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Note 1: Analytical theory of the adiabatic topological interfaces 
Neglecting spin-mixing and quadratic dispersion terms, which is good approximation in the close 
proximity to the Γ -point, the effective Dirac Hamiltonian for the patterned metasurface of 
hexamers1-3 can be split into two independent, spin-up (↑) and spin-down (↓), blocks of the form:  

𝐻𝐻�↓,↑(𝒌𝒌) = 𝑚𝑚𝜎𝜎�𝑧𝑧 + 𝑣𝑣𝐷𝐷�±𝑘𝑘�𝑥𝑥𝜎𝜎�𝑥𝑥 + 𝑘𝑘�𝑦𝑦𝜎𝜎�𝑦𝑦�. (S1) 

Adopting the plane-wave like ansatz for the two-component Dirac spinor 𝝍𝝍↑/↓ = [𝜓𝜓1,𝜓𝜓2]↑/↓ 
T ∝

𝑒𝑒−𝑖𝑖𝜔𝜔↑/↓𝑡𝑡+𝑖𝑖𝑘𝑘�𝑦𝑦𝑦𝑦 and replacing 𝑘𝑘�𝑥𝑥 with a derivative −𝑖𝑖𝜕𝜕𝑥𝑥,we solve the eigenvalue problem 

𝜔𝜔↑/↓𝝍𝝍↑/↓ = 𝐻𝐻�↑/↓𝝍𝝍↑/↓, (S2) 

with an antisymmetric adiabatic distribution of the mass term 

𝑚𝑚(𝑥𝑥) = 𝑀𝑀0tanh �
𝑥𝑥
𝑤𝑤
�, (S3) 

where the inhomogeneity (width) parameter 𝑤𝑤 > 0, and we assume 𝑀𝑀0 > 0. Domain walls in the 
Dirac equation (S2) can host two types of modes - edge states and waveguide modes bound by the 
adiabatic interface. The spin-polarised edge modes, being associated with mass inversion at the 
domain wall, possess linear dispersion  𝜔𝜔↑/↓ = ∓𝑣𝑣𝐷𝐷𝑘𝑘�𝑦𝑦, and spatial profiles obeying   

𝝍𝝍↑/↓ (𝑥𝑥) = �𝜓𝜓1𝜓𝜓2
�
↑/↓ 

= 𝑓𝑓(𝑥𝑥) � 1
∓𝑖𝑖� , (S4) 

where 

𝑓𝑓(𝑥𝑥) =  𝜓𝜓1(0)exp �− 1
𝑣𝑣𝐷𝐷
∫𝑥𝑥0 𝑚𝑚(𝑥𝑥′)𝑑𝑑𝑥𝑥′�. (S5) 

The normalization factor for these modes is  
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0
𝑚𝑚(𝑥𝑥′)𝑑𝑑𝑥𝑥′� 𝑑𝑑𝑥𝑥. (S6) 

On plugging (S3) into (S5), the mode profiles (S4) take the 𝑘𝑘𝑦𝑦-independent form 

�𝜓𝜓1𝜓𝜓2
�
↑/↓ 

∝
1

cosh𝜅𝜅0𝑤𝑤 �𝑥𝑥𝑤𝑤�
� 1
∓𝑖𝑖�. (S7) 

For the step-like profile 𝑚𝑚(𝑥𝑥) = 𝑀𝑀0sgn(𝑥𝑥)  at 𝑤𝑤 → 0 , solution (S4) is simplified to the 
exponentially confined function 

�𝜓𝜓1𝜓𝜓2
�
↑/↓ 

= �
𝜅𝜅0
2
� 1
∓𝑖𝑖� 𝑒𝑒

−𝜅𝜅0|𝑥𝑥| , (S8) 

with a constant decay rate  𝜅𝜅0 = 𝑀𝑀0
𝑣𝑣𝐷𝐷

. 

We employ the obtained profiles to estimate the quality factor of the electromagnetic modes 
in a realistic structure. The quality factor 𝑄𝑄 = Re(𝜔𝜔)/(2Im(𝜔𝜔)), which quantifies the radiative 
losses of leaky electromagnetic modes in the open system, is estimated as 𝑄𝑄 = 𝜔𝜔0𝑊𝑊/𝑃𝑃 , where 



𝜔𝜔0 ≡ Re(𝜔𝜔) is the real part of the complex eigenfrequency, 𝑊𝑊 is the stored energy of a mode, and 
𝑃𝑃 is the radiated power4. Following descriptions provided in2,3, the radiative losses are associated 
with dipolar component of the field, which is given by 𝜓𝜓1(𝑥𝑥). We can compute the local unit-cell-
averaged dipole moment for the modes 𝐩𝐩(𝑥𝑥): 𝑝𝑝𝑥𝑥(𝑥𝑥) = ±𝑖𝑖𝑝𝑝𝑦𝑦(𝑥𝑥) ∝ 𝜓𝜓1(𝑥𝑥), and the corresponding 

surface polarization current distribution 𝐉𝐉(𝑥𝑥,𝑦𝑦) ∝ −𝑖𝑖𝜔𝜔𝐩𝐩(𝑥𝑥)𝑒𝑒𝑖𝑖𝑘𝑘�𝑦𝑦𝑦𝑦 across the domain wall at some 
frequency 𝜔𝜔: 

𝐽𝐽𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) ∝ −𝑖𝑖𝜔𝜔𝑒𝑒𝑖𝑖𝑘𝑘�𝑦𝑦𝑦𝑦 � 𝜓𝜓1(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑚𝑚′𝑎𝑎)
+∞

𝑚𝑚′=−∞

∝ 𝑒𝑒𝑖𝑖𝑘𝑘�𝑦𝑦𝑦𝑦𝐽𝐽𝛿𝛿(𝑥𝑥) , (S9) 

where 𝑚𝑚′ ennumerates the unit cells, 𝑎𝑎 is a period of the lattice, and 𝐽𝐽𝛿𝛿(𝑥𝑥) is a discretised function 
following the spatial profile of the mode. The radiated power 𝑃𝑃 in this phenomenological model 
for our subdiffractive thin metasurface is then calculated by Fourier transforming the 2D surface 
electric current distribution and integrating the out-of-plane (in 𝑧𝑧-direction) Poynting flux for 
partial plane waves over the wavenumber 𝑘𝑘�𝑥𝑥. The amplitudes of the radiating plane-wave-like 
harmonics, ∝ exp(𝑖𝑖𝑘𝑘�𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑘𝑘�𝑦𝑦𝑦𝑦) , in the surface current are proportional to the Fourier-
transformed wave function  

𝐽𝐽�𝑘𝑘�𝑥𝑥� ∝ � 𝜓𝜓1(𝑥𝑥)
+∞

−∞
𝑒𝑒−𝑖𝑖𝑘𝑘�𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥. (S10) 

The out-of-plane Poynting flux is then obtained via integration 

𝑃𝑃�𝑘𝑘�𝑦𝑦� ∝ � 𝑆𝑆𝑧𝑧�𝑘𝑘�𝑥𝑥,𝑘𝑘�𝑦𝑦�
�𝑘𝑘�02−𝑘𝑘�𝑦𝑦2

−�𝑘𝑘�02−𝑘𝑘�𝑦𝑦2
𝑑𝑑𝑘𝑘�𝑥𝑥. (S11) 

of the partial contributions 

𝑆𝑆𝑧𝑧�𝑘𝑘�𝑥𝑥,𝑘𝑘�𝑦𝑦� ∝ �𝐽𝐽�𝑘𝑘�𝑥𝑥��
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𝑘𝑘�0
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⎞, (S12) 

where 𝑘𝑘�0  is the free-space wavenumber, and 𝑘𝑘�||
2 ≡ 𝑘𝑘�𝑥𝑥2 + 𝑘𝑘�𝑦𝑦2  is the in-plane wavenumber. The 

estimate (S12) is done with the use of the interface boundary conditions for the magnetic field 
jump on the conducting plane. This description hints to the increase of the quality factor for the 
edge modes supported by smoother domain walls compared to their sharp counterparts due to 
narrowing the radiation spectrum, and agrees well with the results of our full-wave numerical 
simulations. The complex-valued spectrum calculated with the use of the Dirac model is illustrated 
by Fig. S1. 



 
Fig. S1. Analytical model of the adiabatic topological interface.  a-b, mass term profile 𝑚𝑚(𝑥𝑥) (blue line) and 
boundary mode field distribution 𝜓𝜓1 (red line) for non-adiabatic step-like case (a) and adiabatic case (b). c-d, The 
complex spectrum calculated with the use of the Dirac model is shown for the pseudo-spin down (𝜓𝜓↓) modes in non-
adiabatic (a) and adiabatic case (b). The radiative quality factor of the modes is color-coded. 

Similarly, for profiles demonstrated in the main manuscript we can obtain the mode localization 
function using (S5). For square root (𝑚𝑚(𝑥𝑥) = ±𝑏𝑏𝑥𝑥1/2) and linear (𝑚𝑚(𝑥𝑥) = 𝑎𝑎𝑥𝑥) profiles of the 
mass term, the localization are not conventional exponential localization, but 
𝜓𝜓1,2(𝑥𝑥)~ exp �− 2

3𝑣𝑣𝐷𝐷
𝑏𝑏𝑥𝑥3/2�  and a gaussian like 𝜓𝜓1,2(𝑥𝑥)~ exp �− 1

2𝑣𝑣𝐷𝐷
𝑎𝑎𝑥𝑥2�, respectively. Thus, 

modulation of the gauge field allows one to control field distribution in the direction perpendicular 
to the domain wall. Both simulations and experiment (Fig.1 and Fig.2) confirmed prediction that 
the field becomes less localized for smoother profiles, with the linear case yielding the least 
localized mode among tested profiles. This in turn gives rise to the better cancellations of the far-
fields which are out-of-phase for the topological and trivial domain, as is evidenced by Fig. S2. 

  
Figure S2. Simulation results for far field distributions of electrical field Ex of the edge mode for domain walls 
with different profiles. Field distribution is plotted in the xy-plane 1.5 𝜇𝜇m above the metasurface. 

 



Note 2: Comparison of sharp and adiabatic domain walls with the same usable bandwidth 

In the main text we considered sharp and adiabatic profiles of domain walls with the same values 
of maximal degree of perturbation (shrinkage = 8%, expansion = 6%). Separated bulk guided 
modes in the case of adiabatic profile penetrate into the bandgap and thus decrease the effective 
bandwidth of the topological modes. In this note we provide first-principles simulation results for 
band structures of conventional step-like domain walls with lower degree of perturbation and the 
bandgap width matched to the one of adiabatic square-root and linear profiles (Fig. S3). Figure 
S2a shows results for the adiabatic square root profile and step profile with lower degree of 
perturbation (step2 and step3), both of which have a bandgap of approximately 68 nm. Figure S2b 
shows results for the linear profile and step profile with a bandgap of 41 nm width. While for 
narrower bandgap the quality factor of topological edge state for the step profile increases, yet it 
is several times lower than in the case of adiabatic profiles with the same bandgap. For example, 
at �𝑘𝑘𝑦𝑦/𝑘𝑘0� = 0.1  calculations yielded 𝑄𝑄sqrt = 1745  and 𝑄𝑄step2 = 567  (Fig.S2a), 𝑄𝑄linear =
5890 and 𝑄𝑄step3 = 2376 (Fig.S2b). 

 
Figure S3. Comparison of domain walls with the step and adiabatic profiles with equivalent bandwidths. a,b 
Photonic band structure of topological boundary modes for adiabatic square-root mass-term profile and step profile 
with lower degree of perturbation in topological and trivial domains (a), and for adiabatic linear profile and abrupt 
step profile (b). Colors in the band diagrams show radiative quality factor of the edge modes and guided bulk modes. 
Upper insets show color-coded diagrams of the degree of perturbation of the mass-term profiles in the cross-section 
of the domain wall. 

 

Note 3: Evolution of edge modes for adiabatic linear interface with increasing width 

The boundary modes become progressively less localized when the domain wall transforms from 
abrupt to adiabatic kind of interface. As it was discussed in Note 1 for the specific case of linear 
profile, with the mass term 𝑚𝑚(𝑥𝑥) = 𝑎𝑎𝑥𝑥, the modes are not exponentially localized to the interface, 
but show the Gaussian profile 𝜓𝜓(𝑥𝑥,𝑦𝑦)~ exp �− 1

2𝑣𝑣𝐷𝐷
𝑎𝑎𝑥𝑥2�. Thus, for the case of infinitely wide 

linear region, 𝑎𝑎 → ∞, the modes become completely delocalized, i.e., they effectively represent 



bulk modes. Additionally, some of the bulk modes start to localize to the linear transition region, 
and as its width approaches infinity, there is an infinite number of such modes, which continuously 
populate the former gap region (Fig. S4). Thus, the physics in the limit 𝑎𝑎 → ∞  becomes 
indistinguishable from the case of massless 𝑚𝑚 = 0 and gapless Dirac equation. This behavior was 
confirmed by numerical modelling, as shown in Fig. S4, where the width of the linear interface 
was gradually changed from zero unit cells (step profile) to 37 unit cells in the direction 
perpendicular to the edge mode propagation direction.   

Figure S4. Comparison of adiabatic domain walls with increasing width. Photonic band structure of topological 
boundary modes for linear mass-term profile with gradually increasing width of the linear region (a-d). Color-coded 
diagrams of the degree of perturbation and edge mode near-field distribution for each interface are shown on the top 
panels. Radiative quality factors of the modes are indicated by color in these band diagrams. 

To summarize, when considering the smoothness of the mass-term profile, one should consider 
tradeoffs and aim at the edge modes which are well-defined, i.e., exist within a reasonably wide 
topological bandgap, yet are sufficiently localized as needed for a particular application. 

 

 

Note 4: Radiative coupling and energy stored in the edge modes 

In experimental results it was noticeable that the radiative coupling of edge states is getting smaller 
for smoother profiles, it is becoming harder to couple incident light into the modes from the far 
field. Thus, one might expect less energy in the edge states for smoother profiles. However, the 
reduction in coupling efficiency is also partially compensated by the increased quality factors of 
the modes. The simplest description of these two competing mechanisms can be made in the 
framework of the coupled mode theory5, which allows one to estimate the mode amplitude as: 

𝐴𝐴 = 𝑖𝑖𝑖𝑖

𝜔𝜔−𝜔𝜔0+
𝑖𝑖
𝜏𝜏 
 ,      (S13) 

where 𝛼𝛼  is the radiative coupling efficiency of the mode, which is related to the radiative 
lifetime 𝜏𝜏𝑅𝑅 as 𝛼𝛼 = �1/𝜏𝜏𝑅𝑅 ,  𝜏𝜏 =  (𝜏𝜏𝑅𝑅−1 + 𝜏𝜏0−1)−1 is the total lifetime of the edge mode, and 𝜏𝜏0 is the 



lifetime of the mode due to all other processes, including absorption and scattering. Assuming 
resonant excitation, we see that the energy stored in the mode is given by: 

𝑊𝑊~|𝐴𝐴|2 = 𝜏𝜏𝑅𝑅𝜏𝜏02/(𝜏𝜏𝑅𝑅 + 𝜏𝜏0)2 .      (S14) 
In the limit of very large 𝜏𝜏𝑅𝑅 this yields 𝑊𝑊~𝜏𝜏02/𝜏𝜏𝑅𝑅, i.e., the energy captured by the mode from the 
incident radiation will drop inverse proportionally to the radiative lifetime of the mode. At the 
same time, the reflectance drops even faster 𝑅𝑅 = 𝑊𝑊/𝜏𝜏𝑅𝑅~𝜏𝜏02/𝜏𝜏𝑅𝑅2. Thus, although we might see very 
little power outflow from the edge mode (resulting in lower signal-to-noise ratio), there is still a 
significant amount of energy stored in the mode.  

We note, however, that the coupling from the far field is not the only way to excite 
boundary modes, and for very high radiative quality factors (as well as for most practical 
purposes), one would rather use coupling via grating integrated into the structure. 

 

Note 5: Boundary modes with symmetry-reducing defect 

We have performed numerical modelling and analyzed the effect of a local (symmetry-reducing) 
defect on the boundary modes. Introduction of such the defect is known to give rise to the pseudo-
spin flipping, coupling between oppositely propagating edge states, and, eventually, gapping of 
the boundary modes. Thus, to understand the effect of the defect, we have calculated bandwidth 
of the gap between oppositely propagating modes for mass term profiles of different adiabaticity. 
We found that, indeed, due to the more spread field distributions for smoother profiles, edge modes 
were increasingly less sensitive to the defect, and the size of the defect-induced gap was 
respectively smaller. The width of the gap was calculated as the function of the symmetry reduction 
strength for three profiles of interest, showcasing the strongest robustness of the least localized 
linear mass term profile (Fig. S5). 



  
Figure S5. Simulations results for bandwidth of the defect induced gap at the 𝚪𝚪 point for different mass term 
profiles for increasing local crystalline defect perturbation. Defect perturbation ∆ and its location at the interface 
(white rectangle) are shown alongside the mass term profiles in lower panel. The defect represents the symmetry 
reduction at one unit cell adjacent to the domain wall within the supercell. The average dielectric constant of the 
defective unit cell was kept the same (the volume fraction of air holes is maintained), which ensures that the center of 
the gap remain at the same spectral position. 
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