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This study investigated the possibility of inhibition of the SARS-CoV-2 virus using the compounds alpha-
Boswellic acid (ABA) and beta-Boswellic acid (BBA) which are active components in the well-known nat-
ural product Boswellia carterii (BC). The SARS-CoV-2 virus reproduces in the body by linking its spike
with the cell receptor. At the same time, a pH range (4.5–6) of the cell’s lysosomes is considered as a per-
fect environment to release RNA in the cell cytoplasm. In view of these, docking studies were employed to
study the interaction between the spikes of the virus and ABA or BBA using Molecular Graphic Laboratory
(MGL) tools and AutoDock Vina application. The binding of the ABA and BBA with the spike of the virus
could inhibit its reproduction or provide sufficient time for the immune system to recognize the virus and
hence, produce suitable antibodies. In addition, the pKa of ABA, BBA and hydroxychloroquine (HCQ) were
calculated using HF/6-311G (d,p) method and then they were compared with the experimental pKa of
HCQ. The Lethal Concentrations (LC50) of ABA and BBA were also calculated. In addition, molecular elec-
trostatic potential is reported which indicates the active sites of ABA and BBA.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Coronaviruses are a large group of single-strand RNA viruses
[1]. Recently COVID-19 pandemic appeared in Wuhan, China [2]
and became a global concern in a very short period. To date, more
than 100 million individuals were infected and more than 2 million
were killed with a mortality rate of about 2.17% based on the
World Health Organization. The ability of the virus leading to
human–human infections raises lots of attention and is a major
concern. International air travel and sometime, the lack of aware-
ness have played a key role in the transmission of the virus.
Recently, the complete genome sequence of the virus was listed
in the National Center for Biotechnology Information (GenBank:
MN908947.3). This helped in the determination of the structure
and glycosylation pattern of the viral proteins and the method of
interaction with the host cell. Like the other coronaviruses, the
outer membrane has a spike glycoprotein responsible for its glyco-
sylation [3]. It is reported that chloroquine (CQ) phosphate, inhibits
COVID-19 infection in vitro [4]. CQ (N4-(7-Chloro-4-quinolinyl)-N
1,N1-diethyl-1,4- pentane diamine) has been used against amebi-
asis and malaria, but the uses of this drug were limited for several
reasons; one of them is the overdose of CQ could cause acute poi-
soning and death, and the other is that it can lead to eye damage,
heart disease, worsen skin conditions and it is fatal for some chil-
dren [5]. Thus, there has been increasing interest in the derivatives
of CQ. For instance, hydroxychloroquine (HCQ) sulfate, was pre-
pared in 1946 by introducing a hydroxyl group into CQ and it
was found to be less toxic than CQ in animals [6]. HCQ is a weak
base, it elevates the pH of acidic intracellular organelles such as
lysosomes, which is important for the fusion of membrane [7].
Recent studies [8,9] indicate that HCQ blocks the transport of
COVID-19 from early to late endosomes, which appears to be a
requirement to release the viral genome as in the case of SARS-
CoV [10,11]. Theoretical calculations, particularly density func-
tional theory (DFT) method has been used to predict the most
stable conformation for different compounds and isomers [12–
14]. Further, it is used in combination with docking, which helps
to rationalize the design of new therapeutic agents for treating
the human disease [15,16].

This research work proposes a method to inhibit virus activity
complications and even give the infected body enough time to pro-
duce suitable antibodies. Docking and DFT computations were
used to estimate the interaction of the natural products ABA and
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Fig. 1. Structures of ABA and BBA.
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Fig. 2. Optimized structures of ABA and BBA using the B3LYP/6-311G(d,p) method.
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BBA (Fig. 1), which is used to treat indigestion with the viral glyco-
protein in the spike. ABA and BBA were chosen based on their bio-
logical activity in previous studies [9,17,18] and it is known to have
minimum side effect according to BC products [19]. We also com-
pared ABA and BBA with HCQ as a standard antiviral drug to deter-
mine whether they would give the same effect as for the HCQ or
not.

2. Computational methods

The protein structure downloaded by (Research Collaboratory
for Structural Bioinformatics) RCSB [15] using Molecular Graphic
Laboratory (MGL) tools and AutoDock Vina application [16,17].
The coordinates of the spike structure and the ligands (ABA and
BBA) were separated with the help of Autodock tools (ADT, version
1.5.6). The SARS-CoV-2 spike glycoprotein-S1 protein and ligands
structures were processed to a format recognized by the ADT (*.
pdbqt files) by adding all hydrogen atoms, Gasteiger charges, and
merging the polar hydrogen atoms. The Autodock often tries to
identify the root for the molecule unless the user specifies it. In this
work, the Autodock automatically selected the root. The atoms
specific affinity maps for all ligand atom types, electrostatic and
desolation potentials were computed with the help of Auto grid
(version 4.2.6) [18]. PyMol was used to analyze the results [19–
24]. ABA and BBA were optimized in the gas phase, without any
symmetry restriction, before the docking process using Gaussian
16 [25] based on the DFT method with the B3LYP functional
[26,27] in conjunction with the 6–311++G(d) basis set [28]. The
optimization was followed by frequency computations to ensure
that the complex was a true local minimum. The optimized struc-
2

tures of ABA and BBA are illustrated in Fig. 2 and their coordinates
are provided in Table SI1 (supplementary information). The molec-
ular electrostatic potential (MEP) was also investigated by using
unrestricted DFT method and 6-31G (d,p) basis set.

3. Results and discussion

3.1. Spike-ABA and -BBA interactions

The active functional groups in ABA and BBA are OH and COOH
and according to geometry optimization, there are planarities in
some parts (according to cis and trans of atoms in the molecules,
each four atom of cis are near to zero and trans near to 180�). On
the basis of MEP (Fig. 3), there is high electron density (red color)
on the regions involving the OH and COOH groups [22]. The struc-
ture code from PDB is (6acd) Fig. 4. We compared the best sites to
link with the protein by calculating the binding energy [29]. The
range of binding energy values are �7.3 to �8.0 kcal/mol for ABA
and �7.2 to �7.7 kcal/mol for BBA. The better location of the
bonded protein turns out at (-7.7 kcal/mol) for both with ABA
and BBA. The bond lengths of the interacted OH and COOH are
3.0 and 3.1 Å respectively (Fig. 5). In addition, protein-BBA(OH)

bond length is 3.22 Å. The analysis of the results using DSV pro-
gram shows the interaction between the amino acid consistence
spike and ABA (Fig. 6). There is hydrogen bonding between the car-
boxyl group and ARG, while van der Waals forces with SER. Fur-
ther, all hydrogen atoms could interacts with protein. In BBA,
there is van der Waals interaction between the terminal alkyl ring
and the LYS, while there is a chemical interaction between LEU
with the carboxyl group. These results support the link between
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Fig. 3. MEP surfaces of ABA and BBA.
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Fig. 4. The interaction of ABA and BBA with protein of spike parts.
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Fig. 5. ABA and BBA compounds with spike protein linkage.
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Fig. 6. Two dimension interactions structures of ABA and BBA.
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Fig. 7. Plot of the experimental versus theoretical values of pKa for ABA, BBA and
HCQ.
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the protein and the inhibitor. On this basis, blocking the spike of
the virus can delay its adhesion to the surface of the cell. Therefore,
this process could provide additional time for the body to prepare
an environment for antibodies.

3.2. ABA and BBA activity

A previous study proved the different pH in the range of (4.5–6)
that could prevent virus reproduction by inhibiting the glycosyla-
tion enzymes which in turn release the RNA in cell cytoplasm
[8,30]. From these studies, the pKa of the compounds used to con-
firm the calculations, and the regression correlation coefficient (R2)
values is 0.9754 (Fig. 7). Gibbs free energy was calculated by HF/
frequently (6-311G++/p,d) basis set. Equation (1) was used to esti-
mate the pKa of HCQ, ABA and BBA compounds at 298 K [31,32].

pKa= (DGsol/1.364) —log [H2O] ð1Þ
Where the DGsol is a Gibbs free energy and was calculated by

Equations (2) and (3), [H2O] is the water concentration.
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DGsol = DGg + DGsol(A�) + DGsol(H3Oþ) - DGsol(HA) - DGsol(H2O)

ð2Þ
DGsol = DGg + DGsol(HAþ) + DGsol(OH—) - DGsol(HA) - DGsol(H2O)

ð3Þ
All parameters for ABA and BBA were calculated according to

the cycle:

While the HCQ parameters calculated by the cycle:

The DGsolv values of ABA, BBA and HCQ are 15.64, 14.97 and
21.36 kcal/mol, respectively (Table 1). The reported value of pKa
for HCQ is 9.67, which differs with the theoretical by 0.06 [33].
The calculated pKa of ABA and BBA compounds found to be 5.30
and 4.88, respectively, while the experimental values are 5.70
and 4.41 [34,35]. The acidity order of the compounds studied is
BBA > ABA > HCQ. The values indicate the acidity of ABA, BBA
and the basicity of HCQ.
3.3. Lethal concentration method (LC50)

LC50 is the maximum concentration nontoxic per Kilogram and
Equation 4 used to estimate the LC50 values.

Log LC50 = 38.00 – 1.13 � Str + 1.38 � 10-3 � xH – 2.22 � 10-
3 � xL – 0.36 � IA Equation 4

Where Str = Translational entropy, x = vibrational wavenumber,
IA = principal moment of inertia, xH = High frequency and
Table 1
Parameters of thermodynamic calculations by HF method with experimental values.

Comp. DGg (kcal/mol) DGsol (kcal/mol) pKa (Cal.) pKa (Exp.)

HCQ 506.2 21.36 9.62 9.67
ABA 153.8 15.64 5.30 5.70
BBA 153.5 14.97 4.88 4.41

Table 2
Predicted toxicity parameters of the studied compounds (ABA and BBA).

Compound. Str IA xH xL LC50 (mol/L)

ABA 44.243 1 3792.41 26.88 6.59 � 10-8

BBA 44.243 1 3792.34 29.33 6.51 � 10-8

5

xL = Low frequency [36]. The LC50 values for ABA and BBA were
6.59 � 10-8 and 6.51 � 10-8 mol/L, respectively (Table 2). The
results indicate that high concentration can be use in the human
body for ABA and BBA.
4. Conclusions

A theoretical study on ABA and BBA compounds as an active
component from natural product Boswellia carterii to inhibit
SARS-Cov-2 virus was carried out. Computational methods were
used to study their binding to the spikes of the virus. The MEP
showed that the ABA and BBA interaction sites are the OH and
COOH groups. The binding energy indicates the high affinity
between the spike proteins with the studied compounds. The cal-
culations indicate hydrogen bonding and van der Waals forces
for ABA and BBA interacting with the spikes. Hydroxychloroquine
was compared with ABA and BBA using the calculated pKa values.
The LC50 values indicated that a high amount of ABA and BBA
could be used safely in the human body.
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