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Inflammation is increasingly implicated in neurodegenerative disease pathology. As 
no acquired pathogen appears to drive this inflammation, the question of what does 
remains. Recent advances indicate damage-associated molecular pattern (DAMP) 
molecules, which are released by injured and dying cells, can cause specific inflamma-
tory cascades. Inflammation, therefore, can be endogenously induced. Mitochondrial 
components induce inflammatory responses in several pathological conditions. Due to 
evidence such as this, a number of mitochondrial components, including mitochondrial 
DNA, have been labeled as DAMP molecules. In this review, we consider the contribu-
tions of mitochondrial-derived DAMPs to inflammation observed in neurodegenerative 
diseases.

Keywords: damage-associated molecular pattern, mitochondria, neuroinflammation, neurodegeneration, sterile 
inflammation

iNTRODUCTiON

Inflammatory pathways are activated through either pathogen-initiated or damage-initiated 
events. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) activate similar inflammatory cascades and are therefore difficult to distinguish. 
Inflammation stimulated by DAMPs is an area of study that has recently gained notice. In particular, 
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DAMPs derived from mitochondrial components are interesting 
due to the prokaryotic origin of this organelle. Furthermore, 
mitochondrial-derived DAMP molecules may play a role in heart 
disease, arthritis, liver disease, trauma, and sepsis (1–5).

Neuroinflammation and mitochondrial dysfunction are observed  
across numerous neurodegenerative diseases (6–8). Mitochondrial 
dysfunction can induce inflammation and vice versa. Mitochondrial 
dysfunction may modulate the release of mitochondria-derived 
DAMP molecules (9, 10). Here, we discuss the relationship between 
neuroinflammation, mitochondrial dysfunction, and mitochondria- 
derived DAMP molecules in the context of neurodegenerative 
diseases.

NeUROiNFLAMMATiON iN 
NeURODeGeNeRATive DiSeASeS

Neuroinflammation is classically defined as proliferation and 
activation of microglia (microgliosis), and/or astrocytes (astro-
gliosis). Microglia are macrophage cells of mesenchymal origin, 
which monitor the central nervous system (CNS) for pathogens. 
Astrocytes are derived from the ectoderm and have numerous 
functions including metabolic support for neurons, regulat-
ing synapses, brain structure, and repair. Further evidence of 
neuroinflammation can encompass activation of inflammatory 
pathways, increased expression of cytokines or chemokines, and 
in some cases disruption of the blood–brain barrier (BBB) accom-
panied by infiltration of peripheral immune cells (such as T cells). 
Neurodegenerative diseases including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) 
all have evidence of neuroinflammation pathology.

Alzheimer’s Disease
Initial interest in neuroinflammation as a causative factor in 
AD centered on the link between reduced risk for AD and long-
term non-steroidal anti-inflammatory drug (NSAID) use. Early 
evidence from epidemiological studies suggested that long-term 
use of NSAIDs led to a decreased risk of developing AD (11, 12). 
Subsequent studies found a correlation between apolipoprotein 
E (APOE, a genetic risk factor for AD) genotype and the protec-
tive effects gained from NSAID use. The correlation between 
decreased AD risk and NSAID use is greatest in individuals who 
harbor an APOE ε4 allele (13, 14). Furthermore, the age of the 
individual taking NSAIDs and the type of NSAID administered 
affect the association of AD risk reduction (15).

Clinical trials investigating whether NSAIDs might benefit 
AD subjects, though, were disappointing. Early trials experienced 
high attrition rates among participants due to adverse effects 
and thus did not provide clear answers (16, 17). A larger trial 
of one NSAID, tarenflurbil, showed largely negative results (18). 
However, a recent publication that showed positive memory and 
brain inflammation outcomes for a different NSAID, fenamate, in 
an AD mouse model has led to renewed interest (19).

Genome-wide association studies (GWAS) have also renewed 
interest for neuroinflammation as a potential causative fac-
tor for AD. In particular, a rare variant of triggering receptor 
expressed on myeloid cells 2 (TREM2), R47H, is associated with 
an increased risk for late onset Alzheimer’s disease (LOAD) (20). 

TREM2 is a membrane protein in myeloid cells (such as micro-
glia), which modulates inflammatory pathways by inhibiting 
cytokine production. TREM2 is likely responsible for determining 
microglial phenotypes (i.e., M1 activation versus M2 activation). 
Furthermore, TREM2 is also important for lipid sensing, provid-
ing a further link between neuroinflammation and bioenergetic 
pathways (21). The R47H TREM2 variant leads to a reduction in 
microglial phagocytosis (22). Soluble TREM2 levels are increased 
in cerebral spinal fluid (CSF) of AD subjects, a parameter that 
positively correlates with gray matter volume but negatively cor-
relates with diffusivity (sometimes considered a function of cell 
integrity) (23). Other single-nucleotide polymorphisms (SNPs) 
associated with AD risk also affect inflammatory pathways. These 
include SNPs in complement receptor 1, clusterin (CLU), major 
histocompatibility complex (MHC), class II, DR beta 5, ephrin 
type A receptor 1, inositol polyphosphate-5-phosphatase, and 
or Siglec-3 (24–29). The relationship of each of these genes to 
inflammatory signaling has been reviewed elsewhere (30).

Microglia and reactive astrocytes are closely associated with 
amyloid plaques in AD brain (31, 32). The quantity of interleukin-1  
(IL-1) reactive microglia is increased sixfold in AD brain (33). 
Furthermore, microglial IL-1 expression correlates with plaque 
distribution (34). Levels of macrophage colony-stimulating factor,  
an activator of macrophages, was found to be increased in plasma 
and CSF from AD subjects compared to those with mild-cognitive 
impairment (35). A number of cytokines and chemokines, which 
can be released by macrophages or other immune cells, are 
increased in AD, including interleukin-1β (IL-1β), interleukin-6 
(IL-6), tumor necrosis factor α (TNFα), interleukin-8 (IL-8), 
transforming growth factor β, and macrophage inflammatory 
protein-1α (36).

Parkinson’s Disease
The discovery of reactive microglia in the substantia nigra of PD 
brain tissue provided early evidence for the role of neuroinflam-
mation in PD (37). Further evidence for microglial activation in 
PD brain came from positron emission tomography (PET) imag-
ing studies. PET studies showed increased microglial activation as 
evidenced by increased levels of peripheral benzodiazepine sites, 
a selective marker of activated microglia (38). Increased levels 
of glial cells expressing TNFα, IL-1β, and interferon-γ (IFN-γ) 
have also been observed in the substantia nigra of deceased PD 
subjects (39). Furthermore, microglial activation is observed in 
animal models of PD (36, 40).

Studies on astrogliosis in the PD brain have generated conflict-
ing results. Early studies suggested increased astrogliosis in the 
PD brain. More recent studies have shown minimal levels of nigral 
astrogliosis, although astrocytic accumulation of α-synuclein was 
observed. The authors speculated that α-synuclein accumulation 
may cause astrocytes to be less reactive (41). A subsequent report 
showed minimal astrogliosis and an inverse correlation between 
levels of α-synuclein and astrogliosis in the PD brain, suggesting 
α-synuclein may suppress astrogliosis (42).

Similar to AD, PD risk is reduced with regular or chronic 
NSAID use. Long-term aspirin use is associated with less PD 
risk; however, non-aspirin-based NSAID use afforded better risk 
reduction. Furthermore, women who used aspirin in a chronic 
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(greater than 24 months) or regular manner had a lower risk for 
PD than men (43).

Genome-wide association studies have identified the gene 
that encodes leucine-rich repeat kinase 2 (LRRK2) as a risk fac-
tor for sporadic PD. LRRK2 mutations are also associated with 
autosomal dominant forms of PD (44). Similar to TREM2 in AD, 
LRRK2 mediates microglial function (45, 46). LRRK2 facilitates 
vesicle trafficking and cytoskeletal remodeling and may skew 
microglia toward a pro-inflammatory phenotype (45–47).

Changes in peripheral inflammation may contribute to PD. 
Studies of peripheral inflammation showed an increased ratio 
of CD8+ T  cells to CD4+ T  cells in the blood of PD patients 
(48). Peripheral inflammation may affect the brain through 
disruption of the BBB, an event that is observed in PD subjects 
(49). Furthermore, peripheral inflammatory changes correlate 
with PD risk. Increased plasma IL-6 levels correlated with 
disease risk, although with a small sample size (50). CD8+ and 
CD4+ T cell reactivity is increased in the substantia nigra of PD  
patients. Furthermore, 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP), a toxin used to generate a commonly utilized 
PD animal model, was found to increase T cell infiltration into 
the substantia nigra (51).

Amyotrophic Lateral Sclerosis
Inflammatory changes have been observed in the CNS of ALS 
patients. Early studies in ALS spinal cord and motor cortex 
discovered accumulation of immunoglobulin G and complement 
(52). Subsequent studies found T cell infiltration and increased 
levels of MHC I and II antigens on macrophages and dendritic 
cells (53, 54). Immunohistochemical studies in postmortem brain 
tissue showed increased levels of phagocytic and leukocyte surface 
proteins on microglia, as well as evidence to support the infiltra-
tion of activated lymphocytes into the precentral gyrus (55). 
PET studies using PK11195, a ligand that binds microglia, have 
provided further evidence of microglial activation in ALS (56).

Astrogliosis is observed within the spinal cord (ventral and 
dorsal horns) and brain (cortical gray matter and subcortical 
white matter) in postmortem ALS subjects (57). Microgliosis is 
evident in the spinal cord ventral horn, the corticospinal tract, 
and the motor cortex (55). The role of microglia and astrocytes 
in ALS disease progression is further supported in transgenic 
mutant superoxide dismutase 1 (SOD1) ALS mouse models. 
Selective deletion of mutant SOD1 from microglia (which also 
removes expression from peripheral myeloid cells) slowed disease 
progression (58). Similar results were observed when mutant 
SOD1 expression was deleted from astrocytes (59). Conversely, 
deleting mutant SOD1 expression from motor neurons had no 
effect on disease progression or survival, but did delay disease 
onset (58). These studies emphasize the potential role of neuro-
inflammation in ALS disease progression.

Genome-wide association studies in ALS have linked inflam-
matory genes with disease outcome. A SNP in CX3C chemokine 
receptor 1 (CXCR31, fractalkine receptor) is associated with 
reduced survival in sporadic ALS subjects; however, this SNP 
fails to associate with ALS risk (60). CXCR31 is important for the  
migration of leukocytes and may play a role in microglial migra-
tion (61). RNA seq and ingenuity pathway analysis of postmortem 

ALS spinal cord samples found upregulation of inflammatory 
pathways, with TNFα being a predicted upstream regulator of 
inflammation in these ALS samples (62).

Neuroinflammation is evident in AD, PD, and ALS. However, 
whether or not neuroinflammation contributes to disease onset, 
progression, and risk requires further study. To this end, a 
growing appreciation of a relationship between mitochondrial 
dysfunction and inflammatory pathways may provide insight 
into this important question. Below, we discuss evidence for 
mitochondrial dysfunction in AD, PD, and ALS.

Primary Mitochondrial Diseases
Primary mitochondrial diseases are caused by mutations in mito-
chondrial DNA (mtDNA) or nuclear DNA genes that encode 
mitochondrial proteins. Diseases caused by mtDNA mutations 
include Leber’s hereditary optic neuropathy, myoclonic epilepsy 
and ragged red fiber, neuropathy ataxia and retinitis pigmentosa, 
Kearns–Sayre syndrome, and Leigh’s syndrome. Diseases caused 
by a nuclear DNA mutation of which affects a mitochondrial 
localized protein include Friedreich’s ataxia, Wilson’s disease, 
and Mohr–Tranebjaerg syndrome. Commonly, these diseases 
manifest in neurological symptoms. A few of these diseases are 
associated with neuroinflammation pathology.

Friedreich’s ataxia is caused by autosomal recessive inherit-
ance of a mutant Frataxin gene. The product of the Frataxin gene 
is responsible for iron homeostasis within mitochondria, and 
loss of this gene in Schwann cells leads to reduced mitochondrial 
respiration, inflammation, increased mitochondrial iron concen-
trations, and cell death (63–65). COX2 expression is elevated in 
both animal models and Friedreich’s ataxia patient lymphocytes, 
an indicator of increased inflammation (66).

For subjects with Leigh’s syndrome, mtDNA mutations occur 
in several genes including ATPase 6, ND 1–6 (NADH dehydro-
genase), and CO3 [cytochrome oxidase (COX)] (67, 68). These 
subjects often have deficient ETC enzyme activities (67). In a 
mouse model of Leigh’s syndrome, evidence of neuroinflamma-
tion is abundant (69). However, inflammatory markers have not 
been measured from human subject tissues.

Wilson’s disease is caused by a mutation in the ATP7B (ATPase 
copper transporting β polypeptide) gene and is characterized by 
liver disease, ataxia, parkinsonism, seizures, and reduced cogni-
tion (70, 71). This gene encodes a copper transporting ATPase that 
localizes to mitochondria and affects mitochondrial copper levels 
(70, 72). Subjects with this mutation have reduced ETC function 
(73, 74). Pentraxin 3, a marker of inflammation, is elevated in the 
serum of Wilson’s disease subjects (75).

Despite the association of mitochondrial dysfunction and 
neuroinflammation or inflammation (discussed below), these 
processes have not been extensively studied in primary mito-
chondrial diseases. Future research endeavors into this area 
would likely benefit our understanding of these diseases.

MiTOCHONDRiAL DYSFUNCTiON iN 
NeURODeGeNeRATive DiSeASeS

The Krebs cycle and oxidative phosphorylation occur in the 
ma trix and inner mitochondrial membrane, respectively. Oxidative 
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phosphorylation requires the mitochondrial respiratory chain. 
These bioenergetic pathways generate the high energy compound 
ade nosine triphosphate (ATP) (76). Mitochondria and bioener-
getic intermediates generated within mitochondria regulate cell 
signal ing pathways (including pro-inflammatory responses, as 
discussed below).

The brain comprises approximately 2% of the body’s weight 
yet consumes about 20% of its oxygen uptake. The brain requires 
high amounts of energy for numerous processes, including neu-
rotransmitter production and synaptic activity. Therefore, the 
brain is highly susceptible to mitochondrial dysfunction, which 
has been observed in several neurodegenerative diseases includ-
ing (but not limited to) AD, ALS, and PD (77–80). Furthermore, 
mitochondrial dysfunction declines with age, and age is the 
greatest risk factor for these neurodegenerative diseases (78, 80). 
Mitochondrial dysfunction can lead to increased reactive oxygen 
species (ROS) production, decreased ATP production, alterations 
in mitochondrial membrane potential, damage to mtDNA, and 
activation of cell death pathways (81).

Alzheimer’s Disease
In postmortem AD brains, decreased COX function, reduced 
intact mitochondrial number, and increased mitochondrial 
autophagy have been reported (78, 82–86). Mitochondrial 
dysfunction appears to be systemic in AD, as deficits in COX 
activity are apparent in AD patient fibroblasts and platelets  
(83, 87–89). Changes in mtDNA may drive cell signaling changes, 
bioenergetic pathway deficits, and histopathological hallmarks of 
AD. Cytoplasmic hybrid (cybrid) studies in which mtDNA from 
human AD subjects is transferred into a donor cell line that lacks 
its own mtDNA provides a system in which mtDNA-derived 
biochemical and molecular consequences can be assessed. The 
cybrid model system controls for nuclear DNA alterations, as 
patient mtDNA is transferred into the context of a consistent 
nuclear DNA background (90). Cybrid cells generated using 
AD patient mtDNA have reduced COX activity, increased ROS 
production, and increased Aβ deposition (90, 91).

Evidence of mtDNA mutations, deletions, and oxidative 
modifications are present in AD subjects (92–97). mtDNA is 
inherited from the mother, and interestingly a maternal inherit-
ance pattern for AD has been noted. This maternal inheritance 
pattern is associated with early changes in brain atrophy and 
mitochondrial biomarkers (98–103). Finally, mitochondrial hap-
lotypes are associated with increased AD risk (104–106). These 
studies suggest changes in mitochondrial function, possibly at the 
level of mDNA maintenance and inheritance, are important in 
AD pathology.

Parkinson’s Disease
The most studied respiratory chain aberration in PD is a deficit 
in complex I activity. Initial insight into this deficit stems from 
cases of recreational drug users exposed to MPTP. After MPTP 
exposure, individuals developed parkinsonian symptoms and at 
autopsy were found to have degeneration in the substantia nigra, 
similar to that observed with PD. This degeneration occurred 
in the absence of Lewy bodies (or aggregated α-synuclein). 
Following its accidental discovery, MPTP was adapted to produce 

monkey and rodent models of PD (107–109). MPTP is oxidized 
to MPP+, which accumulates in neurons and is a potent complex 
I inhibitor (107, 110).

Complex I deficits are observed in postmortem brain, platelets, 
and fibroblasts from PD subjects (111, 112). The observed deficits 
in complex I activity could be driven by oxidative damage to its 
catalytic subunits or altered mtDNA (90, 113, 114). Cybrid cell 
lines generated from PD subject mtDNA recapitulate the complex 
I deficit. Sporadic PD cybrid cell lines also show reduced mtDNA 
copy number, reduced ATP, cell death pathway activation, and 
a relatively depolarized mitochondrial membrane potential 
(113–115).

Parkinson’s disease risk is associated with mtDNA haplotype, 
similar to AD (116–118). Changes to mtDNA are also observed in 
PD, such as mutations and deletions (119–121). Polymorphisms 
of mtDNA polymerase γ influences PD risk as well (122). Overall, 
mitochondrial function and mtDNA inheritance and mainte-
nance are important to the pathology of PD.

Amyotrophic Lateral Sclerosis
ALS subjects have evidence of mitochondrial dysfunction 
within the CNS and periphery. CNS mitochondrial abnormali-
ties include altered mitochondrial morphology, mitochondrial 
inclusions/aggregates, reductions in COX activity, and lower 
mtDNA levels with increased levels of mtDNA point mutations 
and deletions (123–128). COX deficits, lowered mitochondrial 
number, altered mitochondrial calcium levels, and mtDNA 
deletions, are also observed in ALS subject muscle (129–131). 
Lymphocytes from ALS subjects have reduced mitochondrial 
maximum respiration, liver mitochondria appear swollen, and 
platelet mitochondria manifest a depolarized mitochondrial 
membrane potential with increased apoptosis (132–135). Cybrid 
cells generated from ALS patient mtDNA have alterations in 
antioxidant enzyme activity and reduced complex I activity 
(136). The association of ALS with distinct mtDNA haplotypes 
is under investigation (137).

MiTOCHONDRiAL DYSFUNCTiON AND 
iNFLAMMATiON

Mitochondria are important modulators of innate immunity 
pathways. Mitochondria-derived ROS, calcium, and ATP are 
signaling molecules that activate inflammatory responses. Under 
conditions in which mitochondria are damaged, such as accumu-
lated mtDNA mutations or mitochondrial dysfunction (possibly 
through aberrant ROS production), a sustained inflammatory 
response and downstream pathological inflammation could 
ensue. A relationship between mitochondrial dysfunction and 
inflammatory signaling is discussed below.

Mitochondria can directly activate inflammasome signal-
ing. Mitochondria-derived ROS activate the NLR family pyrin 
domain containing 3 (NLRP3) inflammasome pathway. NLRP3 is 
normally associated with the endoplasmic reticulum membrane, 
but upon activation is redistributed to nuclear and mitochondrial 
membranes, where it oligomerizes with apoptosis-associated 
speck-like protein containing a CARD (ACS) and pro-caspase 
1 to form the NLRP3 inflammasome (138–140). Mitochondria 
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TAbLe 1 | Mitochondria-derived damage-associated molecular pattern 
molecules.

Molecule Disease or pathologic context Reference

Mitochondrial 
DNA

Trauma, heart failure, arthritis, Parkinson’s 
disease, Alzheimer’s disease, aging

(1, 3, 156–158)

Cardiolipin Arthritis, bowl disease, myocardial infarct/heart 
disease

(159–166)

Adenosine 
triphosphate

Atherosclerosis, lung inflammation/fibrosis (167, 168)

Formyl-
methionine-
labeled 
peptides

In vitro neuron degeneration, inflammatory 
activation of neutrophils and macrophages

(169–172)

Transcription 
factor A

In vitro microglial activation, hemorrhagic shock (173, 174)

Cytochrome c Arthritis, liver injury, myocardial infarct/heart 
disease, SIRS

(175, 176)
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also mediate inflammatory pathway activation through redox 
sensitive proteins (140).

Mitochondrial dysfunction initiates inflammation across 
various models. In vitro and in vivo experiments demonstrate 
complex II inhibition using 3-nitropropionic acid (3NP) 
induces microglial activation and reduces the ability of micro-
glia to undergo alternate activation (141). Human microglial 
cells treated with 3NP became activated and showed increased 
ROS production and cell death rates. Similar results were 
observed following intrastriatal 3NP injection in adult rats, 
where microglial activation, ROS production, and cell death 
were increased (142). Chronic subcutaneous injections of 
rotenone in rats (a complex I inhibitor that is used to model 
PD in rodents) increases IL-1β within the hypothalamus. These 
rats also displayed a decreased number of tyrosine hydroxylase 
positive neurons in the substantia nigra, perturbed locomotion, 
and sleep abnormalities (143).

Conversely, pro-inflammatory cytokines also modulate mito-
chondrial function. For example, TNFα can decrease complex I 
activity, reduce ATP production, depolarize the mitochondrial 
membrane potential, increase ROS, and lower activities of com-
plexes II and IV (depending on the cell type). In hepatocytes, 
TNFα uncouples mitochondria and increases ROS production. 
This ROS production is generated from complex I and III of the 
respiratory chain and initiates NFĸB activation (144, 145). Similar 
effects have been reported in L929 cells (a mouse fibroblast cell 
line), a leukemia cell line, and 3T3-L1 adipocytes (146–148). In a 
mouse hippocampal cell line (HT22), TNFα induces mitochon-
drial respiration deficits and a loss of mitochondrial membrane 
potential (149). IL-1β also yields similar effects on mitochondrial 
function (150). Nitric oxide (NO), another inflammatory signal-
ing molecule, disrupts mitochondrial membrane potential and 
inhibits COX activity. In human retinal pigment cells, TNFα, 
IL-1β, and IFN-γ increase the production of both mitochondrial- 
and NADPH oxidase-derived ROS (151).

In vivo studies also suggest pro-inflammatory molecules 
influence mitochondrial function. Intraperitoneal injection 
of lipopolysaccharide in rodents increases brain cytokine and 
inflammatory receptor expression [including IL-1β, toll like 
receptor 2 and 4, microglial scavenger receptor A (SRA), and 
Fc receptor (FCγRII)] in a region-specific manner. The authors 
also reported increased microglial number and mitochondrial 
functional alterations, including decreased glutathione (an anti-
oxidant) and increased complex II/III activity (152).

A clear relationship between mitochondrial dysfunction and 
inflammatory cascades exists. Both of these pathological hall-
marks are present across multiple neurodegenerative diseases. 
Mitochondria-derived DAMP molecules could provide a further 
link between these pathologies. Below, we discuss mitochondria-
derived DAMP molecules, potential routes of release, and evi-
dence for their role in neuroinflammation.

MiTOCHONDRiA-DeRiveD DAMPs: 
iNDUCeRS OF NeUROiNFLAMMATiON?

Previously identified mitochondria-derived DAMP molecules 
include mtDNA, cardiolipin, ATP, mitochondrial transcription 

factor A (TFAM), cytochrome c, and formyl-methionine-labeled 
peptides (30). Formyl-methionine-labeled peptides may also 
include mitochondrial protein-derived cryptides. Cryptides are 
endogenous, fragmented functional peptides. Pro-inflammatory 
cryptides from mtDNA and nuclear DNA-encoded mitochondrial 
proteins were recently described (153–155). As reviewed in Table 1, 
each of these molecules has been observed to initiate a pro-inflam-
matory phenotype under various disease and pathological states.

Damage-associated molecular pattern molecules activate 
inflammatory signaling in a manner similar to PAMPs. The 
danger molecule is recognized by a pattern-recognition recep-
tor (PRR), and adaptor molecules initiate intracellular signaling 
cascades and cytokine production. Similar to PAMPs, mitochon-
dria-derived DAMPs are recognized by various PRRs. These 
include TNF receptor, NLRP3, IL-1 receptor, nucleotide-binding 
oligomerization domain-like receptor, receptor for advanced gly-
cation end products, formyl peptide receptors (FPR or FPRL1), 
and purogenic receptors. With the increasing recognition of 
mitochondria-derived DAMP molecules as pathogenic instiga-
tors in various diseases (Table 1), recent studies have begun to 
explore their contribution to neuroinflammation.

Mitochondria-Derived DAMP Molecules  
in Neuroinflammation
In the periphery, TFAM functions as a potent DAMP molecule 
(Table 1). Recently, it was found that TFAM, in combination with 
IFN-γ, can activate human microglial cells, human peripheral 
blood monocytes, and THP1 monocytic cells (173). Cotreatment 
of THP1 monocytic cells with IFN-γ and TFAM or TFAM alone 
lead to an increase in cytokine expression (including IL-1β, IL-6, 
and IL-8). While treatment of SH-SY5Y neuroblastoma cells with 
IFN-γ and TFAM was not toxic, exposure to conditioned medium 
from monocytic cells activated with IFN-γ and TFAM-induced 
SH-SY5Y cell death. Finally, mitochondrial proteins extracted 
from THP1 monocytic cells produced effects similar to TFAM.

Degraded and oxidized mtDNA can initiate pro-inflamma-
tory pathways in astrocytes. Exposure of mtDNA to hydrogen 
peroxide can induce its degradation, and these mtDNA 
degra da  tion products are found in human CSF and plasma (9). 
Further more, transfection of mouse primary astrocytes with oxidant-
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initiated, degraded mitochondrial polynucleotides caused a pro- 
inflammatory response. This inflammatory astrocyte pheno-
type was characterized by the upregulation of IL-6, monocyte 
chemotactic protein 1, TNFα, and IL-1β (9). It was also previ-
ously reported that mtDNA is degraded in response to hydrogen 
peroxide in HA-1 hamster ovarian cells, an effect that was not 
observed with nuclear DNA or cytoplasmic RNA. Degradation 
of the mitochondrial genome was apparent in both mtDNA and 
mitochondrial RNA species (10). These observations suggest 
a mechanism for mtDNA degradation, and also for the down-
stream activation of glial cell pro-inflammatory phenotypes.

Mitochondrial components induce inflammation in micro-
glial (BV2) and neuronal (SH-SY5Y) cells (177). In the defining 
experiments, these cells were exposed to mitochondrial lysates 
prepared from SH-SY5Y cells containing mtDNA or alternatively 
SH-SY5Y cells lacking mtDNA. BV2 microglial cells exposed to 
mitochondrial lysates containing mtDNA had increased TNFα, 
IL-8, and matrix metalloproteinase 8 mRNA but decreased 
TREM2 mRNA. Furthermore, NFĸB nuclear localization was 
increased. These effects were not observed when BV2 microglial 
cells were exposed to mitochondrial lysates prepared from cells 
that lacked mtDNA. In SH-SY5Y neuronal cells exposed to 
mitochondrial lysates containing mtDNA, TNFα mRNA and 
NFĸB protein expression were elevated. In addition, mitochon-
drial lysate-exposed SH-SY5Y cells showed increased amyloid 
precursor protein (APP) mRNA and protein. Changes in APP 
expression or pro-inflammatory pathways did not occur when 
SH-SY5Y cells were exposed to mitochondrial lysates that lacked 
mtDNA.

Mitochondria-derived DAMP molecules induce neuroinflam-
mation in  vivo. We recently observed stereotactic injection of 
mitochondrial lysates or mtDNA into rodent hippocampi induced 
pro-inflammatory changes (178). Mitochondrial lysates increased 
hippocampal TNFα mRNA and decreased TREM2 mRNA 
expression. In addition, NFĸB phosphorylation was elevated in 
the cortex, while glial fibrillary acidic protein (GFAP) protein 
levels were elevated within the hippocampus. Hippocampal 
mtDNA injection lead to increased hippocampal TNFα mRNA 
but reduced hippocampal TREM2 mRNA, increased GFAP hip-
pocampal protein expression, elevated cortical NFĸB phospho-
rylation, increased cortical colony-stimulating factor 1 receptor 
protein expression, and increased levels of phosphorylated AKT 
within the cortex. Beyond these inflammatory changes, whole 
mitochondria lysates increased protein and mRNA levels of 
endogenous rodent APP and Aβ1–42. These effects on APP and 
Aβ1–42 were not observed following injection of mtDNA. Overall, 
these studies provide evidence that mitochondria-derived DAMP 
molecules are capable of inducing neuroinflammation, as well as 
altering AD-related pathways.

While some studies suggest Aβ is pro-inflammatory and acts 
as a DAMP molecule, a recent study interestingly suggests Aβ 
has antimicrobial properties (179). In models that overproduce 
Aβ, including rodent, cell culture, and worm models, the severity 
of fungal and microbial infections was reduced. Injection of the 
bacterium S. typhimurium into the brain of an AD mouse model 
(5XFAD model) increased the propensity of Aβ to form plaques, 
and Aβ colocalized with the bacteria. In addition, the 5XFAD 

mice injected with S. typhimurium showed increased survival and 
reduced meningitis. This study further found that oligomerization 
of Aβ was required for this antimicrobial property to manifest. 
Earlier in  vitro studies also showed Aβ initiated antimicrobial 
activity against several bacterial and fungal microorganisms. 
Aβ inhibited bacterial growth, and brain homogenates from AD 
subjects (containing Aβ) were also capable of inhibiting micro-
bial growth (180). These studies suggest a possible connection 
between mitochondria-derived DAMP molecules, neuroinflam-
mation, APP metabolism, and Aβ.

Mitochondria-Derived DAMP Molecules 
As biomarkers of brain integrity
Cell-free circulating mitochondrial components (DAMPs) such 
as mtDNA are altered in trauma. For example, in children with 
traumatic brain injury (TBI), CSF mtDNA levels are elevated. 
CSF mtDNA levels also correlate with TBI outcome. In children 
who survived a TBI, CSF mtDNA levels were in the lower range, 
while in children whose outcome included either death or severe 
disability CSF mtDNA levels were in the upper range. CSF levels 
of another DAMP molecule, high mobility group box 1, cor-
related with mtDNA levels in these subjects. Overall, mtDNA 
appears to represent a potential CSF mitochondrial DAMP 
biomarker for TBI and to have the potential to correlate with 
patient outcomes (3).

Circulating mtDNA is also associated with aging. In a study 
of 831 Caucasian subjects spanning ages 1–104  years, plasma 
mtDNA levels began to increase after the fifth decade of life. 
Plasma mtDNA levels further correlated with cytokine levels, 
specifically TNFα, IL-6, and regulated on activation normal 
T cell expressed and secreted (RANTES). Subjects with the high-
est levels of plasma mtDNA also had the highest levels of these 
cytokines (TNFα, IL-6, and RANTES), while subjects with the 
lowest plasma mtDNA levels had the lowest amounts of measured 
cytokines (156).

Circulating mtDNA may also potentially have the ability to 
serve as an AD or PD biomarker. Cell-free CSF mtDNA levels 
are reduced in clinically asymptomatic subjects with a genetically 
defined increased AD risk and clinically symptomatic AD sub-
jects (157). However, no differences were observed for subjects 
with frontotemporal lobar degeneration. In a separate study, PD 
subjects were found to have lower levels of cell-free CSF mtDNA 
(158). While some may argue lower cell-free CSF mtDNA negates 
the possibility of a mitochondria-derived DAMP-induced neuro-
inflammation, other evidence contradicts this idea. It is impor-
tant to note levels of another AD biomarker, Aβ, are elevated 
in the brain but significantly reduced in CSF from AD subjects  
(181, 182). Therefore, it is difficult to draw conclusions regarding 
CSF biomarker data and causation without sufficient knowledge 
of the mechanisms that underlie those biomarker changes.

Specific Release of  
Mitochondria-Derived DAMP  
Molecules within the CNS
An important question relevant to the issue of mitochondria-
derived DAMPs is how might these intracellular molecules access 
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FiGURe 1 | Hypothesized mechanism of mitochondrial-derived 
damage-associated molecular pattern molecule released in the 
central nervous system. (A) Neurons can release mitochondria (neuronal 
mitochondria are shown in red) to astrocytes, where they then undergo 
mitophagy (orange star shape). In addition, astrocytes can release 
mitochondria (astrocyte mitochondria are shown in blue) to neurons, under 
conditions of bioenergetic stress. (b) If the process of mitochondrial 
exchange between neurons and astrocytes malfunctions (X), then 
mitochondria and their components could be released into the extracellular 
space and initiate neuroinflammation.
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the extracellular space? While cellular components are released 
during necrotic cell death, more specific process through which 
mitochondria are released to the brain’s extracellular compart-
ment have recently been described. One of these processes has 
been termed transcellular mitophagy. Neurons are large cells 
and can span long distances. Mitochondria continuously move 
between the cell body and dendrites, and between the cell body 
and axons. When peripheral mitochondria cease to function 
properly, they were believed to return to the cell body for disposal 
through the process of mitochondrial autophagy or mitophagy. 
Data now indicate neurons can also export mitochondria to sur-
rounding glial cells, where they then undergo mitophagy. This 
process was first described to occur within the optic nerve and 
the cortex (183). In a separate study, it was found that astrocytes 
also transfer mitochondria to neurons (184). The transfer of 
mitochondria from astrocytes to neurons enhanced neuronal 
survival following ischemia reperfusion injury and required 
signaling from cluster of differentiation 38, cyclic ADP ribose, 
and calcium.

CONCLUSiON

In specific neurodegenerative diseases, if mitochondrial dys-
function overwhelmed the ability of neurons and astrocytes to 
adequately perform mitophagy, then mitochondria-derived 
DAMP molecules could predictably facilitate neuroinflam-
mation (Figure  1). Clearly, a rational case can be made that 
mitochondria-derived DAMP molecules may contribute to neu-
rodegenerative disease-associated neuroinflammation. However, 
important questions remain about how mitochondrial DAMPs 
contribute to neurodegenerative diseases and neurodegenerative 
disease-related pathologies. Future directions should focus on 
if and how specific mitochondrial-derived molecules initiate 
neuro inflammation. More specifically, how does mitochondrial 
dysfunction contribute to the release of DAMP molecules and is 
this process upstream or downstream of other disease patholo-
gies? As this line of investigation moves forward, studies to 
address issues of cause versus consequence should help resolve 
these important knowledge gaps.
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