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Throughout early phases of brain development, the two main neural signaling
mechanisms—excitation and inhibition—are dynamically sculpted in the neocortex
to establish primary functions. Despite its relatively late formation and persistent
developmental changes, the GABAergic system promotes the ordered shaping of
neuronal circuits at the structural and functional levels. Within this frame, interneurons
participate first in spontaneous and later in sensory-evoked activity patterns that precede
cortical functions of the mature brain. Upon their subcortical generation, interneurons in
the embryonic brain must first orderly migrate to and settle in respective target layers
before they can actively engage in cortical network activity. During this process, changes
at the molecular and synaptic level of interneurons allow not only their coordinated
formation but also the pruning of connections as well as excitatory and inhibitory
synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory
towards an inhibitory response is required to enable synchronization within cortical
networks. Concomitantly, the progressive specification of different interneuron subtypes
endows the neocortex with distinct local cortical circuits and region-specific modulation
of neuronal firing. Finally, the apoptotic process further refines neuronal populations by
constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly,
many of these fundamental and complex processes are influenced—if not directly
controlled—by electrical activity. Interneurons on the subcellular, cellular, and network
level are affected by high frequency patterns, such as spindle burst and gamma
oscillations in rodents and delta brushes in humans. Conversely, the maturation of
interneuron structure and function on each of these scales feeds back and contributes
to the generation of cortical activity patterns that are essential for the proper peri- and
postnatal development. Overall, a more precise description of the conducting role of
interneurons in terms of how they contribute to specific activity patterns—as well as how
specific activity patterns impinge on their maturation as orchestra members—will lead
to a better understanding of the physiological and pathophysiological development and
function of the nervous system.
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INTRODUCTION

During early development, mammalian brains can be
functionally characterized by the progressive emergence
of distinct cortical activity patterns which are essential for
the establishment of basic functions of the cerebral cortex
(Blankenship and Feller, 2010; Kilb et al., 2011; Kirkby et al.,
2013). Underlying this dynamic change in neuronal activity,
among other developmental processes, is the structural and
functional maturation of the two main signaling principles of
neurons: excitation and inhibition (Egorov and Draguhn, 2013;
Luhmann et al., 2016; Teppola et al., 2019). While glutamatergic
signaling is established already within early, embryonic stages
in rodents and humans (Monyer et al., 1994; Bagasrawala
et al., 2017), the maturation of the GABAergic system extends
into the postnatal period of most mammals. Starting with the
formation of the first GABAergic synapse (Khazipov et al.,
2001), the maturation of the inhibitory system coincides with
the emergence of correlated oscillatory activity patterns, such
as spindle burst and gamma oscillations in newborn rodents
or delta brushes in prenatal humans (Luhmann and Khazipov,
2018). Here, the thalamus contributes significantly to the
generation of these early cortical oscillations (Minlebaev et al.,
2011; Yang et al., 2013; Murata and Colonnese, 2016), which
conversely also modulate thalamic activity within a cortico-
thalamic feedback loop (Yang et al., 2013; Martini et al., 2021).
Furthermore, the maturation of the adult inhibitory GABAergic
system is still not complete when cortical activity evolves to its
final more de-correlated activity state that underlies its later
complex functions (Golshani et al., 2009; Rochefort et al., 2009).

Although the contribution of GABA signaling to cortical
activities during the perinatal phases is not fully understood,
it is often speculated that GABAergic interneurons critically
modulate the output of neuronal circuits in the form of
spontaneous and sensory-driven activity (Bonifazi et al., 2009;
Butt et al., 2017). In general, the importance of distinct cortical
activity patterns during cortical development is emphasized
by their necessity for and coherent emergence with higher
cognitive function (Tort et al., 2009; Bosman et al., 2012).
Consistently, in sensory cortical areas during the postnatal
period of rodents, stereotypical spontaneous and evoked activity
patterns concurrently develop with respective sensory modalities
(Rochefort et al., 2009; Yang et al., 2009; Colonnese et al.,
2010; Ackman and Crair, 2014; Martini et al., 2021). However,
the source of spontaneous activity is still a matter of ongoing
research, as well as the root cause and type of evoked activity
which varies depending on the region and time point of perinatal
development.

Yet, undoubtedly, neuronal activity itself is a key regulator
of many—if not all—developmental processes in the cortex.
Thus, it comes to no surprise that neuronal activity also strongly
impacts the maturation of the GABAergic system, from the
cellular to the network level, and fine-tunes excitation/inhibition
balance (Turrigiano and Nelson, 2004; Takesian and Hensch,
2013). Besides cortical activity, thalamic inputs also play a
role in interneuron maturation on the level of the cortex
(Pouchelon et al., 2014; Marques-Smith et al., 2016), while

interneurons in turn function as a gate for the thalamus by
effecting cortical network activity (Yang et al., 2013; Martini
et al., 2021). Therefore, the GABAergic system must permit
sufficient excitation to engage in cortical activity and still
provide the needed inhibition to prevent over-excitation. In
this respect, it is worth mentioning that a certain level of
freedom in the excitation/inhibition balance is needed, especially
for the establishment of the sensory cortical system during
early development (Masquelier et al., 2009; Deidda et al., 2015;
Wosniack et al., 2021). Both the GABAergic system and neuronal
activity are fulfilling important functions during these critical
periods, as discussed in more detail elsewhere (Sale et al., 2010;
Reha et al., 2020).

In this article, the focus will be on the interdependency of
the maturation of the GABAergic system and cortical network
activity throughout the perinatal and postnatal development of
the rodent cortex. For this purpose, we will review how neuronal
activity impacts the maturation of the GABAergic system on
the subcellular (mostly synaptic) level, on the cellular and on
the network level and discuss how the maturation on each of
these scales feeds back on cortical activity, thus impacting the
function of the mature cortex. Finally, we will describe the
physiological implications of this interdependency and highlight
open questions in this field of research.

THE INTERPLAY OF ACTIVITY AND
PERINATAL CHANGES OF GABAergic
SYSTEM AT THE SUBCELLULAR LEVEL

Before becoming the main inhibitory neurotransmitter in the
mature brain, GABA exerts mainly excitatory function in
immature neurons (Luhmann and Prince, 1991; Leinekugel
et al., 1995; Rheims et al., 2008; Kirmse et al., 2015) and is
suggested to regulate spontaneous activity during development
(Ben-Ari, 2002; Le Magueresse and Monyer, 2013; Kirmse et al.,
2015). In turn, the neuronal activity itself is a key regulator
of the subcellular processes that underlie this developmental
change in GABA signaling—like the expression of chloride
transporters (Fiumelli et al., 2005), GABA-receptor expression,
and GABAergic synaptogenesis (Ganguly et al., 2001; Wardle and
Poo, 2003; see also Figure 1 for overview).

GABA-Receptor Signaling
At the postsynaptic side, GABA exerts its function via
ionotropic GABAA-receptors and metabotropic GABAB-
receptors. GABAA-receptors are a heterogenous group of
chloride channels with rapid kinetics. Each of them is formed
by a heteromeric complex that consists of five of a possible
19 different subunits (α1–6, β1–3, γ1–3, π, θ, δ, ε, Kumada
and Fukuda, 2020). Differences in localization of GABAA-
receptors lead to two major forms of GABAergic inhibition:
phasic inhibition and tonic inhibition. Where the former
is mediated by synaptic, low affinity GABAA-receptors, the
latter is facilitated by high affinity, extrasynaptic GABAA-
receptors (Kumada and Fukuda, 2020). The expression of
GABAA-receptor subunits changes with development: some
subunits display a consistent increase in expression levels with
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FIGURE 1 | The developmental sequence of perinatal changes in (A) positioning and integration of nascent interneurons, (B) synaptic GABA signaling, and (C)
interneuron participation in network activity in the rodent cortex. At E14, GABAergic interneuron precursors tangentially migrate from the ganglionic eminences into
the cortex and ambient GABA acts as a chemoattractant. Binding of GABA to GABAA-receptors at this stage depolarizes recipient interneurons and likely
contributes to sporadic, uncorrelated Ca2+ transients (red). Around birth (P0), immature GABAergic interneurons are found in the marginal zone and migrate radially
concomitant with pyramidal neurons. Here, GABA acts as a Stop and Go signal mainly through GABAA-receptors. At this developmental stage, GABA is still
excitatory and contributes to uncorrelated Ca2+ transients in GABAergic interneurons (red traces) and immature pyramidal neurons (green traces). At the end of the
1st postnatal week (P7), layering of the cortex is mostly complete and maturing neurons already begin to form synapses. Vesicular released GABA hyperpolarizes the
postsynaptic cell via postsynaptic GABAA- and binds to extra- and pre-synaptic GABAB-receptors. Highly synchronous spontaneous activity in interneurons and
pyramidal neurons is a hallmark of this developmental phase. By P14, excess neurons were depleted through developmental apoptosis and stable functional, also
perisomatic connections have developed. The cation-chloride transporter profile is fully matured and GABA receptor signaling fulfills its mostly inhibitory function.
Spontaneous and sensory-evoked activity shifts to a more decorrelated state.

age (e.g., α1, β1, β2, δ) whereas others instead show a peak,
followed by a decline (e.g., α2, α3, α5, β3, γ3, Laurie et al., 1992).
Although a large portion of GABAA receptor subunits is only
found in postmigratory neurons, others (α2, α3, β1, β3, γ1, γ2)

are already detectable in the germinal zone and in migrating
neurons in the marginal zone and the cortical plate (Araki et al.,
1992; Laurie et al., 1992; Poulter et al., 1992; Van Eden et al.,
1995). The early timing of the expression profile supports an
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effective role of GABAergic signaling before synaptogenesis,
i.e., during interneuron migration and maturation of GABAergic
synapses.

In contrast to the ionotropic GABAA-receptors, the
metabotropic GABAB-receptors consist of two distinct subunits
(B1 and B2). Subunit B1 is expressed in two isoforms: namely,
B1a and B1b, which require the dimerization with a B2 subunit
to form functional heteromeric GABAB-receptors (Terunuma,
2018). Once the receptor is activated by ligand binding on the
extracellular domain of the B1 subunit, a G-protein mediated
signaling cascade is started which opens K+ channels at the
post- and Ca2+ channels at the presynaptic site. In this way,
GABAB receptor mediated inhibition leads to hyperpolarization
of the postsynaptic neuron and/or to reduced release probability
of neurotransmitters in the synaptic cleft. In rodents, GABAB
receptors are expressed as early as embryonic day 14 (López-
Bendito et al., 2002) and reach their expression level peak in
the first postnatal week (Turgeon and Albin, 1994; Behuet et al.,
2019). Furthermore, it was shown that the different GABAB
subunits have distinct expression levels with GABAB1 playing
a more important role during prenatal development of the rat
(Li et al., 2004). In addition, GABAB1-receptors are expressed in
migrating neurons in the lower intermediate zone, where GABA
not only enhances GABAB-receptor expression but also works as
a chemo-attractant that promotes motility of migrating neurons
(Behar et al., 2001). GABAB receptors are found in dendritic
spines and dendritic shafts at extrasynaptic and perisynaptic
sites during postnatal development (López-Bendito et al., 2002).
Moreover, in the postnatal stage, activity-dependent secretion of
brain-derived neurotrophic factor (BDNF) is mainly mediated
by activation of GABAB-receptors, which then promote the
development of perisomatic GABAergic synapses (Fiorentino
et al., 2009).

Taken together, the results on GABA receptor signaling
during brain development illustrate the importance of GABAA-
receptor activity for corticogenesis, interneuron migration, and
for modulation of synaptic transmission (Cancedda et al., 2007;
Patrizi et al., 2008; Fuchs et al., 2013) and indicate a potentially
important but largely unresolved role for GABAB-receptors.

Facilitating the Chloride Gradient: The
Cotransporters NKKC1 and KCC2
Activation of mature postsynaptic GABAA receptors typically
leads to a fast hyperpolarization through anion influx,
predominantly by Cl− (Kaila, 1994; Olsen and Sieghart,
2009). However, during brain development, GABA plays a
critical role as an excitatory drive relevant for the proper
development and establishment of neuronal circuits (Ben-Ari,
2002; Rheims et al., 2008). In fact, in the immature brain
GABAA-receptor activation leads to depolarization of neurons
due to the high intracellular Cl− concentration (Rivera et al.,
1999; Yamada et al., 2004; Rheims et al., 2008; Kirmse et al.,
2015). The intracellular concentration is mostly set by two main
cation-chloride cotransporters Na+-K+-2Cl−-Cotransporter 1
(NKCC1)—a chloride-importer—and K+-Cl−-cotransporter
2 (KCC2)—a chloride extruder, which play a pivotal role in
the polarity of GABAergic action (Rivera et al., 1999; Yamada

et al., 2004; Achilles et al., 2007; Rheims et al., 2008; Kirmse
et al., 2015). In immature cortical neurons, intracellular
chloride is significantly higher than in mature neurons due
to the predominant expression of NKCC1 over KCC2. The
developmental change in chloride-cotransporter expression,
which occurs within the first postnatal week in the rodent cortex
(Shimizu-Okabe et al., 2002), is hence effectively reversing
GABA action from depolarizing to hyperpolarizing (Rivera et al.,
1999; Shimizu-Okabe et al., 2002; Yamada et al., 2004; Rheims
et al., 2008). Studies in various animal models have shown
that this switch occurs at different time points within different
species and have brain region-specific effects (Leinekugel et al.,
1995; Reith and Sillar, 1999; Saint-Amant and Drapeau, 2000;
Eilers et al., 2001; Gao and Van Den Pol, 2001; Murata and
Colonnese, 2020). It also could be demonstrated that the precise
time point of the switch is not strictly determined by the genetic
program, but might be influenced by neurotrophic factors and
neuronal activity (Ganguly et al., 2001; Wardle and Poo, 2003).
For example, repetitive fast postsynaptic excitation influences
KCC2 expression and therefore affects the chloride reversal
potential (Fiumelli et al., 2005). Also, GABA itself can be crucial
for the determination of the time point of shift. In the turtle
retina, under blockade of GABAA receptors at the developmental
time point of the shift, GABA action remains excitatory, through
inhibition of KCC2 upregulation (Leitch et al., 2005). On the
other hand, experiments in hippocampal slice and dissociated
hippocampal cultures do not support a GABA and/or activity
dependency of the switch from de- to hyperpolarizing (Ludwig
et al., 2003; Titz et al., 2003). Unfortunately, studies aiming to
assess the role of activity for the expression of NKCC1 are still
difficult to interpret, likely because of broad technical difficulties
(Virtanen et al., 2020). A recent study, in which NKCC1 is
selectively knocked-out in telencephalic glutamatergic neurons,
showed that in the visual cortex NKCC1 is not necessary for the
establishment of fully functional networks in adult mice (Graf
et al., 2021). Conceptually this is in line with another recent
study, in which GABAergic activation did not produce excitation
in postsynaptic neurons in the visual cortex of 3 days old mice
(Murata and Colonnese, 2020). Supporting brain region specific
differences in GABAergic synaptic transmission, glutamatergic
hippocampal neurons lacking NKCC1 display significantly lower
intracellular chloride concentrations. Despite the alterations
in correlated spontaneous activity during development and
slightly altered network dynamics in the hippocampus of adult
mice, these knock-out mice are perfectly capable of performing
hippocampus-dependent behavioral tasks (Graf et al., 2021).
However, it remains unclear whether changes in network
dynamics are an acute effect of NKCC1 loss, or rather an
adaptation to ensure proper functionality in NKCC1 knock-out
mouse lines. In support of the latter hypothesis, an earlier study
showed that the complete loss of NKCC1 prevents excitation
via GABA in hippocampal CA3 neurons, nevertheless, these
mice still display typical network activity patterns as seen under
physiological conditions (Sipilä et al., 2009). In contrast, another
constitutive NKCC1 knock-out mouse line shows impairments
in early hippocampal activity patterns and delayed maturation of
the network (Pfeffer et al., 2009).
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GABAergic Signaling Before and During
Synaptogenesis
On a structural level, GABAergic synapses are among the first
synapses that are formed in the developing brain (Tyzio et al.,
1999; Khazipov et al., 2001; Rymar and Sadikot, 2007). Immature
neurons in the hippocampus as well as in the neocortex first
receive GABAergic before glutamatergic input (Ben-Ari, 2006;
Wang and Kriegstein, 2008). In the neocortex of newborn
mice GABAergic vesicle abundance is relatively low and only
during the following days the expression of GABAergic synaptic
markers increases gradually until it reaches a plateau at the
end of the 2nd postnatal week (Minelli et al., 2003). However,
not only does the number of GABAergic vesicles increase, but
also their overall distribution changes within the developing
cortex. While GABAergic vesicles can only be detected in the
marginal zone in newborn mice, their distribution gradually
extends deeper into the neocortex until finally covering all
cortical layers at the end of the second postnatal week (Minelli
et al., 2003). Despite the maturation of GABAergic vesicles
late in the first postnatal week (Minelli et al., 2003), GABA
positive cells can already be found even in the deeper layer
of the neocortex at birth (Takayama and Inoue, 2010). These
findings support a role of GABAergic signaling before the onset
of synaptogenesis, i.e., extrasynaptic transmission. In line with
this, GAD67 (the main GABA-producing enzyme isoform) and
GABAA receptors can already be detected as early as E17 in
the ventricular zone (Ma and Barker, 1995) and throughout the
cortical plate (van den Berghe et al., 2013). Paracrine release of
GABA was demonstrated to occur in different cell types during
development, e.g., in immature neurons, but also in endothelial
cells (Taylor and Gordon-Weeks, 1991; Gao and Van Den Pol,
2000; Li et al., 2018). In the latter, partial or complete loss of
GABA release during embryogenesis leads to impairment of
long-distance migration and positioning of cortical interneurons
(Li et al., 2018). In the adult cortex, astrocytes express the
GABA transporter GAT1 and thus influence the excitatory and
inhibitory transmission through the paracrine spread of GABA
(Minelli et al., 1995; Barakat and Bordey, 2002). However,
whether or not astrocytes are also a source of GABA during
development is yet not clear.

Maturation of GABAergic Synapses
Neuronal activity e.g., via the depolarization of immature
neurons, is a key regulator in synaptogenesis. in vitro and
in vivo studies show that the excitatory effect of GABA
during early development is essential for the normal maturation
of dendritic spines (Hensch et al., 1998; Cancedda et al.,
2007; Chattopadhyaya et al., 2007; Wang and Kriegstein,
2008; Pfeffer et al., 2009; Oh et al., 2016; Flossmann et al.,
2019). In line with an important role for GABAA-receptor-
mediated activity during the establishment of neural circuits,
the development of synapses between somatostatin-positive
(SST) interneurons and pyramidal cells in the hippocampus
is NKCC1-dependent (Pfeffer et al., 2009; Flossmann et al.,
2019). However, not only GABA-induced activity is required
for the proper maturation of GABAergic interneurons, but also,
NMDA receptor activity affects the regulation of GABAergic

synaptogenesis (Cserép et al., 2012; Gu et al., 2016; Hanson
et al., 2019). Tonic NMDA-mediated neuronal activity is
important for the maturation and correct integration of
parvalbumin-positive (PV) interneurons into the developing
cortical network (Hanson et al., 2019). In early development,
NMDA-receptors are co-localized with GABAA-receptors at the
postsynaptic site (Cserép et al., 2012), where NMDA-receptors
act as upstream signaling molecules essential for GABAergic
synaptogenesis via Ca2+ transient and calmodulin signaling
(Gu et al., 2016). Conversely, GABAA-receptor activation is
sufficient to remove the voltage-dependent Mg2+ blockade and
thus activate NMDA-receptors (Wang and Kriegstein, 2008).
The mutual interplay between GABAA- and NMDA-receptors
is thus shown to play an important role in the emergence
of spontaneous synchronous activity and the correct balance
between excitation and inhibition (E/I) in the neocortex
(Wang and Kriegstein, 2008). Of note, also AMPA-receptor
expression at the postsynaptic site can be affected by GABAergic
action, such that AMPA-receptor levels are downregulated
in glutamatergic/GABAergic-mixed synapses (Fattorini et al.,
2019). Thereby, a proper E/I balance is ensured and a
potential neuroprotective effect is exerted in the developing
brain (Fattorini et al., 2019). GABAA-receptors fulfill important
functions for GABAergic synapse development not only on
the functional but also on the structural level (Chattopadhyaya
et al., 2007; Deng et al., 2007; Fuchs et al., 2013; Oh et al.,
2016). Along this line, GABA release from SST interneurons
leads to the expression of the scaffolding protein gephyrin
and dendritic spine formation by recruitment and activation
of GABAA receptors in layer 2/3 cortical pyramidal neurons
in neonatal mice (Oh et al., 2016). Accordingly, conditionally
knocking-out GAD67 in PV basket cells results in less terminal
branching, smaller boutons size, and hence, fewer and deficient
synaptic contacts (Chattopadhyaya et al., 2007). Depletion of
GAD65, the smaller isoform of the GAD protein, leads to
impaired formation of cortical networks and over-responsiveness
in the visual cortex (Hensch et al., 1998) while overexpression of
GAD67 leads to faster perisomatic innervation (Chattopadhyaya
et al., 2007). Together, these findings suggest that GABA
regulates perisynaptic contact formation during the maturation
of neural circuits (Chattopadhyaya et al., 2007) and imply
that suppression of electrical activity leads to fewer synaptic
contacts via reduced GABA levels (Chattopadhyaya et al.,
2004). On the other hand, mice with disturbed GABA
homeostasis also display less activity (Fiorentino et al.,
2009). This raises the question of whether GABA action on
synaptogenesis should be mostly considered as an activity-
independent mechanism.

THE INTERPLAY OF ACTIVITY AND
PERINATAL CHANGES OF GABAergic
SYSTEM AT THE CELLULAR AND
NETWORK LEVEL

Not only the maturation of the GABAergic system at the
subcellular level is affected by, but also the maturation of
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the single (inter-)neuron and network level activity shows
an activity-dependence. While, on the other hand, network
composition in general—and especially the activity of
GABAergic subpopulations—significantly influence cortical
activity during the postnatal period of rodents (Le Magueresse
and Monyer, 2013; Kepecs and Fishell, 2014; Tremblay
et al., 2016; for an overview see also Figure 2). Inversely,
cortical activity is not only the most relevant cortical output
function, but also has an important feedback role as a key
regulating factor for many processes at the cellular and
network level during early brain development (Luhmann
et al., 2016; Okujeni and Egert, 2019). In this way (and as
can be seen in Figure 2), cortical activity and especially the
activity of interneurons themselves critically control several
key steps in the development of GABAergic neurons on the
network level, including migration, wiring, and programmed
cell death.

Neurogenesis and Proliferation of
Interneuron Precursors
In chronological order, the first step to consider is the
embryonic generation of GABAergic interneurons, i.e., the
neurogenesis and proliferation of interneuron precursor cells in
the ventral telencephalon—in particular the medial and caudal
ganglionic eminences (MGE and CGE, respectively), with a
minor contribution of the preoptic area and the lateral ganglionic
eminence (POA and LGE; Gelman and Marín, 2010; Sultan
et al., 2013). Expression of homeobox transcription factors of the
Dlx family is of essential importance for GABAergic precursors
proliferation, as well as for the differentiation of interneurons
(Petryniak et al., 2007). Additionally, both processes are activity-
dependent. The proliferation of neuronal progenitors, in general,
has been shown to be influenced by spontaneous calcium activity
(Weissman et al., 2004; Malmersjö et al., 2013). Meanwhile,
spontaneous calcium activity in parallel also critically impacts
the further specification of neuronal phenotypes (Ciccolini
et al., 2003; Borodinsky et al., 2004), which is no surprise
considering the tight link between neuronal gene expression and
neuronal activity (Flavell and Greenberg, 2008). In this regard, it
should be highlighted that the increasing complexity of activity
patterns in developing neurons that follows the occurrence of
simple calcium transients in progenitor cells also offers a higher
order complexity on the level of gene regulation (Tyssowski
et al., 2018). Activity-dependent regulation of the proliferation
and differentiation of neural stem cells and oligodendrocyte
precursors has also been shown in the postnatal brain (Káradóttir
and Kuo, 2018). Thus, neuronal activity is not only an import
modulator determining the extent and type of interneurons
during development but also remains important in adult neuro-
and gliogenesis. Moreover, via the direct action of synaptically
released GABA (Andäng et al., 2008) as well as through cortical
activity that is in turn significantly influenced by GABAergic
neuronal population sizes (Modol et al., 2020), cross-talk of
interneuron proliferation and cortical activity should be carefully
considered as a regulatory mechanism that shapes neuronal
circuitry.

Migration of Interneurons
Upon their generation, interneurons need to migrate from their
places of origin in the subpallium along the subventricular
and marginal zone to reach their final place of destination in
the postnatal cortex. This location is spatially characterized by
a distinct radial position within a certain cortical region and
also a distinct laminar location within a certain cortical layer
(Faux et al., 2012). Early experiments in vitro have already shown
that migration of immature neurons is generally dependent on
spontaneous calcium activity (Komuro and Rakic, 1996; Komuro
and Kumada, 2005). These experiments were later confirmed
in vivo, where the pharmacological or genetic reduction of
activity also altered the migration of excitatory and inhibitory
neurons (Heck et al., 2007; De Marco García et al., 2011).
In addition to this effect of neuronal activity on migration,
one has to note that various neurotransmitters—including
GABA—act as chemoattractants for targeting migratory streams
and thus, can directly modulate neuronal migration (Behar
et al., 2000; Inada et al., 2011). Since GABA release itself
is regulated in an activity-dependent manner, this implies a
further level of regulation on account of this (Luhmann et al.,
2015). Further, more recent studies show that silencing neuronal
activity e.g., by the overexpression of the Kir2.1 channel,
results in mispositioning of specific interneuron subpopulations
by affecting the expression of Dlx genes (De Marco García
et al., 2011). This suggests that genetic programs initiated at
the progenitor stage are modulated during development by
activity (Bando et al., 2016; Hurni et al., 2017). Nevertheless,
the experimental disentangling of direct causal links between
activity and differentiation, migration, and/or integration of
interneurons remains challenging and requires the careful
analysis of subtype-specific differences in these relationships
(Bugeon et al., 2021). Moreover, the simultaneous maturation of
the inhibitory GABAergic response from its immature excitatory
function (Ben-Ari, 2002) with the migration of interneurons
adds another layer to the complex and multidimensional
regulation needed for the correct laminar positioning of
interneurons. The importance of which is also experimentally
supported by the halt of neuronal motility induced by
upregulation of KCC2 or pharmacological interference with
GABAA receptor function (Heck et al., 2007; Bortone and
Polleux, 2009).

Thus, activity on the single interneuron level but also on
the network level critically regulates the migration of immature
neurons. However, the extent to which spatial and temporal
changes in the migration of interneurons impacts cortical
activity and function needs further investigations, especially since
interneuron migration is tightly linked to the specification of
interneurons (Lim et al., 2018b).

Specification of Interneuron Subtypes
In the neocortex, the vast majority of GABAergic cells are
represented by local circuit interneurons, which are traditionally
classified as aspiny neurons (Lodato and Arlotta, 2015). All
GABAergic interneurons produce GABA, the hyperpolarizing
action of which in the mature brain accounts for their definition
as inhibitory neurons. GABAergic neurons form a heterogeneous
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FIGURE 2 | Interdependence of (oscillatory) cortical network activity and development of the GABAergic system at the subcellular, cellular, and network level.
Known regulation of or by high frequency spindle burst and gamma activity are highlighted in dark blue. Exemplary references to experimental evidence supporting
these processes are listed. *Note, this study suggests that somatostatin interneurons contribute to the early processing of sensory information in a way, that their
activity affects spindle burst activity possibly through the plastic arrangement of thalamic innervation to the neocortex.

population, of which classification is an ongoing effort
that encompasses several morphological, electrophysiological,
molecular, connectivity, and transcriptomic properties (Kepecs
and Fishell, 2014). The broadest and most widely adopted
classification relies on molecular markers, two of which (namely:
parvalbumin and somatostatin) label around 70% of cortical
interneurons. The remaining 30% are instead identified by a
handful of markers, among which the most prevalent one is
the serotonin receptor 5hT3aR. Other markers—such as the
vasointestinal peptide (VIP), reelin (RELN), cholecystokinin
(CCK), and calretinin (CR)—label smaller subclasses.

The maturation of subtype-specific properties of inhibitory
interneurons mainly occurs during the first weeks of postnatal
development in rodents and the different types of interneurons
become only observable after the migration is complete at the
end of the 1st postnatal week (Lim et al., 2018b). Whether
the lineage specification is already predetermined during the
embryonic stage or is (partially) acquired during the postnatal
period through a microenvironment-mediated influence is still
a matter of debate (Wamsley and Fishell, 2017; Lim et al.,
2018a). However, it is becoming evident that activity-dependent
mechanisms impinge on cellular properties of interneurons,
such as morphology, synapse specificity, and connectivity (De
Marco García et al., 2011; Dehorter et al., 2015). Indeed, many
supporting findings are coming out from studies that manipulate
or abolish the activity of certain cell-type precursors (MGE or
CGE derived) (Chattopadhyaya et al., 2004, 2007; De Marco
García et al., 2011). Some of these findings suggest an activity-
dependent regulation of molecular and electrophysiological
properties of different interneuron subtypes (Miller et al., 2011;
Dehorter et al., 2015) and thereby contribute to subtype-specific
differences in gene expression (Batista-Brito et al., 2008; Paul
et al., 2017), which have now been resolved with increasing
depth (Joglekar et al., 2021; Scala et al., 2021). Furthermore, the
onset and duration of these activity modulations have differential
effects on the different interneurons subtypes, reflecting the

timeline with which they differentiate from the respective
ganglionic eminences (Wamsley and Fishell, 2017). Mostly early
maturational aspects of MGE- and CGE-derived interneuron
specification are hereby discussed, since general morphological
and electrophysiological characteristics that distinguish the
different interneuron subpopulations are extensively described
elsewhere (Gelman and Marín, 2010; Rudy et al., 2011;
Pfeffer et al., 2013; Lim et al., 2018a; Fishell and Kepecs,
2020).

Early Maturation of MGE-Derived Interneurons
In the rodent cortex, the earliest developing interneurons are
SST and PV interneurons originating from the MGE. As
mentioned before, the first GABAergic neurons start to populate
the cortical plate very early in development, already between
E9.5 and E12.5 in deep cortical laminas (Miyoshi et al., 2007).
At first, SST interneurons are generated from the dorsal division
of MGE. Around E17.5, they are found in the deep layer
of the cortical plate (Miyoshi and Fishell, 2011), whereas at
the end of the 1st postnatal week, they are visible across
all cortical layers (Liguz-Lecznar et al., 2016). During early
postnatal days, SST interneurons play transient and instrumental
functions in shaping neural circuits in the cortex. At P4–6 in
the mouse somatosensory cortex, SST interneurons receive
dense innervation from the thalamus, and in turn, give inputs
to pyramidal cells, spiny stellate cells, and recently migrated
prospective PV neurons (Marques-Smith et al., 2016; Tuncdemir
et al., 2016). Remarkably, these connections are fundamental for
the proper formation of thalamo-cortical feedforward circuits
(Tuncdemir et al., 2016), the coordinated activation of PV
cells (Modol et al., 2020), and functional topography (Duan
et al., 2020), since conditional ablation or silencing of SST
neurons drastically impairs these processes. Conversely, it has
been shown that the functional maturation of SST interneurons
is delayed if afferent excitatory inputs from pyramidal neurons
are decreased at early (P1) rather than later (P8) postnatal stages
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(Pan et al., 2019). Furthermore, besides direct synaptic inputs, it
was recently shown that SST interneurons also exert a paracrine
role through the release of synaptogenic extracellular matrix
proteins such as collagen XIX (Su et al., 2020). During the 2nd
postnatal week, SST interneurons are involved in the control
of sensory-evoked activity, such as spontaneous retinally-driven
activity in the visual cortex (Leighton et al., 2021), or multi-
whisking activity in the barrel cortex (Kastli et al., 2020). In line
with these findings, conditional silencing of SST interneurons
leads to a decrease in spontaneous spindle-burst activity and
abolished facilitation in sensory adaptation (Baruchin et al.,
2021).

Later on, PV neurons originate from the ventral division
of MGE (Bandler et al., 2017) and start to radially migrate
between E18 and P2, not reaching their final position until P6
(Bartholome et al., 2020). Between the 2nd and the 4th week,
cortical PV neurons start expressing PV and defining ion channel
composition that characterizes their peculiar electrophysiological
properties (Bartholome et al., 2020). Upon arrival into the
cortical layer, a particular type of extracellular matrix dubbed the
perineuronal net (PNN), plays a critical role in the correct settling
of PV interneurons by influencing their connectivity. The PNN
can control synaptic plasticity by preventing spine formation (Vo
et al., 2013). In support of this, degradation of PNNs leads to
reduced gamma activity in juvenile mice (Carceller et al., 2020),
which is in line with recent discovery linking PV to gamma
activity (Bitzenhofer et al., 2020) and the finding that altered
PNNs lead to abnormal activity (Wingert and Sorg, 2021). In
addition to the role of PNNs, other molecular mechanisms can
influence PV development, such as tonic activation of NMDA
receptor (Hanson et al., 2019), BDNF (Lau et al., 2021), or
retinoic acid (Larsen et al., 2019), whose receptor expression is
also dependent on activity.

Early Maturation of CGE-Derived Interneuron
In the rodent brain, CGE-derived interneurons are produced at
first at E12.5, reaching a peak around E16.5 (Miyoshi et al., 2010).
Unlike MGE-derived cortical interneurons, they do not populate
the cortex in an inside-out manner, but the vast majority are
located in superficial cortical layers, and only acquire their
final position around P4 (Miyoshi et al., 2010). Remarkably,
the integration into the neocortex of CGE-derived interneurons
depends on serotonin signaling (Murthy et al., 2014): impairment
of which leads to their mispositioning (Frazer et al., 2015).
Although it has been shown that a common feature of most,
if not all, CGE-derived interneurons is the expression of the
serotonin ionotropic receptor 5HT3aR (Lee et al., 2010) most
of our understanding nonetheless remains built upon traditional
molecular markers that identify specific subclasses (Tremblay
et al., 2016). Of these, the best characterized is probably the
VIP interneuron subclass, which accounts for around 40% of
all CGE-derived interneurons, and the reelin subclass which
labels around 60% of them (Wamsley and Fishell, 2017).
However, our knowledge on the early developmental phases
of CGE-derived interneurons is still limited and, only recently,
CGE-specific transcriptional factors and activity-dependent
mechanisms began to be explored (De Marco García et al., 2011;

Miyoshi et al., 2015; Wei et al., 2019). Of note, it was shown
that Prox1 is fundamental for the acquisition of CGE-derived
interneuron properties both in the embryonic and postnatal stage
(Miyoshi et al., 2015), with its conditional knock-out during early
postnatal days leading to impairment of excitatory inputs onto
the VIP multipolar subtype (Stachniak et al., 2021). Remarkably,
it has been shown that network activity critically affects the
proper morphological development of CR-positive VIP bipolar
cells and RELN interneurons, but not that of CCK-positive VIP
multipolar interneurons (De Marco García et al., 2011, 2015).
Thus, activity and genetic program might act in a subtype-
specific manner onto CGE-derived interneuron developmental
steps. Finally, with the introduction of subtype-specific driver
Cre-lines early functions and regulatory mechanisms have also
begun to be studied in more depth (Taniguchi et al., 2011). In
the barrel cortex, for example, VIP interneurons show a transient
preferential response to multi-whisking that is lost during the
3rd postnatal week (Kastli et al., 2020), and their conditional
silencing influence the onset of active whisking (Baruchin et al.,
2021).

Connectivity Within GABAergic
Populations and Across Transient
Neuronal Populations
Interneurons are not only integrated into nascent and mature
cortical networks via chemical synapses—of which many
previously discussed pre- and postsynaptic GABAergic elements
critically impact the emergence of cortical activity but also via gap
junctions which are ubiquitous in the cortex. Gap junctions form
connections mainly amongst GABAergic interneurons of the
same functional class, but also across functionally distinct classes
in the mature and immature cortex (Peinado et al., 1993; Hatch
et al., 2017). Interestingly, gap junctions are generally described
to be essential for oscillatory activity (Tchumatchenko and
Clopath, 2014; Pernelle et al., 2018) and bidirectional activity-
dependent plasticity is shown (Haas et al., 2016). Yet, the concise
contribution of electrical coupling to distinct activity patterns
during peri- and postnatal development remains unknown.
Integration of GABAergic interneurons into developing cortical
circuits via chemical synapses can be measured as spontaneous
and evoked GABAergic inputs onto cortical plate neurons in the
rodent cortex as early as E19 and P3, respectively (Owens et al.,
1999; Daw et al., 2007). Instead, functional synaptic connections
between GABAergic interneurons have only been shown after
P4 in the visual cortex (Pangratz-Fuehrer and Hestrin, 2011).
Prior to this, transient cortical populations already show
GABAergic inputs (Kilb and Luhmann, 2001; Soda et al., 2003).
However, the contribution of interneurons towards GABAergic
signaling to transient cell populations like Cajal Retzius neurons,
or subplate neurons that precede the integration of GABAergic
cells into immature but persistent cortical circuits—is the subject
of ongoing research (Molnár et al., 2020). The prerequisite
for the functional integration of GABAergic interneurons is
the maturation of their electrophysiological as well as their
morphological features at the presynapse, but also the maturation
of GABAergic synapses on the postsynaptic side of the recipient
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cells. This includes the aforementioned expression of GABAergic
receptors and the setting of chloride and bicarbonate gradients.
As discussed above, this structural and functional maturation of
the GABAergic synapse occurs in an largely activity-independent
manner (le Magueresse et al., 2011). Not only does neuronal
activity influence the initial formation of perisomatic synapses by
interneurons (Chattopadhyaya et al., 2004), but it also remains a
key influencer of plastic changes on the structure and function
of GABAergic synapses in the adult brain (Flores and Méndez,
2014). On the other side of the coin, many important key cortical
functions depend on the proper integration of GABAergic
interneurons into the cortical network, like selectivity of sensory
modalities, gain control, range modulation and plasticity of
cortical circuits, regulation of firing rates and bursting activity
with high temporal precision, generation and synchronization
of cortical rhythms, as well as the maintenance of the excitatory
and inhibitory balance (Tremblay et al., 2016; Fishell and Kepecs,
2020).

Developmental Apoptosis
Besides genetic programs, trophic support, and pro- and
anti-apoptotic factors, neuronal activity also has a major impact
on cell death and survival rates in the developing cortical network
(Blanquie et al., 2017a; Wong and Marín, 2019). Here, increases
in neuronal activity are associated with elevated survival rates
in principal neurons and interneurons, whereas blockade or
attenuation of activity is generally associated with higher
apoptotic rates (Ruijter et al., 1991; Ikonomidou et al., 1999; Heck
et al., 2008; Southwell et al., 2012). However, cell-type-specific
peculiarities exist, for example in the transient cell population of
Cajal Retzius neurons, where activity even fulfills an antithetic
pro-apoptotic function (Del Río et al., 1995; Blanquie et al.,
2017b). Whether this effect of activity for the survival of
developing neurons is controlled by a cell-autonomous process
or by network-dependent mechanisms is the subject of current
investigations (Southwell et al., 2012; Blanquie et al., 2017c;
Wong et al., 2018). Most recent evidence suggests that not only
the level of neuronal activity but also the temporal pattern of
activity affects neuronal survival rates in vivo (Blanquie et al.,
2017c) and in vitro (Wong Fong Sang et al., 2021). This also
applies to interneurons, as different evidence supports that
positive or negative alterations in network activity result in a
respective change of survival rates in GABAergic interneurons
(Wong et al., 2018; Duan et al., 2020; Bitzenhofer et al., 2021).
Notably, the most potent neuroprotective patterns highlighted
within these studies are of a high-frequency oscillatory nature
and resemble activity which typically occurs at the end of the
1st postnatal week in vivo (Yang et al., 2009; Luhmann and
Khazipov, 2018) or is reflected in vitro by reminiscent patterns
such as recurrent bursts (Wagenaar et al., 2006; Sun et al., 2010).
Interestingly, GABAergic neurons themselves are essential for
the modulation of these cortical activity patterns (Bonifazi et al.,
2009; Isaacson and Scanziani, 2011; Modol et al., 2020). Thus, as
far as the understanding of the mutual dependency of activity and
apoptosis in interneurons goes until now, cortical activity acts as
a master regulator of apoptotic rates in both interneurons and
pyramidal neurons (Wong et al., 2018), even in a region-specific

manner (Blanquie et al., 2017c). Herewith, activity-dependent
regulation of developmental cell death can be seen as a bona
fide homeostatic system (Blanquie et al., 2017a; Causeret et al.,
2018) with the GABAergic interneurons in the perfect position
to orchestrate this cortical activity set point (Duan et al., 2020).

How Do Dynamic Changes in the
GABAergic Neuron Fraction During
Perinatal Development Affect Network
Activity in the Developing Cortex?
The sequential generation, migration, and apoptotic removal
of interneurons during early brain development eventually
influence GABAergic population sizes in the mature cortex,
but also cause a dynamic variation in the absolute GABAergic
neuron population size in the cortex during the developmental
phase. Yet, the relative GABAergic neuron fraction is maintained
throughout the embryonic and postnatal development and into
adulthood (Sahara et al., 2012). Experimental manipulations
of excitation/inhibition ratio are effectively compensated for,
either through adjustments in the number of connections
(Sukenik et al., 2021) or changes in synaptic strength (Southwell
et al., 2012). Similar adaptive mechanisms also stabilize
cortical inhibition on the network level under physiological
(Southwell et al., 2012; Field et al., 2020; Romagnoni et al.,
2020) and pathophysiological conditions (Hunt et al., 2013).
Thus, in line with the dispensability of NKCC1-mediated
depolarizing GABA responses for the establishment of cortical
activity patterns (Graf et al., 2021), cortical networks adapt
surprisingly well to alterations in the relative GABAergic
fraction (Liu, 2004; Sukenik et al., 2021) and thereby keep
the network activity level and patterning mostly stable. Both
phenomena—specifically the stable expression of network
activity despite the physiological changes in absolute GABAergic
population during development, but also the tight homeostatic
regulation of activity upon pathological or experimental
perturbations of the GABAergic system—emphasize the
importance of network activity as the most relevant output
function. At the same time, these findings do not exclude
that the developmental changes in interneuron function
and network composition cause per se physiologically
relevant difference in this output, i.e., merging network
activity patterns throughout development and differences
in activity patterns across models (Luhmann et al., 2016).
Deciphering the multi-layered developmental processes in
GABA signaling discussed above is necessary for the future
assessment of the exact contribution of these processes to
cortical activity patterns seen during development and in adult
cortical networks. Certain partly-transient network structures,
such as clustered GABAergic assemblies (Tuncdemir et al.,
2016; Modol et al., 2020), subplate neurons (Kanold and
Shatz, 2006; Molnár et al., 2020), and subcortical thalamic
regions (Minlebaev et al., 2011; Yang et al., 2013; Murata
and Colonnese, 2016), are surely essential and thus not
dispensable for the establishment of cortical network activity
and function during early brain development (Tolner et al.,
2012).
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CONCLUSION AND OUTLOOK

Immature cortical networks have a unique capacity to stabilize
their network activity, even if strong changes in GABA signaling
are introduced e.g., by alterations in the absolute number of
GABAergic interneurons in neocortical cultures (Sukenik et al.,
2021; Xing et al., 2021), genetic changes of total GABA content
in the brain (Tamamaki et al., 2003), or modulations of chloride
homeostasis (Pfeffer et al., 2009; Graf et al., 2021). This stability
underlines the great source of plasticity of the neuronal system
in general, but is especially remarkable given the suggested
key function of GABAergic interneurons for the balancing of
excitation and inhibition, and thus coordinating network activity
during development (Bonifazi et al., 2009; Le Magueresse and
Monyer, 2013; Modol et al., 2020; Baruchin et al., 2021). By
and large, GABAergic interneurons keep this crucial role in
mature networks with some critical modifications (Markram
et al., 2004; Bartos et al., 2007; Tremblay et al., 2016). While it
is well accepted that GABAergic neuron-mediated inhibition is
essential for the regulation of synchronized oscillations in adult
cortical networks (Klausberger and Somogyi, 2008; Gonzalez-
Burgos et al., 2010), the functional role of interneurons during
development is still less clear. It remains to be seen, if the
activity of distinct interneuron subclasses during development
is crucial per se for brain development, as suggested by recent
studies (Modol et al., 2020; Baruchin et al., 2021; Leighton
et al., 2021), or if only certain network activity patterns must be
played in distinct cortical compartments or temporal windows
for proper brain development-regardless of the GABAergic
contribution. Interestingly, a prolonged developmental timeline
for GABAergic interneurons is an amplified trait in higher
order gyrencephalic mammals, which suggests that a protracted
development of interneurons through neurogenesis, neuronal
migration, and network integration is a mechanism for increased
complexity and cognitive flexibility in cortex function (Kim and
Paredes, 2021).

In view of the above, the association of pathophysiological
changes in interneuron function or excitation/inhibition balance
with neurological and psychological conditions in humans are
to be expected and have been well described (Marín, 2012;
Nelson and Valakh, 2015). With pharmacological GABAergic
modulators such as benzodiazepines as first-line treatment
options in acute epileptic emergencies in children and adults
(Glauser et al., 2016), the direct intervention with GABAA
receptor signaling is already common practice in the clinic
and will likely profit from future advances in this field
of research. Additionally, the absence of certain activity
patterns during critical developmental periods, to which
GABAergic interneurons significantly contribute, is associated
with unfavorable outcomes in humans and animal models
(Ranasinghe et al., 2015; Whitehead et al., 2016). Thus, scientific
progress will likely also provide important insights to the
clinically relevant questions: (I) how pre- and early postnatal
pathophysiological insults (e.g., in utero inflammation/infection,
perinatal hypoxia-ischemia); or (II) certain drugs that impact
GABAergic signaling (e.g., medications or drug abuse during
pregnancy) change spontaneous activity; (III) how these activity

changes ultimately affect clinical outcomes; and (IV) which
clinical interventions could be advisable (ter Horst et al., 2004;
Iyer et al., 2014).

Besides the manifold developmental changes in both
interneuron function and cortical activity which are described in
this review, in addition to the pathophysiological changes in this
mutual interaction (described in more detail elsewhere; Marín,
2012), makes it more and more evident that physiological
conditions—as well as anatomical and even subcellular
compartment location—critically impact the contribution
of GABA signaling to neuronal activity, and vice versa
(Raimondo et al., 2017; Düsterwald et al., 2018). While
current research in this field has already begun to understand
these subcellular effects of ionic plasticity (Blaesse et al.,
2009) and coincidence membrane depolarization (Doyon
et al., 2011; Raimondo et al., 2012) on network activity in
the adult brain (Jedlička and Backus, 2006; Raimondo et al.,
2017), the relevance of subcellular as well as regional or
state-dependent differences in GABA signaling and their
impact on cortical network activity during development,
remains largely unexploited. Hence, the final portrait of
interneurons as replaceable or unique orchestra members
and/or designated conductors of cortical activity within the
orchestra line-up of the immature cortex remains a vibrant
field of research with many open questions. We are only
beginning to understand: (I) how interneuron subpopulations
and subcellular processes contribute to spontaneous and
evoked activity patterns on the network level; (II) how the
GABAergic contribution differs across functionally distinct
cortical regions and converging periods of development; and
(III) how cortical network activity eventually feeds back on
nascent interneuron function. However, it is becoming more
evident that cortical network activity should be considered
as the most significant output in development or, in the
figurative sense, as the most sonorous symphony that the
heterogenous orchestra of the developing neocortex has
to play.
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