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Abstract: The cyano(triphenylsilyl)phosphanide anion was
prepared as a sodium salt from 2-phosphaethynolate. The
electronic structure of this new cyano(silyl)phosphanide was
studied via computational methods and its reactivity inves-
tigated using various electrophiles and Lewis acids, demon-
strating its P- and N-nucleophilicity. The ambident reactivity is
in agreement with computations. The silyl group also shows
lability and therefore the cyano(silyl)phosphanide can be
considered as a phosphacyanamide synthon, [PCN]2�, and
serves as building block for the transfer of a PCN moiety.

Phosphorus analogues of common nitrogen anions are of
interest as building blocks. Examples are the development of
[PCO]� chemistry in the last few decades[1] and the recent
report of a [CP]� transfer reagent.[2] The chemistry of
compounds with an NCN[3] unit such as in cyanamides like
Ca[N=C=N] produced on large scale, or carbodiimides,[4] or
species containing an NCC group[5] is well-established. In
contrast, compounds with a PCN sequence are comparatively
little investigated.

Bulky substituents R and R’ are required to allow
isolation of 1-phospha-3-azaallenes, R�P=C=N�R’[6] which
include functionalised derivatives with a sterically demanding
disilyl,[7] phosphanyl,[8] or boryl[9] substituent at phosphorus.
Related phosphaallenes, R�P=C=CR’2, with bulky substitu-
ents were likewise characterised.[6a, 10] Anionic P,C,N deriva-
tives or compounds, which can at least be regarded as

synthons for these, are especially rare. The best-known
examples are salts of the dicyanophosphide anion, [P(CN)2]

�

A (Scheme 1), the phosphorus analogue of dicyanamide, first
reported in 1977 by Schmidpeter et al.[11] This anion is stable
in combination with 18-crown-6 (18-C-6) coordinated sodium
or potassium cations and can be obtained either by CN
abstraction from P(CN)3 or in a disproportionation reaction
of tetraphosphorus, P4, using potassium cyanide as
a reagent.[12]

The synthesis of stable tetraphenylphosphonium salts
[Ph4P][P(CN)2] and [Ph4P][As(CN)2] is also possible while
ammonium salts of [P(CN)2]

� are unstable.[13]

Various adducts of the type (NHC)�PCN (NHC = N-
heterocyclic carbene) (see B in Scheme 1) demonstrate the
use of [P(CN)2]

� as PCN transfer reagent.[14] Remarkably,
[P(CN)2]

� is a weak nucleophile but reacts as an electrophile
with reagents such as phenyllithium to give [P(Ph)CN)]� .[15]

Alkynyl phosphanide C, a related PCC anion (Scheme 1), was
prepared by deprotonation of the corresponding alkynyl-
substituted secondary phosphine.[16] 1-Aza-3-phosphaallenide
anions like [PCNiPr]� D (Scheme 1) behave as ambident
nucleophiles and react via the nucleophilic nitrogen or
phosphorus center.[17] Deprotonation of aryl cyanophosphines
gives cyanophosphides but only sterically protected species
such as I (Scheme 1) are stable while smaller derivatives
eliminate cyanide salts.[18]

The phosphorus analogue of the cyanamide dianion,
[PCN]2�, was studied theoretically.[19] Recently, compounds
were discovered which can be viewed as synthons for
[PCN]2�. These are the phosphanyl phosphacyanide salt E
and the bis(triphenylstannyl)phosphanyl cyanide F which can
be used to synthesize phosphaallenes such as R�P=C=N=

BR’2, metal complexes such as [(LAu)3PCN]+, or solutions of
the parent phosphacyanamide H2PCN.[8] Other functionalised
PCN and AsCN derivatives such as H,[20] G[9] and J,[21] were
likewise reported lately.

Here we report the synthesis of the salt [Na(18-C-6)]
[P(SiPh3)(CN)], [Na(18-C-6)][1] , and show that this push–
pull-substituted phosphide [1]� is a precursor to a number of
compounds which contain a 1-phospha-3-aza-allene unit.

The best results were achieved by adding a freshly
prepared mixture of Na[N(SiMe3)2] and Ph3SiCl dissolved in
toluene/DME to a concentrated solution of Na(OCP) in
toluene/DME at �20 8C, followed by warming to room
temperature and stirring the reaction mixture for two days
(Scheme 2, see Supporting Information for details). Then 18-
C-6 is added, which allows to isolate the salt [Na(18-C-
6)][P(SiPh3)CN], [Na(18-C-6)][1], as crystalline powder
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(64 % yield). The 31P{1H}-NMR spectrum ([D8]THF) shows
a signal at d(31P) =�283 ppm (1JP,Si = 68 Hz) for the anion
[P(SiPh3)(CN)]� , [1]� .

During the synthesis, another species, 4 is
detected by 31P{1H}-NMR at d(31P) =�295 ppm
after a few hours but this signal disappears during
the progress of the reaction (see below).

The germyl and stannyl phosphaketene deriva-
tives Ph3E�P=C=O (E = Ge, Sn) were likewise
reacted with Na[N(SiMe3)2] to give solutions of the
corresponding anions [Na(18-C-6)][P(EPh3)CN],
E = Ge: [Na(18-C-6)][2] [d(31P) =�278 ppm], and
E = Sn: [Na(18-C-6)][3] [d(31P) =�315 ppm],[8]

respectively. But these salts are unstable and decom-
pose forming insoluble precipitates, which in the
case of [3]� contained NaCN. Similar observations
have been reported with anions of the type [Ar-
PCN]� .[18] Nevertheless single crystals of [Na(18-C-
6)][2] and [Na(18-C-6)][3] were grown at low
temperatures by layering a solution of [Na(18-C-
6)][N(SiMe3)2] with a solution of Ph3E-PCO. The
structures of all compounds [Na(18-C-6)][1–3] were
determined by X-ray diffraction (XRD) experi-
ments (see the SI for details).[27] Selected bond
lengths and angles are given in Table 1. Exemplary,
the structure of [Na(18-C-6)][1] in a single crystal
grown from 1,2-difluorobenzene (DFB) is shown in
Figure 1 showing a dimeric aggregate in which one
oxygen center in each 18-C-6 acts as a bridge
between two sodium cations.

The P�C (1.760� 0.003 �) and C�N (1.162�
0.003 �) bond lengths in all compounds lie within
a narrow range and are very similar to those
observed in D and F. In contrast to [iPrN=C=P]� D
(P�C 1.603(3) �; C�N 1.248(5) �], in which the
substituent is bound to the nitrogen center, the P�C
bonds in the [Ph3E�P�CN]� anions are significantly
longer while the CN bond is significantly shorter.
This indicates that of the two resonance structures
[Ph3E�P��C�N] (I) $ [Ph3E�P=C=N�] (II), the
first is the main contributor to the electronic ground
state. This is confirmed by DFT calculations (M06-
2X/Def2-SVP, Scheme 2) and natural resonance
theory (NRT), which show that the phosphide
resonance structure has a weight of 76 % while the
1-aza-3-phosphaallenide structure has a weight of
only 20 %.

The calculation also indicates that the P-silylated
isomer [Ph3Si�P�C�N]� [1]� is slightly more stable
than the N-silylated isomer [P=C=N�SiPh3]

� [1’]�

(+ 2.5 kcalmol�1). A large energy barrier of
47.2 kcalmol�1 would prevent an equilibrium via
a 1,3-silyl shift (see the Supporting information for
details). The transition state (TS) for this process
shows a bent h3-bound PCN unit attached to the
SiPh3 group. Related structures have been observed
in a lanthanide complex of the [SCP]� anion[22] and
in a titanium complex of [Ad-NCP]� .[21]

The reaction of Na(18-crown-6)[1] with one
equivalent of chlorotriphenylsilane in toluene or C6D6

produced instant precipitation of colorless NaCl and gave
a single product 4

Scheme 1. Relevant anions A, C, D, F, I with a central PCN or PCC unit or
equivalents (E, G, J) thereof (Dipp =2,6-iPr2-C6H3,

DippTer =2,6-Dipp- C6H3,
[Ti] = (hydrotris(3- tert-butyl-5-methylpyrazol-1-yl)borate)titanium. Generic formula
of silyl, germyl, and stannyl cyano phosphides [P(EPh3)(CN)]� [1]� , [2]� , [3]�

reported in this work (counter cation [Na(18-C-6)]+).

Scheme 2. Preparation of [Na(18-crown-6)]+ salts of [1]� , [2]� , and [3]� from
Na(OCP)(dioxane)2.14. Relevant resonance forms according to NRT analysis for
anion [1]� (DFT, M06-2X/Def2-SVP). Relative energies in kcalmol�1 (DFT, M06-2X/
Def2-SVP) for the 1,3-silyl group migration from [1]� to [1’]� .
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(d (31P) =�295 ppm; Table 2). 29Si satellites (1JP,Si = 47 Hz)
indicate a P�Si bond. This species is identical to the one
observed as intermediate in the preparation of [1]� (see
above) and suggests that the formation of Ph3Si�P=C=O from
Na(OCP) and Ph3SiCl is slower than the formation of 4 from
[Ph3Si�P�CN]� and Ph3SiCl.

Single crystals containing 4 and one 18-crown-6 molecule
could be obtained at low temperature (�30 8C). An XRD
experiment allowed us to assign the structure of 4 unambig-
uously as a 1-phospha-3-azaallene Ph3Si�P=C=N�SiPh3. The
structure is shown in Figure 2 A.[27] Compound 4 decomposes
in solution into an insoluble dark material over a few days
(likely due to an auto-redox process).[23]

The P�C bond distance in 4 (1.68 �) is in the typical range
of P=C double bonds[24] and significantly shorter than the one
in [1]� (1.76 �). On the other hand, the C�N bond distance is
only slightly longer in the neutral allene 4 (1.18 � vs. 1.16 � in
[1]�) and still close to a C�N triple bond distance. Both, the C-
N-Si angle (1668) and P-C-N angle (1778) are close to linearity
while the Si-P-C angle remains small (928). When the reaction
is performed in a solvent with a polarity higher than toluene
such as tetrahydrofuran (THF) or DFB, a broad resonance at
d(31P)��293 ppm indicates a dynamic process. Upon cooling
a DFB solution to 243 K, the 31P{1H}-NMR signal of 4,

Table 1: Crystallographic and spectroscopic data for anions [1]�–[3]� .

[1]� [2]� [3]�

d(31P) in ppm �283 �278 �315
d(13C) in ppm 139.5 n.d. n.d.
P-E in � 2.2059(4) 2.2784(5) 2.4428(6)
P-C in � 1.761(1) 1.763(2) 1.758(2)
C-N in � 1.161(1) 1.160(3) 1.165(3)
E-P-C [8] 95.50(4) 92.29(6) 93.15(8)

Figure 1. Structure of [Na(18-c-6)][1] (hydrogens omitted for clarity)
showing the formation of dimers via sodium cation bridging m2-O
oxygen centers in the 18-crown-6 units.

Figure 2. Structures of 4 (A), Na(18-crown-6)(DFB)[7] (B), Na(18-crown-6)[8] (C), and Na(18-crown-6)(THF)[9] (D) (hydrogens, THF (D), Na (C &
D) and 18-crown-6 (A, C, D) omitted for clarity). Selected bond distances [�] and angles [8] . A) 4 : P1–Si1 2.2572(5), P1–C1 1.6843(15), N1–C1
1.182(2), Si2–N1 1.7456(13); C1-P1-Si1 91.87(5), N1-C1-P1 176.57(13), C1-N1-Si2 165.74(13). B) Na(18-crown-6)(DFB)[7]: P1–Si1 2.2224(8), P1–
C1 1.734(2), N1–C1 1.162(3), N1–B1 1.573(3); Si1-P1-C1 100.19(7), P1-C1-N1 174.22(18), C1-N1-B1 173.0(2). C) Na(18-crown-6)[8]: P1–C1
1.7722(14), N1–C1 1.1550(18), Si1–N2 1.7622(11), N2–C2 1.4016(15), O1–C2 1.2380(16), P1–C2 1.8243(13); N1-C1-P1 172.80(13), C1-P1-C2
94.70(6), O1-C2-P1 127.86(10), O1-C2-N2 117.48(11). D) Na(18-crown-6)(THF)[9] P1–C2 1.809(2), P1–C1 1.770(3), C1–N1 1.146(3), C2–N3
1.411(3); C2-N2 1.295(3), C1-P1-C2 99.51(10), N1-C1-P1 168.6(2).
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including the 29Si satellites, as well as a broad resonance at
d(31P)��281 ppm typical for [1]� is observed, indicating an
equilibrium [Ph3Si�P=C=N�SiPh3] (4) Q [Ph3Si�P=C=N]�

[Ph3Si(solv)]
+ (see [Ph3Si][1], Scheme 3). This prompted us to

inspect the relative energies of 4 and its constitutional isomers
(Ph3Si)2N�C�P 4’ and (Ph3Si)2P�C�N 4’’ by DFT. With
respect to the phospha-aza-allene 4 (0.0 kcal mol�1), the
amino phosphaalkyne 4’ is 3.0 kcal mol�1, and the bis(silyl)
cyano phosphane 4’’ 5.1 kcalmol�1 less stable. Calculations of
the 31P-NMR chemical shifts give a very good agreement for 4
[d(31P)exp =�300 ppm; d(31P)calc =�305 ppm] while the calcu-
lated shifts for 4’ [d(31P)calc =�98 ppm] and 4’’ [d(31P)calc =

�216 ppm] do not correspond to any experimentally observed
resonances, and hence, make the presence of these species
unlikely.

Upon mixing Na(18-crown-6)[1] with Ph3GeCl in C6D6,
three species were initially detected by 31P{1H}-NMR. One
major signal at d(31P) =�292 ppm and two signals of low
intensity at d(31P) =�195 ppm and d(31P) =�295 ppm. The
latter disappears overnight. The 29Si{1H}-NMR spectrum
shows one singlet at d(29Si) =�23 ppm and one doublet of
low intensity at 1 ppm (1JP,Si = 48 Hz). After 16 hours at room
temperature, the resonance at d(31P) =�292 ppm is the most
intense one and the 13C{1H}-NMR spectrum of the reaction
mixture exhibits a doublet at d(13C) = 172 ppm (1JP,C = 95 Hz;
Table 2), which is very similar to the 13C-NMR resonance
observed in 4 (d(13C) = 170 ppm, 1JP,C = 89 Hz). DFT was used
to calculate the 31P-NMR chemical shifts and relative energies
of possible isomers Ph3Ge�P=C=N�SiPh3 5 [d(31P)calc =

�326 ppm; 0.0 kcalmol�1], Ph3Si�P=C=N�
GePh3 5’ [d(31P)calc =�214 ppm; + 9.0 kcalmol�1],
(Ph3Si)(Ph3Ge)P�C�N 5’’ [d(31P)calc =�151 ppm;
+ 4.9 kcalmol�1], and (Ph3Si)(Ph3Ge)N�C�P 5’’’
[d(31P)calc =�303 ppm; + 6.8 kcal mol�1]. A com-
parison between the experimental and calculated
data, the similarity between the NMR data of 4
and the new compound 5 (see Table S2), and
specifically the absence of a 1JP,Si coupling, allows
assigning the major product 5 in this reaction to
Ph3Ge�P=C=N�SiPh3 where the Ph3Si and Ph3Ge
groups have mutually changed places with respect
to the expected product Ph3Si�P=C=N�GePh3 5’.
Very likely, the latter is indeed formed initially as
a kinetic product with d(31P) =�295 ppm, but
rearranges to the thermodynamically most stable
isomer. As for 4, this could be possible via
a dissociative pathway as outlined on top of
Scheme 3, which is moreover supported by the
fact that solutions of 5 in THF or DFB again show
broad 31P-NMR resonances. The minor com-

pound with d(31P) =�195 ppm does not find any fit among
the calculated structures, but its chemical shift agrees with the
reported one of [P(CN)2]

� [d(31P) =�193 ppm[11]].
The reaction of [Na(18-C-6)][1] with one equivalent

Ph3SnCl in C6D6 gives a very similar result. One product 6
is observed and the NMR data (d(31P) =�328 ppm (JP,Sn =

795 Hz and 833 Hz); d(29Si) =�28 ppm; d(13C) = 169 ppm
(1JP,C = 101 Hz); Table 2) unambiguously allow to assign to
this the structure Ph3Sn�P=C=N�SiPh3. Note that both 5 and
6 decompose slowly in solution, likely in a redox process
similar to thermal decomposition of 4, and could not be
obtained in pure nor crystalline form.

The reaction between Na(18-crown-6)[1] with triphenyl-
borane in DFB gave rise to a major 31P{1H}-NMR signal at
d(31P) =�289 ppm (1JP,Si = 55 Hz) and a broad signal at
d(31P) =�283 ppm of very low intensity which could not be
assigned. The major compound is [Na(18-crown-6)(DFB)]
[Ph3Si�P=C=N�BPh3], Na(18-C-6)[7]. Layering the reaction
solution with hexane afforded crystals of this product.[27] In
the anion [7]� , the boryl group binds to the nitrogen atom. As
expected, the P�C bond (1.73 �) is shorter than in the anion
[1]� , but significantly longer than in the neutral phospha-aza-
allene 4. The sodium atom has a weak contact to the
phosphorus center (Na-P distance 3.07 �) and is furthermore
loosely attached to one fluorine center of DFB (Na-F distance
2.61 �). The central P=C=N�B unit is again almost linear
(P1-C1-N1 1748, C1-N1-B1 1738).

Na(18-crown-6)[1] reacts also with heteroallenes such as
mesityl isocyanate or 1,3-di-p-tolylcarbodiimide as electro-
philes to give Na(18-C-6)[8] and Na(18-C-6)[9] as products,
respectively. 31P{1H}-NMR of Na(18-C-6)[8] shows a broad
resonance at d(31P) =�101 ppm at room temperature in THF
or DFB as solvent. Crystallisation from DFB gave single
crystals suitable for XRD. The structure of Na(18-C-6)[8] is
displayed in Figure 2C.[27] Anion [8]� is a phospha-cyanourea
derivative[25] with a short C�N bond (1.15 �), an elongated P=

C double bond (1.77 �), and an almost linear PCN unit
(1738). The 13C-NMR resonance of the C2 carbon in [8]� is

Scheme 3. Reactions of Na(18-crown-6)[1] with various main-group element electro-
philes and Lewis acids at room temperature.

Table 2: Spectroscopic data for adducts 4–6.

4 5 6

d(31P) in ppm �295 �292 �328
d(29Si) NSi in ppm �23 �23 �28
d(13C) PCN in ppm 170 172 169
1JP,C in Hz 89 95 101
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observed at d(13C) = 138 ppm (1JP,C = 105 Hz) which is very
similar to the data found in [1]� . Note that the reaction
between Mes-N=C=O and the neutral phosphaazaallene,
Ph3Si�P=C=N�SiPh3 (4) gives a product with the same NMR
data as seen for Na(18-C-6)[8] indicating that [8]� with
a solvated [Ph3Si]+ as counter cation is formed as a product.
The broadening of the 31P-NMR resonance seen in solutions
of [8]� is likely due to a silatropic rearrangement whereby the
N-bound Ph3Si group in [Ar(Ph3Si)N�(C=O)�P�CN]� is
transferred to the oxygen center of the C=O group to give
[ArN=C(OSiPh3)�P�CN]� . Indeed the calculated energy
difference between both isomers is only 1.4 kcalmol�1 and
the broad coalescence signal splits into two broad signals at
175 K (Supporting Information Figure S35).

A similar adduct, Na(18-crown-6)[9] {d(31P) =�120 ppm,
d(13C) = 134 ppm, 1JP,C = 105 Hz} is obtained from the reac-
tion between Na(18-crown-6)[1] and bis(p-tolyl)carbodii-
mide. The salt Na(18-crown-6)[9] can be viewed as a phos-
phorus analogue of dicyandiamide [or 2-cyanoguanidine,
H2N(C=NH)(NHCN)[3a, 26]] . The structure of Na(18-crown-
6)[9] is shown in Figure 2 D.[27] The bond distances within the
PCN unit closely resemble those of [8]� , with a P1-C1
distance of 1.77 � and a C1-N1 distance of 1.15 �. The only
significant structural difference between [8]� and [9]� is the P-
C-N angle which is closer in [9]� (1688) likely because of steric
repulsion between the p-tolyl substituent at N2 and the bulky
[Na(18-crown-6)]+ cation which coordinates to the cyano
group (Na-N1 distance 2.35 �).

In summary, a convenient synthesis to a cyano-
(silyl)phosphide, [P(SiPh3)(CN)]� , [1]� , has been developed
which in contrast to its heavier congeners, [P(EPh3)(CN)]�

(E = Ge, Sn), is stable as salt with [Na(18-C-6)]+ as counter
cation. Counterintuitively, the silyl group binds to the
phosphorus center in the thermodynamically most stable
isomer although the energy difference to the constitutional
(expected) isomer [P=C=NSiPh3]

� is very small. In reactions
with R3ECl, 1-phospha-3-aza-allenes R3E-P=C=N�SiPh3 are
obtained, even though calculations indicate that the major
contributor to the electronic ground of [1]� is the phosphide
and not allenide form. Other possible isomers such as
(Ph3Si)(R3E)P�C�N or (Ph3Si)(R3E)N�C�P are thermody-
namically slightly less stable and their formation from R3E�
P=C=N�SiPh3 via a 1,3-R3E shift may be severely kinetically
hindered. Reactions with electrophilic organic allenes such as
isocyanates or carbodiimides allow to access new phospha-
cyanurea or phospha-cyanguanidine derivatives. All salts
represent new functional groups in organophosphorus
chemistry which may allow to prepare P,C,N conjugated
molecules and materials.
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