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(e identification of discriminative features from information-rich data with the goal of clinical diagnosis is crucial in the field of
biomedical science. In this context, many machine-learning techniques have been widely applied and achieved remarkable results.
However, disease, especially cancer, is often caused by a group of features with complex interactions. Unlike traditional feature
selection methods, which only focused on finding single discriminative features, a multilayer feature subset selection method
(MLFSSM), which employs randomized search and multilayer structure to select a discriminative subset, is proposed herein. In
each level of this method, many feature subsets are generated to assure the diversity of the combinations, and the weights of
features are evaluated on the performances of the subsets.(e weight of a feature would increase if the feature is selected into more
subsets with better performances compared with other features on the current layer. In this manner, the values of feature weights
are revised layer-by-layer; the precision of feature weights is constantly improved; and better subsets are repeatedly constructed by
the features with higher weights. Finally, the topmost feature subset of the last layer is returned.(e experimental results based on
five public gene datasets showed that the subsets selected by MLFSSM were more discriminative than the results by traditional
feature methods including LVW (a feature subset method used the Las Vegasmethod for randomized search strategy), GAANN (a
feature subset selection method based genetic algorithm (GA)), and support vector machine recursive feature elimination (SVM-
RFE). Furthermore, MLFSSM showed higher classification performance than some state-of-the-art methods which selected
feature pairs or groups, including top scoring pair (TSP), k-top scoring pairs (K-TSP), and relative simplicity-based direct
classifier (RS-DC).

1. Introduction

Identifying disease types/subtypes from biomedical data is
very important to understand diseases and develop drugs,
among other important functions. In this context, many
machine-learning techniques, including support vector
machine (SVM) [1], random forest (RF) [2], and k-nearest-
neighbor (KNN) [3], have been applied in this field with
remarkable performance [4, 5].

Given that biomedical data are expensive to generate and
difficult to obtain, a small number of samples with thousands
of features would distort the distribution of the real data.
Various selection methods had been proposed to remove the
insignificant features and improve the prediction perfor-
mance of the models [6–9]. Depending on the way to

combine the search of feature subsets with the construction
of classificationmodel, feature selectionmethods are divided
into three categories: filter methods, wrapper methods, and
embedded methods [10]. Filter methods focus on univariate
or multivariate analysis and ignore the interaction with
classifier. T-test, relief [11], correlation-based feature se-
lection (CFS) [12], and fast correlation-based feature se-
lection (FCBF) [13] are the common filter methods.
Different from filter methods, wrapper methods use clas-
sification models to evaluate the selected feature subsets,
including sequential search [14], genetic algorithms (GA)
[15], and estimation of distribution algorithm (EDA) [16].
Embedded methods select optimal feature subsets and
construct suitable classification models simultaneously.
Support vector machine recursive feature elimination
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(SVM-RFE) is a typically famous embedded feature selection
method [17].

As the number of feature subsets would increase ex-
ponentially with the number of features, it is impractical to
evaluate all the subsets in wrapper or embedded methods.
Search strategies had been proposed. Among these strate-
gies, randomized and deterministic methods were the most
frequently used [18–20]. Randomized methods search the
subsets with some kind of randomness, including the Las
Vegas wrapper (LVW) [21], genetic algorithm partial least
squares (GAPLS) [22], and Monte Carlo-based un-
informative variable elimination in partial least squares [23],
while deterministic methods do with some heuristic search
ways, including sequential forward selection (SFS) and se-
quential backward selection (SBS).

However, deterministic methods were often prone to
local optimum while randomized search method always
returned the ranking of features. Because the upper limit on
the number of features in a subset was difficult to be pre-
determined, the complexity of randomized search methods
would increase exponentially with the upper limit. In this
paper, we propose a wrapper feature selection method with
randomized search strategy. Unlike other randomized
search methods, the goal of our method is to select a feature
subset. We employ randomized search and multilayer
structure to constantly adjust the weights of each feature.
First, all the features are assigned same weights. Many
feature subsets are generated based on the weights, and the
classification models are constructed with SVM for each
subset. (e weight of a feature should increase if it is selected
into more subsets with better performance than other fea-
tures on the current layer. In this manner, the weights of
features are revised layer-by-layer, precision of feature
weights are constantly improved, and better subsets are
repeatedly constructed by the features with higher weights.
Finally, the topmost feature subset of the last layer is
returned as the result. Herein, our multilevel feature subset
selection method (MLFSSM) is compared with LVW,
GAANN [24], SVM-RFE, and other feature selection
methods using publicly available cancer datasets.

2. Methods

We assumed a dataset X (N×M), where N is the number of
samples and M is the number of features. (e feature set is
denoted as F� {f1, f2,. . ., fM}, and the class label set C is
denoted as C� {− 1,1}.

In this article, we propose a multilayer feature subset
selection method named MLFSSM. First, the features are set
to the same weight and picked into the subsets based on the
weights. To obtain diverse feature combinations, many
subsets are generated to assure the diversity of the combi-
nations. Subsequently, classification models are constructed
on each subset. According to the accuracies of the models,
the weight of a feature should be increased if it is selected
into more subsets with better performance than other fea-
tures on the current layer. In this way, the weights of features
are recalculated, and new subsets are regenerated using the
weights on the following layer. (e process is repeated until

the terminal condition is met. (e subset with the highest
classification accuracy among those on the last layer is
returned as the final result. Here, (1) how to calculate feature
weights, (2) how to select features into the subsets, and (3)
how to decide the terminal condition are the three key issues.

(1) Considering the issue of calculation of feature
weights, the features in the subset might be more
discriminative than others when a feature subset
achieves a high accuracy rate, and their weights
should be increased for the next subset selection.
Furthermore, the weights of features calculated on
the former layers are involved in the computation of
the feature weights on the current layer. (e weight
of feature f on layer l is calculated as follows:

wl,f �

1
M

, if l � 1,

α∗w l− 1,f + 
M

m�1
accuftl,m

∗ flagm 
p
, if l ≥ 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

For diversity feature subsets, the total number of
subsets generated on layer l equals to the number of
features M. ftl,m denotes the mth subset on the lth
layer, and accuftl,m

is the classification accuracy of
ftl,m on layer l. w l− 1,f is the weight of feature f on the
former layer l − 1. And

flagm �
1, if f ∈ ftl,m,

0, else.

⎧⎨

⎩ (2)

Each subset ftl,m (1≤m≤M) includes ls features
(the length of the subset). On the first layer, we set
each subset contains nonduplicate features, and the
occurrence frequency of each feature is equal. On the
following layers, M subsets were constructed by the
revised feature weights, while duplicate features
might be contained. We will discuss how to decide
the appropriate value of ls in the experimental
section.
Furthermore, apt values of α and pmight prevent the
program from getting stuck in a local optimum and
learn enough information from the former layers at
the same time. In the experimental section, we will
discuss how to choose the appropriate value of the
parameters in the experimental section.

(2) For the second issue, the probability of feature f
being selected on layer l is

posl,f �
Wl,f


M
j�1wl,j

. (3)

From equation (3), it is observed that features
have equal probabilities 1/M for selection on the
first layer. With the weights being revised, the
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features with higher weights would appear in
more subsets for their larger posibility values than
other features.

(3) For the terminate condition issue, although more
layers might achieve higher performance, the run-
ning time will sharply increase and the performance
improvement will slow down or stabilize with the
number of layers. (e algorithm could be terminated
when the accuracy rate of the top T feature subset
reaches 100% or when the number of layers reaches
L. Here, we suggest T� 20 and L� 20 for tolerable
running time and enough stability results.

Algorithm 1 lists the description of the MLFSSM
algorithm.

3. Experiments

To validate the effectiveness of MLFSSM, we attempt to
discuss three issues:

(1) In this method, three parameters affect the perfor-
mance of MLFSSM, including weight ratio α and
power number p in equation (1) and the length of
every subset ls.

(2) (e performances of MLFSSM, LVW, GAANN,
SVM-RFE, and other traditional feature selection
methods are compared to assess whether MLFSSM is
more effective than the other methods.

(3) (e performance of MLFSSM is compared with
those of the three methods, including TSP, K-TSP,
and RS-DC. We further validate whether the subset
selected by MLFSSM is more effective than the pairs
or groups by the other methods.

In this study, SVM is used for classification. (e codes of
SVM were downloaded from LibSVM (available at http://
www.csie.ntu.edu.tw/∼cjlin/libsvm). RBF kernel was used
for good bioinformatics performance, and the penalty pa-
rameter C was set to 1 in SVM-RFE and MLFSSM. All the
experiments used 20 times five-fold cross validation. Five
public gene datasets were used in the three experiments.
Table 1 lists the details of the datasets.

3.1. Effects of Parameters. (e default values and the ranges
of the three parameters are listed in Table 2. To study the
effects of the parameters, the value of one parameter was
changed at a time, while the values of other parameters were
set to the default values in the experiments.

3.1.1. Effects of Weight Ratio α. Figure 1 shows the effects of
the ratios α in MLFSSM which ranges from 0.1 to 0.9. It is
observed that the values are usually lower than others when
α� 0.1 or 0.9, and the accuracies at α� 0.2 show well above
the ones at other values in most of the datasets. (e possible
reason could be that α� 0.2 could get a globally optimal
solution and avoid falling into local optimum in MLFSSM.
So α� 0.2 is suggested as the default value.

3.1.2. Effects of Power Number p. Figure 2 shows the effects
of power number p, which ranges from 1 to 512. (e ac-
curacy usually increases when p≤ 32 with the highest ac-
curacies at p � 32. Subsequently, the accuracy often
decreases when p> 32. (is might be because smaller or
larger p values fail to find the global optimum features.(us,
p � 32 is suggested as the default value.

3.1.3. Effects of Feature Subset Length ls. Figure 3 shows the
effects of feature subset length ls, which ranges from 1 to 51.
(e accuracies at ls� 21 have showed better performances
than the ones at other values in all five datasets. (e possible
reason could be that a modest number of features not only
include informative features but also exclude noise features.
(erefore, ls� 21 is suggested as the default value.

3.2. Comparison with LVW and Its Improved Method.
LVW is a typical wrapper feature selection method [21]. It
was proposed by Liu and Setiono which used the Las Vegas
method for randomized search strategy to select feature
subsets. (e description of LVW is listed in Supplementary
Table 1. For comparisons, we set T�M∗ 21 as one termi-
nation condition of LVW.

Furthermore, we improved LVWwith constantly revised
weights in randomized search procedure of LVW named
imp-LVW. In imp-LVW, feature weights were equal to each
other firstly. Furthermore, the weight of a feature would
increase if the current subset including the feature has better
performance than the previous subsets. (e description of
imp-LVW is listed in Supplementary Table 2. Similar to
LVW, we set T�M∗ 21 as one termination condition of
imp-LVW.

Figure 4 shows the classification accuracy rates of
MLFSSM, LVW, and imp-LVW in the five public datasets.
As three wrapper feature selection methods, LVW always
has the lowest values in the methods, imp-LVW shows the
better performance than LVW, and MLFSSM displays the
best performance in the methods. (e possible reason might
be the constantly revised weights bring improvement in the
performance. Because the weights of features stay consistent
over time in LVW, the optimal subset is difficult to be found
in a limited time for large dimensions of biomedical data.
Imp-LVW changes the weights continuously. However,
imp-LVW only focuses on the performance of the current
subset which might fall into the local optimum. MLFSSM
constantly adjusts the weights of each feature with the layers.
A feature would be selected in the final subset based on good
performance in not only the current layer but also the former
layers.

3.3. Comparison with Fuzzy_GA and GAANN. In this sec-
tion, we compare MLFSSM with Fuzzy_GA [30] and
GAANN [24] based on genetic algorithm. Fuzzy_GA was
proposed by Carlos et al. Fuzzy_GA combined fuzzy systems
and genetic algorithm to classify Wisconsin breast cancer
database (WBCD) dataset involving a few simple rules.
GAANN was proposed by Fadzil et al. It used genetic
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algorithm (GA) for feature subset selection and parameter
optimization of an artificial neural network (ANN). In
addition, three variations of backpropagation were applied
for GAANN and GAANN with backpropagation
(GAANN_RP) showing the best accuracies.

(e comparison uses WBCD dataset as Ahmad et al. did
[24]. Moreover, we replaced the missing values, rescaled the
attributes, and used cross-validation methods in the ex-
periments as Ahmad et al. did [24].

Table 3 shows the average accuracies of Fuzzy_GA,
GAANN_RP, and MLFSSM. We could observe that
MLFSSM shows the best performance in the methods. Based
on GA, Fuzzy_GA and GAANN_RP generate a new pop-
ulation (subset) by crossover and mutation using two
chromosomes in each generation. (ere are two important
factors in MLFSSM different from them: one is a large
number of feature subsets generated in each layer; the other

Algorithm: MLFSSM
Input:
dataset X;
input feature set F;

Begin
For l� 1, . . ., L

Calculate w l,f for f ∈ F using equation (1);
Calculate posl,f for f ∈ F using equation (3);
Generate M · l-layer’s feature subsets ftl,m(1≤m≤M) by pos values;

For m� 1, . . ., M
Construct classification models using ftl,m;

Endfor;
If the accuracy rate of top T · l-layer’s feature subsets reaches 100%

Break;
Endfor;
Return the topmost subset of l-layer;

End

ALGORITHM 1: Description of the MLFSSM algorithm.

Table 1: Details of five public datasets for comparison.

No. Dataset Feature number Sample number
1 Breast [25] 7129 49
2 ColonCancer [26] 2000 60
3 CNS [27] 7129 60
4 Hepato [28] 7129 60
5 Leukemia [29] 7129 72

0.60

0.64

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1.00

Ac
cu

ra
cy

 ra
te

2 8 104 60
Weight ratio (α)

Breast
CNS
Coloncancer

Hepato
Leukemia

Figure 1: Effects of weight ratio α.
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Figure 2: Effects of power number p.

Table 2: Summary of the parameter setting.

Parameters Default values Range
Weight ratio α 0.2 0.1, 0.2, 0.4, 0.6, 0.8, 0.9

Power number p 32 1, 2, 4, 8, 16, 32, 64,
128, 256, 512

Feature subset length ls 21 1, 5, 11, 15, 21, 25,
31, 35, 41, 45, 51

4 BioMed Research International



is the method of feature evaluation based on multilayer. (e
two factors not only guarantee informative feature subsets
selected, but also avoid premature convergence and in-
stability results.

3.4. Comparison with Traditional Feature Selection Methods.
In this section, we describe the comparison of MLFSSMwith
some feature selection methods on the five public datasets.
(e comparative methods, including SVM-RFE, least
square-bound (LS-Bound) [6], Bayes +KNN [7], elastic net-
based logistic regression (EN-LR) [31], guided regularized
random forest (GRRF) [32], and T-SS [33] had shown
improved performance in biomedical data in recent years.
(e results of the comparison of the methods have been
previously reported [33]. Table 4 shows the average accuracy
rates of the methods. In the table, the bold and italic

numbers indicate the largest values using the corresponding
method in a dataset.

In Table 4, MLFSSM shows superiority over the four
feature selection methods for the five datasets. We observe
that the highest accuracy rates among these methods are
0.693 (by T-SS) and 0.693 (by SVM-RFE), respectively, for
Hepato and CNS datasets, which is well below those by
MLFSSM (by 0.25 and 0.15, respectively). As the compared
methods are based on deterministic search strategies, the
results show the effectiveness of MLFSSM with randomized
search strategy.

3.5. Comparison with the Methods Selecting Pairs or Groups.
In this section, we compare MLFSSM with TSP [34],
K-TSP [35], and RS-DC [36] to discuss whether the
subsets selected by MLFSSM are more effective than the
pairs or groups selected by the other methods. TSP was
proposed by Geman et al. (is method focused on
pairwise rank comparisons to reflect the underlying bi-
ological role and selected the top feature pair to build a
classification model when the two features of the pair
shifted their rank positions more dramatically in the
phenotypic classes than others. Because one feature pair
might not contain enough information, Tan et al. sug-
gested selecting top K feature pairs for building K clas-
sification models and ensembling the final classification
results by majority voting. (e K value should not be too
large; thus, it was often set from 3 to 11. Given that the
length of subsets is suggested to be 21 in MLFSSM, we set
K � 11 in K-TSP for comparison. Chen et al. integrated
individual feature effects with pairwise joint effects be-
tween the target feature and others, proposed a novel
score measure named relative simplicity (RS), and built
RS-DC to select binary-discriminative genes for classi-
fication. Table 5 lists the average accuracy rates of the four
compared methods using the five datasets, and the bold
and italic numbers indicate the largest values using the
corresponding method in a dataset.
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Table 3: Comparison of the accuracies of GAANN_RP and
MLFSSM.

Method Average accuracy
Fuzzy_GA 0.9736
GAANN_RP 0.9829
MLFSSM 0.9997

Table 4: Comparison of the average accuracy rates of MLFSSM
with four feature selection methods.

Method Breast Leukemia Colon Hepato CNS
SVM-RFE 0.877 0.967 0.835 0.658 0.693
LS-bound 0.778 0.935 0.817 0.618 0.61
Bayes +KNN 0.821 0.92 0.828 0.628 0.628
EN-LR 0.854 0.962 0.837 0.683 0.664
GRRF 0.846 0.939 0.834 0.67 0.618
T-SS 0.893 0.97 0.871 0.693 0.655
MLFSSM 0.959 0.969 0.961 0.943 0.843
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Table 5 shows that MLFSSM has obvious advantages
over TSP, K-TSP, and RS-DC in Breast, Hepato, and CNS.
MLFSSM showed outstanding performance in Hepato and
CNS, where MLFSSM achieved 0.943 and 0.843, re-
spectively, for accuracy, which are higher by 0.286 and 0.246
points than the maximum values by TSP, K-TSP, and RS-
DC. (e possible reason could be that these three methods
only focused on the discriminative ability of pairs, while
MLFSSM could find the informative feature subsets with
more than two features.

3.6. Analysis of the Selected Top Feature Pairs. In this section,
we further analyze the ten most selected genes of the final
subsets in CNS. Table 6 lists the details of the features and the
corresponding biological pathway using [37].

Figure 5 shows the interaction of the genes (red nodes)
selected by us with the other nodes (other color nodes)
identified by researchers from outside the selected dataset.
We could find that the identified genes are all top 5-ranked
ones in Table 6, and they have minimum 4 interactions.
Especially, LRPAP1 shows the highest degree in Figure 5,
which have been proved as a valuable marker in many

diseases such as gallbladder cancer [38], Alzheimer disease
[39], and lymphoma [40].

4. Discussion

In this paper, we focus on searching discriminative feature
subsets. For this to be realized, it is crucial to have a large
amount and diversity of subsets. At the first layer, we ini-
tialize features with equal weights of appearance and con-
struct subsets whose quantity is the same as feature number.
Meanwhile, the length of the subsets (ls) is long enough to
provide diverse feature combinations and appropriate
runtime. In the experimental section, we show ls� 21 brings
better performance than other values.

Based on the multilayer structure, we revise feature
weights and find good subset gradually. Next, we will take
CNS dataset as an example to further show the influence of
multilayer structure on feature subset selection. MLFSSM
shows the highest accuracy rate on CNS dataset among the
comparative methods. We could find the average total level
on CNS dataset as 18.29, which is far above the ones on other
datasets. (e possible reason is that MLFSSM evaluates
feature weights with amounts of subsets in each layer, revises

Table 5: Comparison of the average accuracy rates of MLFSSM with four feature selection methods based on groups.

Method Breast Leukemia Colon Hepato CNS
TSP 0.783 0.900 0.891 0.602 0.496
K-TSP (K� 11) 0.870 0.969 0.962 0.657 0.517
RS-DC 0.868 0.944 0.896 0.604 0.597
MLFSSM 0.959 0.969 0.961 0.943 0.843

Table 6: Details of the ten most selected genes of CNS dataset.

No. Gene accession
number Gene description Official

symbol
Gene
ID Biological pathway

1 M13149_at HRG histidine-rich glycoprotein HRG 3273 Dissolution of fibrin clot

2 S75989_at Gamma-aminobutyric acid transporter
type 3 (human, fetal brain, mRNA, 1991 nt) — — —

3 HG2987-
HT3136_s_at Vasoactive intestinal peptide VIP 7432 Glucagon-type ligand receptors

4 M63959_at

LRPAP1 low density lipoprotein-related
protein-associated protein 1 (alpha-2-
macroglobulin receptor-associated

protein 1)

LRPAP1 4043
Reelin signaling pathway

Lissencephaly gene (LIS1) in neuronal
migration and development

5 Z73677_at Gene encoding plakophilin 1b PKP1 5317
Apoptotic cleavage of cell adhesion

proteins
Apoptotic cleavage of cellular proteins

6 D79986_at KIAA0164 gene — — —

7 M23575_f_at PSG11 pregnancy-specific beta-1
glycoprotein 11 PSG11 5680 —

8 U37139_at Beta 3-endonexin mRNA, long form and
short form — — —

9 D28235_s_at Cyclooxygenase-2 (hCox-2) gene PTGS2 5743

COX reactions
Prostanoid metabolism

Calcium signaling in the CD4+ TCR
pathway

JNK signaling in the CD4+ TCR pathway
Ras signaling in the CD4+ TCR pathway

10 HG2271-
HT2367_at Profilaggrin — — —

6 BioMed Research International



the values of features by their performances on former and
current layers, and selects the highest performances of
feature combinations through multilayer structure. Next, we
will further analyze the classification procedures of MLFSSM
on the CNS dataset with Figures 6 and 7.

Figure 6 shows the influence on the weights of 10 fea-
tures in CNS dataset including top-ranked 5 and bottom-

ranked 5 features at the last layer. It is observed that the
weights of the features are equal at layer one. (e top 5-
ranked features are continually revised to higher weights and
the bottom 5-ranked features are revised to lower weights
with the increase of layer number.

(en, we further analyze the accuracy rates of features
on different layers in Figure 7. If feature f ∈ ftl,m, the
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accuracy rate of subset ftl,m is averaged as the accuracy
rate of feature f on layer l. We make a statistical analysis
on the frequency of different accuracy rates with increasing
layers. We could observe that the accuracy rates of 99%
features are about 60% in layer 1, and then the rates of
28.37% features increase to over 70% in layer 2. With
increasing layer, the rates of some features increase. Fi-
nally, the rates of 0.78% features are over 90% in the last
layer. (e result further shows that MLSFFM with a
multilayer structure obtains more accurate feature eval-
uations and more effective feature subsets.

5. Conclusion

Here, we propose a wrapper feature subset method called
MLFSSM, wherein based on the multilayer structure, we
compute the weights of features and generate subsets by
weights layer-by-layer. Ultimately, the top feature subset of
the last layer is returned. Experiments on five public gene
datasets showed MLFSSM to have an advantage over other
similar methods in terms of classification performance. In
the future, we plan to further analyze the features for bio-
marker detection, ascertain how to dynamically determine
the parameter values on different datasets, and improve the
running speed of the algorithm.
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