
Development of GMDR-GPU for Gene-Gene Interaction
Analysis and Its Application to WTCCC GWAS Data for
Type 2 Diabetes
Zhixiang Zhu1,2, Xiaoran Tong1, Zhihong Zhu1, Meimei Liang1, Wenyan Cui2, Kunkai Su2, Ming D. Li2,3*,

Jun Zhu1*

1 Institute of Bioinformatics, Zhejiang University, Hangzhou, China, 2 State Key Laboratory for Diagnosis and Treatment of Infection Diseases, First Affiliated Hospital,

Zhejiang University School of Medicine, Hangzhou, China, 3 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, United

States of America

Abstract

Although genome-wide association studies (GWAS) have identified a significant number of single-nucleotide
polymorphisms (SNPs) associated with many complex human traits, the susceptibility loci identified so far can explain
only a small fraction of the genetic risk. Among other possible explanations, the lack of a comprehensive examination of
gene–gene interaction (G6G) is often considered a source of the missing heritability. Previously, we reported a model-free
Generalized Multifactor Dimensionality Reduction (GMDR) approach for detecting G6G in both dichotomous and
quantitative phenotypes. However, the computational burden and less efficient implementation of the original programs
make them impossible to use for GWAS. In this study, we developed a graphics processing unit (GPU)-based GMDR program
(named GWAS-GPU), which is able not only to analyze GWAS data but also to run much faster than the earlier version of the
GMDR program. As a demonstration of the program, we used the GMDR-GPU software to analyze a publicly available GWAS
dataset on type 2 diabetes (T2D) from the Wellcome Trust Case Control Consortium. Through an exhaustive search of pair-
wise interactions and a selected search of three- to five-way interactions conditioned on significant pair-wise results, we
identified 24 core SNPs in six genes (FTO: rs9939973, rs9940128, rs9922047, rs1121980, rs9939609, rs9930506; TSPAN8:
rs1495377; TCF7L2: rs4074720, rs7901695, rs4506565, rs4132670, rs10787472, rs11196205, rs10885409, rs11196208;
L3MBTL3: rs10485400, rs4897366; CELF4: rs2852373, rs608489; RUNX1: rs445984, rs1040328, rs990074, rs2223046,
rs2834970) that appear to be important for T2D. Of these core SNPs, 11 in FTO, TSPAN8, and TCF7L2 have been reported
to be associated with T2D, obesity, or both, providing an independent replication of previously reported SNPs. Importantly,
we identified three new susceptibility genes; i.e., L3MBTL3, CELF4, and RUNX1, for T2D, a finding that warrants further
investigation with independent samples.
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Introduction

During the past several years, searching susceptibility loci for

various human diseases has been revolutionized by genome-wide

association studies (GWAS). Although a significant number of

single-nucleotide polymorphism (SNP) have been reported to be

associated with various human complex traits [1], only a small

fraction of the genetic risk can be explained by those identified SNPs

for each trait, often termed the ‘‘missing heritability’’ problem [2,3].

Although many factors such as rare genetic variation, structural

variation, epigenetics, gene–environmental interactions may have

contributed to this missing heritability [1–4], gene–gene interaction

(G6G) is thought to be an important component of multifactorial

disease genetics because of the complexity of biological systems

[5,6]. However, examination of G6G in GWAS is often limited by

the lack of a large sample, inadequate statistical methods, and

unavailability of appropriate software and computational capacity

[5–7].

To deal with the challenge of detecting G6G, much research is

under way on improving both statistical and computational meth-

odologies. A number of statistical methods and corresponding

software packages have been developed, which range from simple

exhaustive searches to data-mining and machine-learning ap-

proaches to Bayesian model selection [6]. On the basis of compu-

tational speed, and presumably ease of use, it was implied by

Cordell [6] that the programs PLINK [8], Random Jungle [9],

and BEAM [10] are the most computationally feasible methods for

detecting G6G in genome-wide data.

Regarding the multifactor dimensionality reduction (MDR)

method [11–13] or its improvements such as entropy-based

interpretation methods [14], the use of odds ratios [15], log-linear

methods [16], generalized linear models [17], and permutation
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testing [18], one of the major concerns is that these programs are

incapable of scale-up for analyzing GWAS data, as they were not

designed with genome-wide data in mind and thus could fail owing

to memory and disk usage issues [6]. However, even though the

MDR and its extensions are incapable of handling GWAS data,

they have been applied to a wide range of genetic association

studies where only a small number of SNPs were examined for

each sample [19]. For example, Andrew and colleagues used

MDR to model the relation between SNPs in DNA repair enzyme

genes and susceptibility to bladder cancer [20]. The GMDR has

been successful in identifying the significant interaction of

CHRNA4 with CHRNB2 [21], NTRK2 with BDNF [21], and

GABBR1 with GABBR2 [22] in nicotine dependence, of LEPR and

ADRB2 in obesity [23], and of HNF4A and KCNJ11 in type 2

diabetes (T2D) [24]. However, because most of these findings have

not been confirmed in independent studies, they should be inter-

preted with caution.

Although two general strategies, the filter approach and the

stochastic search algorithm, have been proposed for scaling up the

capability of MDR for analyzing GWAS data [19], neither

addresses the issue related to the MDR algorithm per se, which is

computational intensiveness and infeasibility in the original Java

implementation of the algorithm. Thus, the primary objective of this

study was to develop an effective software (i.e., GMDR-GPU) that

can run much more effectively in a more sophisticated computing

system. As a demonstration of this newly developed GMDR-GPU

program, we used it to analyze the type 2 diabetes (T2D) phenotype

from the Wellcome Trust Case Control Consortium (WTCCC)

study [25] with the goals not only of verifying susceptibility loci but

also of identifying novel ones for this disease.

Materials and Methods

Description of GMDR-GPU Software
The GMDR-GPU software implements GMDR using standard

C++ and CUDA 4.0 to make use of multiple graphics processing

units (GPUs). The source code is cross-platform and can be built

for Windows, Linux, or Mac OS X. As illustrated in Figure 1 for

data consisting of four SNPs, two covariates, and a continuous

phenotype, the analysis process of GMDR-GPU can be summa-

rized as three main steps.

Step 1: Justification for covariates. Compared with other

MDR algorithms, one of the major advantages of GMDR [17] is

the allowance of covariate correction, which takes place in this step.

By taking any covariate and the phenotypic data as input, GMDR-

GPU calculates a ‘‘score’’ statistic for each subject based on a

generalized linear model under different distributions; i.e., normal,

Poisson, and Bernoulli [17]. For the sake of user friendliness,

GMDR-GPU assumes that binary traits follow a Bernoulli

distribution, so the scores are actually residuals of logistic regression

relating the phenotype to the covariates, whereas for quantitative

traits, GMDR-GPU assumes they follow a normal distribution, so

the scores are actually residuals of linear regression. With this

approach, users do not need to worry about which regression model

should be used for justification of covariates. However, advanced

users have the option of providing the scores directly to the program

so they can use their own regression models to calculate the scores

and then use GMDR-GPU to complete the remaining computa-

tion, which requires deliberate optimization of the program for

handling the intensive computational burden. In the example

shown in Figure 1, the data contain two covariates, sex and age,

whereas the phenotype is continuous, so GMDR-GPU calculates

the score of each subject on the basis of a linear regression.

Step 2: Training and ranking all the SNP combinations

included in the data following a cross-validation

framework. After appropriate justification of covariates,

GMDR-GPU performs intensive computation with the goal of

selecting those SNP combinations showing the strongest associa-

tion signals as candidate G6G models. This is realized by a

training step based on a cross-validation framework [11,17]. The

data are randomly divided into K partitions of equal size for K-fold

cross-validation, where K is a default to 10. Accordingly, K training

sets are formed where each set consists of all but one of the K data

partitions. Within each training set, the genotypes of all the SNP

combinations are classified as high-risk or low-risk cells according

to the genotype and score data; i.e., the justified phenotypic data;

and all the SNP combinations are ranked by their training

(classification) accuracies. Those combinations with the highest

training accuracies are then selected as the input for step 3 to

complete further testing. With the default option, in each training

set, only the SNP combination with a rank of 1 is selected.

However, users have the option of selecting multiple SNP

combinations with the highest training accuracies from each

training set. In the example provided in Figure 1, the data contain

four SNPs, so there are
4

2

� �
~6 SNP combinations for a two-

dimensional interaction search. In each of the 10 training sets, the

top two SNP combinations with the highest training accuracies are

selected (the values of the training accuracies are not depicted in

Figure 1).

This step also outputs the cross-validation consistency (CVC)

statistics for the selected SNP combinations to indicate their

accuracies as predictive SNP–SNP interaction models. The CVC

statistic of an SNP combination is defined by the number of times

it is selected from all the training sets. The higher the CVC, the

more robust the SNP combination as a predictive interaction

model. By default, in this step, only those SNP combinations with

CVCs.(K/2)/K are outputted as possible G6G models. This step

is the one in which the massively parallel computation technique

of GPU and program performance optimization begin to be

applied. The GMDR-GPU generates the SNP combinations in

the CPU to take advantage of its fast sequential execution feature,

while at the same time, it distributes the calculation of all the

training accuracies for an SNP combination to one of the

thousands of GPU threads using a round-robin scheduling

approach [26]. This tool takes advantage of the many-core

architecture of a GPU so that a large number of SNP

combinations can be trained simultaneously. Each GPU thread

contains a selector to pick the combinations with the highest

training accuracies from those combinations distributed to the

thread and sends the selected combinations to the central

processing unit (CPU). The CPU does the final selection and

outputs those SNP combinations having the highest training

accuracies and their CVCs as the training result.

During the GPU computation, GMDR-GPU utilizes global

memory, constant memory, and registers of the GPU memory

architecture to achieve optimized memory consumption with

respect to space and access speed. Because the amount of GPU

memory is usually limited, the genotype data are stored in global

memory in a compact way. The scores calculated by step 1 are

stored in constant memory to accelerate access. The current

version of GWAS-GNDR can analyze a maximum of 10,000

subjects for each run.

Step 3: Determining the testing accuracies and

significance of the SNP combinations selected by Step

2. After identifying the candidate interaction models in Step 2,

GMDR-GPU enters the third step to predict how likely it is that

Development of GMDR-GPU and Its Application
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those models represent strong association signals from other

independent replicate datasets, which is measured by ‘‘testing

accuracies’’ and ‘‘P value’’. For each of the K training sets formed in

Step 2, the data partition that is not contained in the training set is

taken as the testing set. For each SNP combination selected by Step

2, testing accuracy is calculated on the basis of the genotype

classification in Step 2 in the corresponding training set; and its final

testing accuracy output by this step, which we define as ‘‘observed

testing accuracy,’’ is calculated by averaging its testing accuracies

among all the sets.

The significance or P value is determined by a permutation test

based on the observed testing accuracies. For each SNP combina-

tion selected by step 2, the scores are permuted, the genotypes in all

the training sets are re-classified, and testing accuracy is re-

calculated; this procedure is repeated N times, where N is a power of

10 specified by each user. The P value of an interaction model is

defined by M/N, where M is the number of times the re-calculated

testing accuracy is as high as the observed testing accuracy. The

parallel computation technique of GPU also applies here. The

permutation and recalculation repetitions are distributed to all the

GPU threads in parallel, so that thousands of repetitions can be run

simultaneously. Therefore, users can set N to a very large number to

increase the precision of the P value. Because the permutation test is

computationally intensive, we set 107 permutations as a default

value of the current version of GMDR-GPU program, although all

users has a choice of changing it based on their objectives and the

computational capacity.

In short, the current version of GMDR-GPU supports cross-

validation consistency, testing accuracy, permutation testing, and

high-dimensional interaction analysis. It also permits selecting

multiple top-listed interaction models based on cross-validation

consistency and testing accuracy with the goal of detecting

multiple interactions for a given order of interaction model. The

program can run on any computer system equipped with CUDA-

enabled GPUs and requires a CUDA 4.0 (or later version) driver.

Description of WTCCC T2D Data Used in this Study as an
Application

A detailed description of the WTCCC study sample can be

found in the original paper [25]. Briefly, the dataset includes seven

major human disorders: types 1 and 2 diabetes, bipolar disease,

coronary artery disease, Crohn’s disease, hypertension, and car-

diovascular disease. Each disease is represented by about 2,000

individuals and about 3,000 shared controls. The majority of the

subjects are of European ancestry. All the individuals were

genotyped using Affymetrix GeneChip 500 K arrays. Given that

the primary purpose of this communication to report the develop-

ment of GMDR-GPU, only the T2D phenotype of this GWAS

dataset is reported in this paper.

Results

Evaluation of Performance of GMDR-GPU
To evaluate the speed of GMDR-GPU relative to the original

Java implementation of GMDR, we conducted a series of perfor-

mance tests for the Java version GMDR on a server equipped with

an IntelH XeonH X5680 CPU (3.33 GHz) and 96 GB of RAM.

Six Tesla C2070 GPUs on the same server were used to test the

speed of GMDR-GPU. Performance tests were run on a simulated

dataset containing 5,000 subjects with a number of SNPs ranging

Figure 1. Working process of the GMDR-GPU program for conducting a two-dimensional interaction search on a sample consisting
of four SNPs, two covariates, and a quantitative phenotype.
doi:10.1371/journal.pone.0061943.g001
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from 103 to 106 per subject (Table 1). We performed an exhaustive

two-dimensional search of each simulated sub-dataset by setting all

other running parameters to default values. A CPU program of the

same GMDR algorithm was also written in C++ to measure the

speed-up obtained using the GPU rather than a CPU, which was

run on the same CPU with the same amount of RAM using the

same dataset.

As shown in Table 1, GMDR-GPU running on a 1 Tesla

C2070 was about 550 times faster than the single-core C++ CPU

version and about 3,500 times faster than the single-core Java

CPU version. We also tested the performance of GMDR-GPU

with multiple GPUs compared with a single GPU and found that

GMDR-GPU running on six GPUs was about six times faster than

that running on one GPU. In other words, GMDR-GPU achieves

perfect scalability when running on multiple GPUs.

Application of GMDR-GPU to WTCCC T2D Phenotype
To provide an example of GWAS data analysis with the

GMDR-GPU software, we applied it to the WTCCC dataset for

the T2D phenotype [25]. Prior to analysis, we performed data

quality control, checking separately for cases and control subjects,

and removed those SNPs with .10% missing data or minor allele

frequency of ,0.05. We further performed the Hardy-Weinberg

Equilibrium (HWE) test for all the SNPs included in the dataset for

the control subjects and removed those SNPs with a P value

,0.001. Following those filtering steps, 351,976 SNPs remained

for each subject and were used in this study.

For the G6G analysis, we performed searches from two- to five-

way interactions (Table 2). To avoid interactions that might be

attributed to linkage disequilibrium effects [6], those SNP

combinations containing any SNP pair whose physical distance

is ,1 Mb were ignored. Based on the values from 10-fold cross-

validation for a given SNP combination, only those combinations

whose cross-validation consistencies were .5/10 were used. An

exhaustive two-dimensional search was run among those 351,976

SNPs that passed quality control testing for detecting two-way

interactions.

Because it was impractical to run three- or higher-dimensional

searches among these 351,976 SNPs, exhaustive three- to five-way

searches were run only among the SNPs in the best combinations

generated from the exhaustive two-dimensional search, a com-

monly used approach in G6G analysis for large dataset like

GWAS [5,6]. On the basis of the estimated time required for each

run and the available computational capacity, we selected the top

1,000 SNP combinations from each training set. Because many

SNPs in those best-SNP combination outputs through two-

dimensional search overlapped, we finally identified 281 top and

unique SNPs according to the two-dimensional search results and

used them for exhaustive searches in three- to five-dimensional

G6G analyses. Also, although we wished to perform as many

permutations as possible for each SNP combination with our

GMDR-GPU program, we finally decided to run 107 permuta-

tions for each SNP combination based on our current computa-

tional capacity and the time required to complete each run.

Specifically, for our report on the WTCCC T2D data, we

removed those interactions whose cross-validation consistencies

were ,7/10 or whose P value was .1027. After these filtering

steps, the remaining best SNP combinations were considered to be

significant interactions and are reported here.

Determination of Core SNPs based on Two- to Five-way
Interaction Analysis

Following the two- to five-way interaction analyses for the T2D

phenotype with GMDR-GPU, we generated an SNP-SNP

interaction network with the goal of identifying core SNPs that

were consistently detected by our G6G analyses at different

dimensions (Figure 2). As shown in Table 3 and Figure 2, although

a significant number of SNPs were identified, only 24 were

considered to be ‘‘core’’ SNPs (i.e., identified repeatedly in

multiple SNP combinations at different levels), which included 5

SNPs identified by two-way analysis; 1 by four-way analysis; 3 by

two-way and five-way analyses; 1 by three-way, four-way, and five-

way analyses; and the remaining 14 by five-way analysis. The best

interaction models for these 24 core SNPs and their CVCs, testing

accuracies, and P values based on 107 permutated samples are

shown in Table 3.

Further mapping and bioinformatics analysis of the 24 core

SNPs revealed that they are located in six genes (Table 4), with 2

SNPs in the l(3)mbt-like 3 gene (L3MBTL3) on chromosome 6; 8 in

the transcription factor 7-like 2 gene (TCF7L2) on chromosome

10; 1 in the tetraspanin 8 gene (TSPAN8) on chromosome 12; 6 in

the fat mass and obesity-associated gene (FTO) on chromosome

16; 2 in the CUGBP, Elav-like family member 4 gene (CELF4) on

chromosome 16; and 5 in the runt-related transcription factor 1

gene (RUNX1) on chromosome 21. Of these six genes, TCF7L2,

TSPAN8, and FTO have been previously reported to be associated

with T2D [25,27–31], whereas other three genes (i.e., L3MBTL3,

CELF4, and RUNX1) have not; thus, they likely represent new

susceptibility genes for T2D in WTCCC GWAS dataset.

Discussion

As more and more GWAS studies are conducted throughout

the world, efficient methodologies and computer programs for

detecting G6G in the data have become essential and a challenge

for many researchers [6,7,19]. To meet this challenge, we

developed a new GPU-based software, called GMDR-GPU,

Table 1. Comparison of time required for exhaustive pair-
wise search in 5,000 subjects with 103 to 106 SNPs per sample
among the 1- and 6-GPU, C++ CPU, and Java CPU
implementations of GMDR-GPU.

Implementation 103 SNPs 104 SNPs 105 SNPs 106 SNPs

CPU (Java) 2.7 hr 11 d * 3 yr * 300 yr *

CPU (C++) 24 min 1.7 d 170 d * 48 yr *

1 GPU 2 sec 4.5 min 7.3 hr 31 d *

6 GPUs ,1 sec 45 sec 75 min 5 d

*Estimated from the running time of searches of smaller data sets.
doi:10.1371/journal.pone.0061943.t001

Table 2. Results of two- to five-way SNP-SNP interaction
analysis of WTCCC T2D data.

Characteristic Two-way
Three-
way

Four-
way Five-way

SNPs 351,976 281 281 281

Running time (hr) 31 15.2 8.2 35.9

Detected interactions 203 16 13 175

Highest testing accuracy 0.557 0.559 0.567 0.569

P value ,1027 ,1027 ,1027 ,1027

doi:10.1371/journal.pone.0061943.t002

Development of GMDR-GPU and Its Application

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e61943



which represents a significant extension of our previously reported

GMDR [17]. With this newly developed software, it becomes

possible to search for G6G in GWAS data within a reasonable

time. However, there still exist several potential limitations on the

current version of the program with most of them more or less

related to the computational capability available to us rather than

to the program per se. For example, we are not sure whether our

program could perform G6G analysis in a GWAS dataset

containing more than 10,000 subjects, as we did not have access

to any GWAS dataset with such large sample. In our experience,

although it is possible, the likelihood of any single GWAS dataset

having a sample size of more than 10,000 is very low or close to

zero except for a combined GWAS dataset from different projects

where various meta-analysis approaches should be used to merge

G6G results across different datasets as we commonly did for the

single-locus GWAS analysis. As stated earlier, we could produce

only a precise p value of 1027 because our available computational

capacity can perform only 107 permutations within a reasonable

time. We acknowledge that using a p value of 1027 as the

threshold for pair-wise G6G analysis in a GWAS dataset is not as

stringent as we wish for this type of analysis. However, it is our

believe that such a threshold could easily be changed with the

improvement of computational capacity. Finally, we performed

G6G analysis only for all possible pair-wise SNP combinations but

not for higher-order G6G analysis because of our limited

computational capability now. Even though there existed the

abovementioned limitations in our current study, our newly

developed GMDR-GPU still represents one of the most advanced

tools available in the field for performing G6G analysis in a

GWAS dataset.

As a demonstration of the GMDR-GPU program, we used it to

analyze the WTCCC GWAS data for T2D phenotype. Through a

series of analytical approaches, including G6G analysis at different

dimensions, core SNP detection, and network analysis, we identified

six susceptibility genes for T2D in the WTCCC dataset. Of these

genes, there is convincing evidence supporting the involvement of

variants in three, namely TCF7L2 [27,28], TSPAN8 [25,29], and

FTO [30–32], in T2D. For example, four SNPs (i.e., rs4506565 [28],

rs10885409 [33], rs7901695 [34], and rs4132670 [35]) in TCF7L2

have been reported to be associated with T2D, and SNP

rs11196205 in TCF7L2 is associated with both T2D and coronary

artery disease [27,36]. Here, we discovered that three more SNPs

(i.e., rs4074720, rs10787472, and rs11196208) in the same genes are

involved in the etiology of T2D through G6G. For the TSPAN8

gene, SNP rs1495377 has been reported to be associated with T2D

[25]. For FTO, three SNPs (rs9939973 [37], rs1121980 [38], and

rs9930506 [39]) have been reported to be associated with obesity

and two SNPs (rs9940128 [40,41] and rs9939609 [42,43]) with both

T2D and obesity. We found one new SNP (i.e., rs9922047) in FTO

to be associated with T2D.

Importantly, we identified three novel susceptibility genes for

T2D (i.e., L3MBTL3 on chromosome 6, CELF4 on chromosome

Figure 2. Determination of core SNPs for T2D through two-way to five-way interaction analysis using GMDR-GPU. Each SNP is
represented by a red dot and each interaction by a vertical line. The red dots in the same horizontal line correspond to the same unique SNP.
Different colors of vertical lines represent different interaction dimensions (green: two-way; blue: three-way; pink: four-way; yellow: five-way). All
identified core SNPs are indicated with their IDs.
doi:10.1371/journal.pone.0061943.g002
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Table 3. Best interaction models and their cross-validation consistencies (CVC), testing accuracies, and permutated P values based
on 107 permutated samples for the identified 24 core SNPs.

Core SNP
Best Interaction Model
rs SNP IDs (Chrom) CVC

Testing
Accuracy

Permuted P
value

rs10485400 rs10485400-rs4132670-rs9940128-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.568 ,1027

rs4897366 rs4897366-rs7901695-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs4074720 rs1469244-rs2452941-rs4074720-rs1495377-rs9939609 (Chrom: 4-6-10-12-16) 8/10 0.565 ,1027

rs7901695 rs4897366-rs7901695-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs4506565 rs4897366-rs4506565-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs4132670 rs10485400-rs4132670-rs9940128-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.568 ,1027

rs10787472 rs2452941-rs10787472-rs1495377 (Chrom: 6-10-12) 7/10 0.559 ,1027

rs11196205 rs955436-rs6470289-rs11196205-rs12879941-rs9939609 (Chrom: 8-8-10-14-16) 7/10 0.565 ,1027

rs10885409 rs12154976-rs10885409-rs2457179 (Chrom: 7-10-11) 8/10 0.557 ,1027

rs11196208 rs17608635-rs2736010-rs11196208-rs12879941-rs9939609 (Chrom: 4-8-10-14-16) 7/10 0.568 ,1027

rs1495377 rs4708273-rs4506565-rs1495377-rs9930506-rs11665417 (Chrom: 6-10-12-16-18) 7/10 0.567 ,1027

rs9939973 rs4897366-rs4506565-rs9939973-rs2852373-rs445984 (Chrom: 6-10-16-18-21) 10/10 0.568 ,1027

rs9940128 rs4897366-rs7901695-rs9940128-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.568 ,1027

rs9922047 rs10485400-rs4132670-rs9922047-rs608489-rs2834970 (Chrom: 6-10-16-18-21) 7/10 0.565 ,1027

rs1121980 rs4897366-rs7901695-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs9939609 rs17608635-rs2736010-rs11196208-rs12879941-rs9939609 (Chrom: 4-8-10-14-16) 7/10 0.568 ,1027

rs9930506 rs10485400-rs4132670-rs9930506-rs608489-rs2223046 (Chrom: 6-10-16-18-21) 8/10 0.568 ,1027

rs2852373 rs4897366-rs4506565-rs1121980-rs2852373-rs445984 (Chrom: 6-10-16-18-21) 8/10 0.569 ,1027

rs608489 rs4897366-rs7901695-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs445984 rs4897366-rs7901695-rs1121980-rs608489-rs445984 (Chrom: 6-10-16-18-21) 9/10 0.569 ,1027

rs1040328 rs10485400-rs7901695-rs9930506-rs608489-rs1040328 (Chrom: 6-10-16-18-21) 8/10 0.567 ,1027

rs990074 rs10485400-rs7901695-rs9930506-rs608489-rs990074 (Chrom: 6-10-16-18-21) 7/10 0.565 ,1027

rs2223046 rs10485400-rs4132670-rs9930506-rs608489-rs2223046 (Chrom: 6-10-16-18-21) 8/10 0.568 ,1027

rs2834970 rs10485400-rs4132670-rs9922047-rs608489-rs2834970 (Chrom: 6-10-16-18-21) 7/10 0.565 ,1027

Note: In our GMDR-GPU analysis, age and sex were used as covariates, and BMI was not adjusted for.
doi:10.1371/journal.pone.0061943.t003

Figure 3. Interaction/association network among the six genes containing at least one core SNPs identified by analyzing WTCCC
T2D data with GMDR-GPU. Beyond the six susceptibility genes identified in this work, three other genes, CTNNB1, RUNX3, and CBFB, were found
by a literature search. Although these genes have been associated with a number of human disorders, only two closely related diseases, i.e., T2D and
colorectal cancer, are shown.
doi:10.1371/journal.pone.0061943.g003
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18, and RUNX1 on chromosome 21), with two SNPs in L3MBTL3

(rs10485400 and rs4897366), two in CELF4 (rs2852373 and

rs608489), and five in RUNX1 (rs445984, rs1040328, rs990074,

rs2223046 and rs2834970). Whether the three genes are indeed

involved in T2D and how they are involved awaits further repli-

cation in independent studies. Although these three genes have not

been reported to be associated with T2D, they have been thought

to be involved in other human diseases or complex traits. For

example, rs6899976 in L3MBTL3 is associated with human adult

height [44] and rs6569648 with birth height [45]. CELF4 is a

family member of structurally related RNA-binding proteins

involved in various aspects of RNA processing, including splicing

and mRNA stability [46], and is expressed widely during develop-

ment but is restricted to the central nervous system in adults [47].

Increasing evidence has implicated the involvement of CELF

proteins in various neurologic disorders such as type 1 myotonic

dystrophy, spinal muscular atrophy, and seizures and epilepsy [46].

Although a link of T2D with RNA-binding proteins awaits further

verification with independent studies, this could be significant if it

proves to be true because it implies that RNA processing plays an

important role in the pathology of T2D. Genetic variations in

RUNX1 are associated with colon and rectal cancer [48].

Our gene network investigation provides more evidence for the

involvement of the identified six genes in T2D (see Figure 3). As

described above, genes TCF7L2, TSPAN8, and FTO have

previously been associated with T2D; and our current study

provided further support for their involvement. For L3MBTL3 and

RUNX1, although we failed to identify any report of their

involvement in T2D, they have been shown to interact with

TCF7L2 indirectly at the protein level. For example, L3MBTL3

interacts with the catenin (cadherin-associated protein) beta 1 gene

(CTNNB1) [49], while CTNNB1 interacts with TCF7L2 [50].

RUNX1 interacts with the core-binding factor beta subunit gene

(CBFB) [51], which interacts with RUNX3 [51], while RUNX3

interacts with TCF7L2 [52]. Interestingly, RUNX3 also interacts

with CTNNB1 [52]. Finally, it is worth pointing out that CELF4

[53], TCF7L2 [54], FTO [55], RUNX1 [48], RUNX3 [48], and

CTNNB1 [56] have all been reported to be involved in the etiology

of colorectal cancer. This makes our findings more convincing and

attractive because it is well documented that T2D is associated

with an increased risk of colorectal cancer [57,58]. Regarding the

results of our G6G analysis on WTCCC T2D data, we point out

that it would be far more convincing if we could replicate these

findings in other independent samples. However, given that the

primary goal of this communication is to report the development

of the GMDR-GPU program such that other researchers can

begin to use it to analyze their datasets, we consider validation of

these newly identified loci for T2D and further analysis of the

Table 4. Core SNPs associated with T2D based on G6G analysis at different orders with GMDR-GPU program.

Core SNP ID (Alleles) Gene and Location1 Physical Location2 Coding Chrom RefSeq
Reported Disease &
Reference

rs10485400 (A/G) L3MBTL3 (l(3)mbt-like 3;
Drosophila)

130485817 Intron 6 NC_000006.10

rs4897366 (A/C) 130499771 Intron

rs4074720 (A/G) 114738487 Intron

rs7901695 (C/T) TCF7L2 114744078 Intron T2D [34]

rs4506565 (A/T) (transcription 114746031 Intron T2D [28]

rs4132670 (C/T) factor 7-like 2; 114757761 Intron 10 NC_000010.9 T2D [35]

rs10787472 (A/C) T-cell specific, 114771287 Intron

rs11196205 (C/G) HMG-box) 114797037 Intron T2D [27], CAD [36]

rs10885409 (C/T) 114798062 Intron T2D [33]

rs11196208 (C/T) 114801306 Intron

rs1495377 (C/G) TSPAN8 (tetraspanin 8) 69863368 Intron 12 NC_000012.10 T2D [25]

rs9939973 (A/G) 52358069 Intron Obesity [37]

rs9940128 (A/G) FTO (fat mass 52358255 Intron T2D [40], Obesity [41]

rs9922047 (C/G) and obesity 52363781 Intron 16 NC_000016.8

rs1121980 (C/T) associated) 52366748 Intron Obesity [38]

rs9939609 (A/T) 52378028 Intron T2D [43], Obesity [42]

rs9930506 (A/G) 52387966 Intron Obesity [39]

rs2852373 (C/T) CELF4 (CUGBP, Elav-like
family member 4)

33157857 Intron 18 NC_000018.8

rs608489 (A/G) 33159109 Intron

rs445984 (C/T) 35819728 Intron

rs1040328 (C/T) RUNX1 (runt- 35832534 Intron

rs990074 (C/T) related 35833022 Intron 21 NC_000021.7

rs2223046 (A/G) transcription 35833974 Intron

rs2834970 (A/G) factor 1) 35847430 Intron

1Gene locations were retrieved from Enzembl Genome Browser.
2Physical location of each gene determined according to NCBI build 36.
doi:10.1371/journal.pone.0061943.t004
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dataset for other phenotypes including T2D as logical steps for

future research, which are beyond the scope of this paper.

Although MDR or its derivatives have identified numerous G6G

variants for many human diseases at the individual gene level [19],

there exist some significant limitations of these approaches. The first

lies in the computing program codes themselves, which are

incapable of handling GWAS data, as they were not designed with

genome-wide data in mind [6]. Another potential limitation of the

MDR software or its derivatives is that it produces only what is

considered to be the ‘‘best’’ interaction model rather than multiple

models with similar statistical characteristics. To overcome these

limitations and meet the demands of human genetics researchers,

we implemented our original GMDR algorithm [17] on a

computing system with GPUs, a type of hardware implementation

of parallel computation that can be adapted to many scientific tasks.

Because of its many-core architecture, a significant number of

threads can be run simultaneously so that massively parallel

computation can be performed in a more cost-effective way, even

on personal computers. For example, if one wants to reach the same

speed of GMDR-GPU with CPU versions, one would need to build

a cluster consisting of at least 550 CPUs, which is much more

expensive and consumes much more power than a Tesla C2070

GPU. Further, it probably is impractical to apply the original Java

implementation to an exhaustive search among millions of SNPs,

because this requires a computer equipped with thousands of CPUs

to reach the same speed in order to handle such a dataset with a

month.

In sum, by taking advantage of the massively parallel computing

technology of GPU, our newly developed GMDR-GPU software is

able to overcome the computational bottleneck of the original

GMDR software and perform exhaustive searches of G6G on

GWAS data. Following the development of GPU-based GMDR-

GPU program, we analyzed WTCCC dataset for T2D phenotype

and our obtained results not only confirmed some earlier findings

(such as the well-documented associations of TCF7L2, TSPAN8, and

FTO variants with T2D) but also identified three more susceptibility

genes (i.e., L3MBTL3, CELF4, and RUNX1) that have not been

associated with T2D before. Since the association of the three genes

with T2D has not been replicated in independent samples, we

caution that these findings are tentative, and replication studies are

warranted.
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