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A brief overview of the history
A handful of scientists from a variety of fields (mathe-
matics, psychology, engineering, economics and political 
science) began to discuss the possibility of creating an arti-
ficial brain. They gathered together at a workshop held on 
the campus of Dartmouth College during the summer of 
1956. This is widely known as Dartmouth Workshop, and 
it founded a society of artificial intelligence (AI).1 The field 
then went through its peaks and valleys several cycles. 
MIT cognitive scientist Marvin Minsky along with other 
attendees at the Dartmouth Workshop were extremely 
optimistic about AI’s future. They believed that AI will 
substantially be solved within a generation. However, no 
significant progress was made. After several criticizing 
reports and ongoing pressure from congress, government 
funding and interests dropped off. 1974–90 became the first 
AI winter. In the 80’s, due to the competition of the British 
and Japan, AI revived. 1983–93 was a major winter for AI, 
coinciding with the collapse of the market for the needed 
computer power, which led to withdrawal of funding again. 
Research began to pick up again after that. One well-known 
event was IBM’s Deep Blue—the first computer beat a 
chess champion. In 2011, the computer giant’s question 
answering system Watson won the quiz show Jeopardy, and 
this marked the newest wave of AI booming. In Parallel of 
recent 10 years in medical imaging research, the amount of 

imaging data has grown exponentially. This has increased 
the burden to physicians to process the images. They need 
to read images with higher efficiency while maintain the 
same or better accuracy. At the same time, fortunately, 
computational power has also grown exponentially. These 
challenges and opportunities have formed the perfect foun-
dation for the AI to be blossomed in the medical imaging 
research.

Researchers have successfully applied AI in radiology to 
identify findings either detectable or not by the human 
eye. Radiology is now moving from a subjective perceptual 
skill to a more objective science.2,3 In Radiation Oncology, 
AI has been successfully applied to automatic tumor and 
organ segmentation,4–6 78 and tumor monitoring during 
the treatment for adaptive treatment. In 2012, a Dutch 
researcher, Lambin P, proposed the concept of “Radiomics” 
for the first time and defined it as follows: the extraction 
of a large number of image features from radiation images 
with a high-throughput approach.9 As AI became more 
popular and also more medical images than ever have been 
generated, these are good reason for radiomics to evolve 
rapidly. Radiomics is a novel approach for solving the issue 
of precision medicine. These researches have demonstrated 
a great potential of the role of AI in medical imaging. In 
fact, it has sparkled one of the ongoing discussions—will 
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Abstract

Without doubt, artificial intelligence (AI) is the most discussed topic today in medical imaging research, both in diag-
nostic and therapeutic. For diagnostic imaging alone, the number of publications on AI has increased from about 
100–150 per year in 2007–2008 to 1000–1100 per year in 2017–2018. Researchers have applied AI to automatically 
recognizing complex patterns in imaging data and providing quantitative assessments of radiographic characteristics. 
In radiation oncology, AI has been applied on different image modalities that are used at different stages of the treat-
ment. i.e. tumor delineation and treatment assessment. Radiomics, the extraction of a large number of image features 
from radiation images with a high-throughput approach, is one of the most popular research topics today in medical 
imaging research. AI is the essential boosting power of processing massive number of medical images and therefore 
uncovers disease characteristics that fail to be appreciated by the naked eyes. The objectives of this paper are to review 
the history of AI in medical imaging research, the current role, the challenges need to be resolved before AI can be 
adopted widely in the clinic, and the potential future.
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AI replace clinicians entirely? We believe it will not. For short 
term, AI is constrained by a lack of high quality, high volume, 
longitudinal, outcomes data, a constraint that is further exac-
erbated by the competing need for strict privacy protection.10 
There were approaches to address the privacy threat, like distrib-
uted learning. However, in a 2017 paper, it was argued that any 
distributed, federated, or decentralized deep learning approach 
is susceptible to attacks that reveal information about participant 
information from the training set.11 For long term, we believe 
that AI will continue to underperform human level accuracy 
in medical decision making. Fundamentally, medicine is art, 
not science. AI might be able to outperform human in terms of 
quantitative tasks. Overall medical decision, however, will still 
depend on human evaluation to achieve the optimal results for 
a given patient.

Current role of AI in radiology
Machine learning, as a subset of AI, also called the tradi-
tional AI, was applied on diagnostic imaging started 1980’s.12 
Users first predefine explicit parameters and features of the 
imaging based on expert knowledge. For instance, the shapes, 
areas, histogram of image pixels of the regions-of-interest (i.e. 
tumor regions) can be extracted. Usually, for a given number 
of available data entries, part of them are used as training and 
the rest would be for testing. Certain machine learning algo-
rithm is selected for the training to understand the features. 
Some examples of the algorithms are principal component 
analysis (PCA), support vector machines (SVM), convolutional 
neural networks (CNN), etc. Then, for a given testing image, 
the trained algorithm is supposed to recognize the features and 
classify the image.

One of the problems of machine learning is that users need to 
select the features which define the class of the image it belongs 
to. However, this might miss some contributing factors.12,13 
For instance, lung tumor diagnosis requires user to segment 
the tumor region as structure features. Due to the patient and 
user variation, the consistency of the manual feature selection 
has always been a challenge. Deep learning, however, does not 
require explicit user input of the features. As its name suggests, 
deep learning learns from significantly more amount of data. It 
uses models of deep artificial neural networks. Deep learning 
uses multiple layers to progressively extract higher level features 
from raw image input. It helps to disentangle the abstractions 
and picks out the features that can improve performance. The 
concept of deep learning was proposed decades ago. Only till 
recent decade, the application of deep learning became feasible 
due to enormous number of medical images being produced and 
advancements in the development of hardware, like graphics 
processing units (GPU).14 However, with machine learning 
gaining its relevance and importance every day, even GPU 
became somewhat lacking. To combat this situation, Google 
developed an AI accelerator integrated circuit which would be 
used by its TensorFlow AI framework—tensor processing unit 
(TPU). TPU is designed specifically for neural network machine 
learning and would have potential to be applied on medical 
imaging research as well.

The main research area in diagnostic imaging is detection. 
Researchers started developing computer-aided detection 
(CAD) systems in the 1980s. Traditional machine learning 
algorithms were applied on image modalities like CT, MRI, and 
mammography. Despite a lot of effort made in the research area, 
the real clinical applications were not promising. Several large 
trials came to the conclusion that CAD has at best delivered no 
benefit15 and at worst has actually reduced radiology accuracy,16 
resulting in higher recall and biopsy rates.17,18

The new era of AI—the deep learning has so far demonstrated 
promising improvements in the research area over the traditional 
machine learning. As an example, Ardila et al proposed a deep 
learning algorithm that uses a patient’s current and prior CT 
volumes to predict the risk of lung cancer.19 The model achieved 
a state-of-the-art performance (94.4% area under the curve) on 
6716 national lung cancer screening trial cases and performed 
similarly on an independent clinical validation set of 1139 cases. 
As a comparison of conventional screening by low-dose CT, per ​
cancer.​gov,20 there are several associated harms: false-positive 
exams, overdiagnosis, complications of diagnostic evaluation, 
increase in lung cancer mortality, and radiation exposure. One 
false-positive exam example provided on the web site was 60%. 
Overdiagnosis was estimated at 67%. There is also radiation 
induced risk to develop lung cancer or other types of cancer later 
in life. AI-based diagnosis reduced these risks.

In fact, deep learning algorithms have become a methodology of 
choice for radiology imaging analysis.20 This includes different 
image modalities like CT, MRI, PET, ultrasonography etc and 
different tasks like tumor detection, segmentation, disease 
prediction etc. Researches have shown that AI/deep learning-
based methods have substantial performance improvements 
over the conventional machine learning algorithms.21 Similar to 
human learning, deep learning learns from enormous amount 
of image examples. However, it might take much less time, as 
it solely depends on curated data and the corresponding meta-
data rather than the domain expertise, which usually takes years 
to develop.12 As the traditional AI requires predefined features 
and have shown plateauing performance over recent years, and 
with the current success of AI/deep learning in image research, 
it is expected that AI will further dominate the image research 
in radiology.

Current role of AI in radiation oncology
In radiation oncology imaging research, AI has been applied 
in organ and lesion segmentation, image registration, fiducial/
marker detection, radiomics etc. Similar to radiology, it started 
with traditional AI and now with deep learning.3,22–242526 In the 
most recent Medical Physics journal (May 2019, Volume 46, Issue 
5), there were 16/51 papers on deep learning-based imaging 
research. As we know, imaging research is only one subsection of 
the entire radiation oncology research. The large portion of the 
published deep learning imaging research articles demonstrates 
the important role AI is now playing in the field.

For organ and lesion segmentation, the main goal is to segment 
the organs at risk automatically for treatment planning. Deep 
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learning algorithms have been applied to segment head and neck 
organs, brain, lung, prostate, kidney, pelvis etc. Lesion segmen-
tation applications include bladder, breast, bone, brain, head and 
neck, liver, lung, lymph nodes, rectum etc. Sahiner et al23 has 
summarized the segmentation object, deep learning methods 
used, data set used, and the corresponding performance. One 
algorithm used often was U-net.27 Unlike traditional AI, U-nets 
consist of several convolution layers, followed by deconvolution 
layers, with connections between the opposing convolution and 
deconvolution layers. The network can therefore analyze the 
entire image during training and allow for obtaining segmenta-
tion likelihood maps directly.

Dong et al applied U-net-generative adversarial network 
(U-Net-GAN) to train deep neural networks for the segmenta-
tion of multiple organs on thoracic CT images.28 U-Net-GAN 
jointly trains a set of U-Nets as generators and fully convolu-
tional networks (FCNs) as discriminators. The generator and 
discriminator compete against each other in an adversarial 
learning process to produce the optimal segmentation map of 
multiple organs. The proposed algorithm was demonstrated 
feasible and reliable in segmenting five different organs. Simi-
larly, Feng et al successfully applied deep convolutional neural 
networks (DCNN) for thoracic organs at risks segmentation 
using cropped hree-dimensional images.29 CNN has also been 
used on head and neck organ segmentation.30

Holistically nested networks (HNN) uses side outputs of the 
convolutional layers, and it has been applied on prostate and 
brain tumor segmentation.31,32

In radiation therapy, often there are needs to register one image 
modality to another (multimodal) or an image on a one day to 
another (monomodal). To avoid traditional AI which required 
handcrafted features, an unsupervised deep learning feature 
selection framework was proposed. It implemented a convo-
lutional stacked auto-encoder network to identify the intrinsic 
features in image patches.33 The algorithm demonstrated 
better Dice ratio scores compares to state of the art. These can 
be applied on both multimodal and monomodal image regis-
trations. Sloan et al34 have proposed a novel method of image 
registration by regressing the transformation parameters using a 
convolutional neural network (CNN). This was applied on both 
mono- and multimodal applications. With the promising result 
AI has demonstrated so far in the research domain, we hope the 
AI-based image registration can be applied in the clinic soon. 
This is an important step towards real-time adaptive treatment 
planning and delivery.

The automatic fiducial/marker detection is needed for real time 
tracking of the treatment area during the delivery. Most common 
methods require prior knowledge of the marker properties 
to construct a template. Recent proposed deep learning CNN 
framework requires no prior knowledge of marker properties 
or additional learning periods to segment cylindrical and arbi-
trarily shaped fiducial markers.22 The algorithm achieved high 
classification performance.

Radiomics, one of the most advanced AI applications in medical 
imaging research, is a novel approach towards the precision 
medicine.35 Radiomics consists two steps. First step is feature 
extraction. Images from multiple modalities might be included. 
Image segmentation algorithms are applied to segment the 
volumes of interest. After the segmentation, features will be 
extracted. Common features include texture, geometric infor-
mation, tumor volume, shape, density, pixel intensity etc. The 
second step is to incorporate the extracted features into mathe-
matical models to decoding the phenotype of the tumor for treat-
ment outcome prediction. A successful outcome prediction can 
provide valuable information for precise treatment design. For 
instance, different lung cancer patients might share many simi-
larities like histology and age. However, the images of the tumor 
might appear different, and the survival time might be very 
different.36 If radiomics can take the image information, decode 
the phenotype, and therefore predict the survival time or prog-
nosis prior to the treatment, different treatment regimens might 
be chosen. This is called personalized or precision medicine.35 
Traditionally, precision medicine depended on biomarkers to 
estimate patient different prognosis or subtype, which usually 
required invasive biopsy. Radiomics, on the other hand, does not 
require invasive procedures. It was shown that features extracted 
from CT images of lung cancer patients alone correlate well 
with gene mutations and have prognostic powers.37 The success 
of radiomics can potentially avoid undesirable complications 
caused by biopsy38,39 and achieve the same or better prediction 
outcome.

Aerts et al37 built a radiomic signature, assessed on an indepen-
dent lung data set. It demonstrated the translational capability 
of radiomics across different cancers. Authors also showed 
significant associations between the radiomic features and gene-
expression patterns. Some researchers did radiomics modeling 
using positron emission tomography (PET) images,40 PET/CT 
or PET/MRI.41 Most applications were on lung cancer. There are 
also applications on head and neck42 and prostate cancers.43 All 
these models have achieved reasonable prediction power.

Challenges need to be resolved before clinical 
implementation
Despite the excitement AI has generated in the medical 
imaging research, there are challenges before it can become 
more robust and be widely adopted in the clinic. AI is 
constrained by a lack of high quality, high volume, longitu-
dinal, outcomes data. Even the same image modality on the 
same disease site, the parameters of the imaging setting and 
protocols might be different in different clinical settings. Each 
set of images is associated with a clinical scenario. The number 
of potential clinical scenarios and the variety of tasks that 
each of the image might contain is astronomical and might be 
impossible to be tacked by one organization with any AI algo-
rithm. Each patient cohort associated with a clinic is different. 
The way each clinic practices is also different. How to organize 
the data generated from different practices in a more standard 
way is a big challenge on AI-based medical imaging research. 
Medical imaging data organization itself might deserve to be a 
major research field.
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There are challenges associated with medical imaging data cura-
tion.4445 Data curation is an important step. Accurate labeling 
therefore is a key. As the exponentially growth of the number of 
images, clinicians have challenges to process them with the same 
efficiency and accuracy. It usually takes years to train people to 
become experts. Therefore, the lack of ability to keep up labeling 
enormous number of images imposes limitations of the data 
curation.

On the policy level, there are increasing concerns on patient 
privacy. Patient-related health information was protected by 
tight privacy policies, which limited cross-institution image 
sharing. Recently, there were several headline news level health-
care data breaches and security attacks. As a result, hospitals 
are now more than ever concerning about securities and liabil-
ities and have tightened up security and data sharing policies. 
However, the success implementations of AI needs large amount 
of data from multiple institutions. How to share images without 
compromising security is a challenge.

The future of AI in medical imaging 
research
Two challenges need to be resolved before AI can be more widely 
implemented in medical imaging research. First, how to orga-
nize and pre-process data generated from different institutions. 
Miotto et al stated in their breakthrough work “deep patient”—
challenges in summarizing and representing patient data prevent 
widespread practice of predictive modeling using electronic 
health records. They presented a novel unsupervised deep feature 
learning method to derive a general-purpose patient represen-
tation from electronic health record data that facilitates clinical 

predictive modeling.46 Authors have successfully derived patient 
representations from a large-scale data set that were not opti-
mized for any specific task and can fit different clinical applica-
tions. However, their data are from one institution. Tackling data 
set from multiple institutions in fact is a much more challenging 
task. Even for the same procedure, different institution might 
implement differently. Patient cohorts might also be different. 
All these will need to be addressed when pre-process data for AI 
algorithm.

Second, on a policy or infrastructure level, how to encourage 
more image data sharing is also a challenge. Currently, image 
data sharing is very limited. HIPAA compliant is one concern, 
and lack of infrastructure is another. The medical data security 
needs to work with the emerging needs of data sharing. Corre-
sponding infrastructure also needs to be built.

On the long run, how AI can become true “intelligent” at the 
human level is a key to the question if AI can replace human in 
medical imaging. Unlike pure quantitative task, the knowledge 
involved in medical imaging related decision making require life 
experience and philosophy. For the machine to behave in human 
level, there are not only challenges on data collection and algo-
rithm development, but also on ethical regulations.

Conclusions
AI is playing a significant role in medical imaging researches. 
It changed the way people process the enormous number of 
images. There are still challenges to be resolved before AI can 
eventually impact clinical practices.
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