaging-guided intra-articular injection of 
investigational drugs
Some investigational drugs and emerging biologic 
treatment need to be administered through an 
intra-articular injection.43–46 Such drugs include, 
but not limited to, nerve growth factor agents, 
fibroblast growth factors, platelet-rich plasma, 
mesenchymal stem cells, etc.47 Intra-articular 
injections of the knee should ideally be performed 
under imaging guidance.48,49 A systematic review 
revealed the superolateral approach was investi-
gated most and had the highest pooled accuracy 
rate of correct injection of 91% [95% confidence 
interval (CI) of 84–99%].50 An investigational 
compound is unlikely to work if the injection is 
extra-articular. Therefore, if an extra-articular 

injection is documented, affected subjects should 
be excluded from any outcome analysis to pre-
vent artificial reduction of demonstrated clinical 
efficacy of the DMOAD being evaluated. Also, 
the drug may cause an adverse event if it is extra-
articularly injected (e.g. development of hetero-
topic ossification or other structural side effects) 
at follow-up.51 Examples of extra-articular admin-
istration with X-ray documentation are shown in 
Figure 6.

To confirm correct intra-articular needle place-
ment, a lateral projection X-ray should be obtained 
after injection of a small amount of intra-articular 
air prior to the injection of the investigational 
compound or placebo itself.52 Audible squishing 
sounds after intra-articular injection of air can be 
used as an additional proof of successful injec-
tion.53 Alternatively, ultrasound-guided intra-
articular drug delivery can be performed.54 This 
technique is advantageous over X-ray guidance in 
that real-time visualization of the needle tip posi-
tion is possible during the procedure. The pres-
ence of joint fluid in the medial or lateral gutters 
can be helpful, providing an additional target for 
needle placement. However, one may note that a 
recent study showed that neither ultrasound-
guided nor palpation-guided intra-articular knee 
injections provide a 100% success rate, using 
intra-articular air visualization on lateral projec-
tion X-ray as a reference.55 Although ultrasound-
guided injection demonstrated somewhat higher 

Figure 4.  Relevance of sequence selection of feature-specific assessment. (a) Coronal intermediate-weighted 
fat-suppressed sequence shows the medial tibiofemoral compartment. There are large bone marrow lesions 
at the medial femur (arrows) and tibia (asterisk) reflected as areas of high signal intensity contrasting the 
normal fatty marrow that is depicted with low signal. In addition, there are other signs of advanced structural 
knee OA including widespread cartilage damage, marginal osteophytes, and meniscal extrusion. (b) Coronal 
fast low-angle shot (FLASH) with water excitation (WE) MRI, a 3D high-resolution sequence, is commonly 
used for cartilage quantification. This type of sequence, a gradient echo sequence, is prone to magnetic 
susceptibility and thus relatively insensitive to BMLs and will lead to underestimation of the lesion size as 
shown by the arrows. The tibial lesion is hardly depicted at all.
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success rates than palpation-guided injection, 
documenting the presence of intra-articular air 
seems important to avoid subsequent extra-articu-
lar injection of DMOAD and to help minimize 
artificial reduction of efficacy of such drugs.

SQ MRI scoring systems applicable  
to DMOAD trials
There are several published SQ scoring systems 
for the assessment of the articular and 

periarticular tissues in knee OA. To overcome the 
limitation of radiography-based evaluation, MRI 
enables scoring of the whole joint including carti-
lage, menisci, BMLs, osteophytes, joint effusion, 
synovitis, subchondral cysts, ligaments, and intra-
articular bodies. Some scoring systems such as 
MRI Osteoarthritis Knee Score (MOAKS)56 can 
score the OA features of the whole joint, whereas 
others may target only select features, e.g. BMLs, 
synovitis, menisci, and osteophytes.20,27,57 Of 
these, Rapid OsteoArthritis MRI Eligibility Score 

Figure 5.  Artificial intelligence applied to accelerate image acquisition. Trained convolutional neural 
networks (CNNs) are used for post hoc image reconstruction. The original MRI data set is undersampled and 
the missing structural information is re-created by the CNN resulting in almost equivalent image quality. 
(a) Example shows coronal intermediate weighed fat-suppressed images acquired with a 7T ultrahigh-
field system. A super high-resolution matrix of 720 × 720 pixels is used with an in-plane resolution of 0.15 
mm × 0.15 mm, 3 mm thickness, acquired in 9 min 30 s. (b) Fourfold undersampling with post-acquisition AI 
reconstruction results in a decrease in imaging acquisition time down to 2 min 22 s. The image overall exhibits 
a smoother image impression but the overall quality seems comparable. As CNNs always need extensive 
training data, the future will need to show if rare findings are depicted with confidence and determination of 
the ideal acceleration factor without losing relevant structural information needs to be shown in the future.

Figure 6.  Example of documentation of extra-articular injection. The documentation of an intra-articular route 
of administration is paramount and most easily achieved using air administered at the time of injection. (a) 
Lateral radiograph shows air within Hoffa’s fat pad but not intra-articularly (arrows). (b) Another lateral X-ray 
shows air in the prefemoral fat pad (arrow) but not within the joint cavity. (c) Another example shows an air 
collection in the subcutaneous tissue but not in the joint (arrows).
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(ROAMES)20 was created so that it can be used 
to evaluate the eligibility of subjects in DMOAD 
trials. Investigators can use MRI SQ scoring tools 
to assess multi-tissue changes between the base-
line and follow-up time points for the determina-
tion of DMOAD efficacy and safety.2,26,58 For 
instance, for the evaluation of anabolic com-
pounds, SQ assessment enables investigators to 
capture safety concerns such as increased ossifi-
cation and osteophyte growth. Other concerning 
imaging findings that can be detected include the 
occurrence of subchondral insufficiency fracture, 
osteonecrosis, and others.20 When compared with 
quantitative volumetric cartilage assessment 
(which evaluates quantitative changes invisible to 
the human eye over a period by addressing an 
entire knee joint compartment or plate),59 SQ 
assessment is suited to evaluate superficial, par-
tial-thickness, and full-thickness focal chondral 
defects. For a more global assessment of articular 
cartilage across the entire compartment or a plate, 
SQ evaluation may also depict chondral loss over 
time (in periods as short as 6 months)60 but has 
limited ability to capture anabolic effects like car-
tilage growth.

Importance of within-grade scoring
To increase the sensitivity to detect small changes 
between time points, ‘within-grade’ SQ MRI 
scoring is typically performed.61 Using this meth-
odology, even a small morphologic change that 
does not fulfill the criteria for a full-grade change 
(i.e. score change of 1) is still recorded as a longi-
tudinal change.62 Recently, it could also be shown 
that within-grade assessment is associated with 
longitudinal quantitative cartilage thickness loss 
supporting the assumption that within-grade 
change reflects real cartilage damage progres-
sion.63 Within-grade changes are also applied for 
BML assessment and have been shown to be clin-
ically valid, which is illustrated in Figure 7.61

MRI interpretations without blinding  
to time points
MRI evaluation is performed at multiple time 
points in a DMOAD trial to observe the struc-
tural change between the baseline and the follow-
up time points. It is a routine practice within the 
OA research community to perform MRI SQ 
scoring at follow-up time points without readers 
being blinded to the time points.64 Scoring of 
MRIs in chronological order is known to increase 
sensitivity in the detection of clinically relevant 

longitudinal changes. If SQ scoring is done in a 
random order and a blinded manner, readers may 
not be able to capture a meaningful longitudinal 
score changes for each imaging feature.64

Utility of the delta-sum and  
delta-subregion approaches
SQ scoring of MRI data requires careful consid-
eration so that investigators can best deploy it to 
record score changes at different timepoints in 
DMOAD clinical trials. To begin with, adding 
together all subregional scores from the knee 
joint is not an ideal way of assessing longitudinal 
score changes for the joint. As an example, 
BMLs can show changes in size in a short time 
period, and worsening and improvement of 
BMLs in different subregions can occur at the 
same time in the whole joint. In this case, there 
may be no apparent change in an overall score 
calculated by addition of all subregional scores. 
Thus, the use of a ‘summation score’ can mask 
what is truly happening in the joint.65,66 Another 
important consideration is the use of ‘delta-sum 
and delta-subregion’ method.67 In this method, 
all subregional scores are summed up to calcu-
late the overall deterioration (>0), unchanged 
(0), or improvement (<0). For example, the 
knee joint is divided into 14 subregions in 
MOAKS. For cartilage evaluation, no change in 
two subregions, worsening in seven subregions, 
and improvement in four subregions yield a 
delta-subregion change of +3 for the whole 
knee. One can use alternative methodology for 
assessment of longitudinal changes, such as the 
use of maximum grades and a latent class 
analysis.68

Conclusions and future prospects
The use of MRI from screening to outcome 
assessment, likely in combination with X-ray-
based KL grading, particularly to define eligibil-
ity, is encouraged in DMOAD trials, rather than 
relying solely on radiography-based imaging cri-
teria. It is important to recognize various struc-
tural phenotypes of OA to perform more targeted 
clinical trials. SQ analysis tools such as ROAMES 
are available to facilitate longitudinal evaluation 
of OA features and to assess the efficacy of 
DMOADs. The choice of appropriate MR pulse 
sequences and protocols are the key to a mean-
ingful evaluation of imaging features of OA. A 
tailored abbreviated protocol of two sequences 
usually takes less than 7 min depending on the 
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MRI parameters, which is notably shorter than a 
standard MRI protocol that takes around 15 min. 
Artificial intelligence approaches will help speed 
up image acquisition by a factor of around 2 in 
the near future.69 Technically successful imaging-
guided intra-articular injection of investigational 
drugs is important to prevent unwanted reduction 
in efficacy of such drugs. We anticipate that 
DMOAD research and development will focus 
more on early knee OA (i.e. knees with KL grade 
0 and 1), painful and symptomatic knee OA, and 
knees with imaging features fulfilling the MRI 
diagnosis of OA. At present, however, an MRI 
definition of early OA is yet to be fully deter-
mined, and regulatory agencies are unlikely to 
approve a drug that is targeting a disease status 
without a validated definition (i.e. ‘early’ MRI-
defined OA). Therefore, it is likely that candidate 
DMOADs will have to show efficacy in sympto-
matic patients with established structural OA 
first. If we can identify patients in the earliest pos-
sible stage of OA and treat them with available 
efficacious DMOADs, we may be able to prevent 
patients with early knee OA from progressing into 
more advanced OA with irreversible damage for 
which total knee arthroplasty will be the only cur-
rent treatment option. Of note, the US Food and 
Drug Administration recently proposed that 
DMOADs should help patients feel and function 
better.70 Our research efforts and journey toward 
the discovery and clinical development of an effi-
cacious DMOAD must continue to accomplish 
these aims.
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