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Abstract: This research endeavor aims to develop polyvinyl alcohol (PVA) based films capable of
blends with silver nanoparticles (Ag–NPs) for improved antibacterial properties and good mechanical
strength to widen its scope in the field of wound dressing and bandages. This study reports
synthesis of propylamine-substituted PVA (PA–PVA), Ag–NPs via chemical and green methods
(starch capping) and their blended films in various proportions. Employment of starch-capped
Ag–NPs as nanofillers into PVA films has substantially improved the above-mentioned properties
in the ensuing nanocomposites. Synthesis of PA–PVA, starch-capped Ag–NPs and blended films
were well corroborated with UV/Vis spectroscopy, FTIR, NMR, XRD and SEM analysis. Synthesized
Ag–NPs were of particle shape and have an average size 20 nm and 40 nm via green and chemical
synthesis, respectively. The successful blending of Ag–NPs was yielded up to five weight per weight
into PA–PVA film as beyond this self-agglomeration of Ag–NPs was observed. Antibacterial assay
has shown good antimicrobial activities by five weight per weight Ag–NPs(G)-encapsulated into
PA–PVA blended film, i.e., 13 mm zone inhibition against Escherichia coli and 11 mm zone inhibition
against Staphylococcus aureus. Physical strength was measured in the terms of young’s modulus via
tensile stress–strain curves of blended films. The five weight per weight Ag–NPs(G)/PA–PVA blend
film showed maximum tensile strength 168.2 MPa while three weight per weight Ag–NPs(G)/PVA
blend film showed highest values for ultimate strain 297.0%. Ag–NPs embedment into PA–PVA was
resulted in strong and ductile film blend than pristine PA–PVA film due to an increase in hydrogen
bonding. These good results of five weight per weight Ag–NPs(G)/PA–PVA product make it a potent
candidate for wound dressing application in physically active body areas.

Keywords: green synthesis; nanomaterials; antibacterial; polyvinyl alcohol; silver nanoparticles;
wound bandages

1. Introduction

Skin is the first line of our body defense against pathogenic microorganisms due to dense surface
and corneous barrier texture [1,2]. Wound infection is the most important challenge for wound
care management. Any breach in the skin by wound causes invasion of microorganisms into the
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sensitive underneath tissues that lead to wound infection. The advanced research on wound dressing
development suggests that the ideal wound dressing should provide a wet environment to the wound,
absorb exudates from the wound, should be highly biocompatible, having good antimicrobial activity
for quick tissue regeneration and mechanical features to remain intact [3–7].

Hydrogels from polymers are gaining importance over the last few years for wound dressing
because they have all the characteristics of an ideal wound dressing except lack the ability to form stable
film due to weak mechanical properties. Problems can be overcome by functionalizing polymer with
organic and inorganic agents [8–10]. Functionalized PVA is a potent candidate for dressing material
owning to its non-toxicity, non-carcinogenicity, good biocompatibility and excellent degree of swelling
in aqueous solutions [10,11]. Simple structure and geometric conformation of PVA ease its chemical
modification on the secondary alcohol group. All the compounds that are able to react with the
hydroxyl group can be used as potential cross-linking agents for PVA [1,12,13]. PVA has been reported
to be derivatized by carbamation, esterification, etherification and click chemistry and the resulted
products have unique properties and wide applications [14–16]. Bader et al. have derivatized PVA
with 1, 2-epoxy-5-hexene as a cross-linker for hydrogels formation. The glass transition and melting
temperatures of the modified PVA were 124–131 ◦C and 219–220 ◦C, respectively. The modifying
agent 2-epoxy-5-hexene acted as cross-linker in the formation of hydrogels by photopolymerization of
the monomers N-vinylpyrrolidone, 2-hydroxyethyl acrylate, N,N-dimethylacrylamide or acrylic acid,
in the presence of 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl- 1-propanone as photoinitiator.
Based on the cytotoxicity tests, the hydrogels were claimed to be advantageous for biomedical
applications [17]. C. Wang and coworkers were reported grafting of poly(4-vinyl pyridine) on PVA
via radical polymerization in the presence of ceric ammonium sulfate as a radical initiator. This was
reported to have good antifouling and antimicrobial properties than the non-grafted ones [18]. PVA
has also been reported to modify with carbamate linkage via click reaction by using CDI as a coupling
agent. Cross-linking was achieved by reaction between hydrazide modified PVA and aldehyde
modified PVA. Resultant products had strong intermolecular attraction caused good tensile strength
and mechanical properties. These hydrogels were reported to be stable for four months and low
cytotoxicity [19]. Lim et al. have developed biosynthetic hydrogels Tyr–PVA by tyramine grafting
through the succinyl groups initially attached to PVA in Dulbecco’s phosphate-buffered saline. Gel
was formed by carbon–carbon bonds between phenol groups of the tyrosine of the gelatin and those
of Tyr–PVA. Resultant material has good potential for bioengineering applications [20]. In another
reported work, methacryloyl groups were grafted on PVA by reaction with GMA in DMSO. Hydrogels
from GMA-modified PVA (GMA–PVA) and blends of GMA–PVA/chondroitin sulfate were prepared
in the presence of N,N,N’,N’-tetramethylethylenediamine and sodium persulfate. Hydrogels from
the blends showed greater swelling degrees that decreased with increasing degree of substitution.
However, the mechanical properties of the hydrogels increased with an increasing degree of substitution.
The biologic tests of the hydrogels revealed their nontoxicity for cell growth [21]. Zhao et al. have
prepared a series of excellent hydrogels from PVA and carboxymethylated chitosan. The mechanical
properties and equilibrium degree of swelling improved after adding CM–chitosan into PVA hydrogels.
The gel fraction determined gravimetrically showed that a part of CM–chitosan was immobilized onto
PVA hydrogel. The blend hydrogels exhibited good antibacterial activity against Escherichia coli [22].
PVA–PVP hydrogels containing Ag–NPs were prepared by Haijun and coworkers via repeated
freezing-thawing treatment. It was found that a three-dimensional structure was formed during the
process of freezing-thawing treatment and no serious aggregation of the Ag–NPs occurred. Good
water absorption properties, the release of silver ions from the hydrogels, and the antibacterial effects
of the hydrogels were observed against E. coli and Staphylococcus aureus [23]. A simple one-pot method
for in situ synthesis of Ag–NPs within polyvinyl alcohol/gum acacia hydrogel matrix, by gamma
radiation-induced cross-linking, is reported by Juby et al. The thermal stability was found to be more
for the hydrogel loaded with Ag–NPs and also the percentage silver loading was found to increase
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with an increase in cross-linking density. These hydrogels have showed good antibacterial activity
against Gram-negative bacterium E. coli [24].

Maribel et al., have prepared Ag–NPs by chemical reduction of silver nitrate with hydrazine
hydrate and sodium citrate. Silver nanopowders have agglomerates of grains size 40–60 nm and
face-centered-cubic nanoparticles of size 10–20 nm. The colloidal Ag–NPs inhibited the growth
of the tested bacteria, including highly multi-resistant bacteria such as S. aureus, E. coli and
Pseudomonas aeruginosa at very low inhibitory concentrations, i.e., 6.74 µg/mL [25]. Pseudospherical
shaped and different sizes Ag–NPs (7, 29 and 89 nm) were synthesized by Martinez and co-workers
using gallic acid via aqueous chemical reduction method. The antibacterial activity of these Ag–NPs
was founded to decrease with an increase of the particle size [26]. Dongwei et al., have reported the
synthesis of Ag–NPs and its impregnation into benign chitosan. Resultant products have demonstrated
both fast and long-lasting antibacterial effectiveness against both Gram-positive and Gram-negative
bacteria, comparable with the highly active precursor silver. This was due to dual actions viz.,
the bactericidal effect of Ag–NPs and cationic effects of chitosan [27]. Manikandan and co-workers have
biosynthesized surface functionalized Ag–NPs by exposing aqueous silver ions to unripe fruits extract
of Solanum trilobatum which exhibited good activity towards Gram-positive (Streptococcus mutans,
Enterococcus faecalis) and Gram-negative (E. coli, Klebsiella pneumoniae) bacteria [28]. Cyclodextrins are
cyclic oligosaccharides derived from starch which was used by Asli et al., as the reducing and stabilizing
agent during the in situ synthesis of Ag–NPs via electrospinning of aqueous and DMF solutions using
different Ag contents. This was revealed that the size of Ag–NPs depends upon solvent-type and Ag
loading in nanofibers. These nanocomposites have shown significant inhibition against the growth of
E. coli and S. aureus [29]. Marulasiddeshwara et al. reported the green synthesis of Lignin Capped
Ag–NPs and their antibacterial potential. Results have indicated that spherical Ag–NPs grafted on
lignin were highly crystalline with size 10–15 nm. This product has shown antibacterial activity against
human pathogens S. aureus and E. coli while founded nontoxic to RBC cells taken together, hence, could
be a promising therapeutic agent in the biomedical field [30]. Antimicrobial properties of Ag–NPs
are well corroborated in literature [31–34]. However, its agglomeration in organic polymeric matrix
limits its application in dressing polymeric materials. In the current study, Ag–NPs were capped with
starch and embedded into PVA film which was modified with propylamine crosslinking for improved
wound healing applications.

2. Materials and Methodology

2.1. Materials

All the materials viz. polyvinyl alcohol (Mw = 1500 amu, Sigma-Aldrich, Darmstadt, Germany),
N-(3-bromopropyl)phthalimide (Sigma-Aldrich, Darmstadt, Germany), silver nitrate (BDH, England),
Starch (Daejung, Korea), glycerin starch (Daejung, Korea), NaOH (Sigma-Aldrich, Darmstadt,
Germany), sodium citrate (Sigma-Aldrich, Darmstadt, Germany), sodium borohydride (Sigma-Aldrich,
Darmstadt, Germany) DMF (N,N-dimethylformamide) (Daejung, Korea), ethanol (Daejung, Korea),
hydrazine (Daejung, Korea), isopropyl alcohol (Daejung, Korea) and chloroform (Daejung, Korea)
were obtained from the commercial sources. All solvents including deionized water were of analytical
grade and were used without further purification.

2.2. Synthesis of Silver Nanoparticles

Synthesis of Ag–NPs was carried out by two methods, i.e., chemical reduction method and green
synthesis method (starch-capped Ag–NPs).

2.2.1. Synthesis of Silver Nanoparticles via Chemical Reduction Method

As reported elsewhere, the chemical reduction method was used to synthesize Ag–NPs from
its precursor AgNO3 [25]. Silver nitrate solution (2 mL, 2.5 mM) and citrate solution (2 mL, 2.5 mM)
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were mixed together in a reaction flask. Subsequently, NaOH solution (0.6 mL, 10 mM) was added
into this. DI water was added to the makeup reaction solution volume up to 20 mL. The resultant
solution was vigorously stirred until the slight clouding disappeared. Afterward, ice cold (0 ◦C) NaBH4

solution (0.6 mL, 10 mM) was added into this with stirring for 30 s. The light yellow color of reaction
solution turned into dark yellow color confirming the formation of silver nanocolloids. The stirring
was terminated right after the complete addition of NaBH4 solution to avoid agglomeration. Nanosize
of the silver particles was also confirmed by performing UV-Vis absorption and SEM spectroscopy.

2.2.2. Synthesis of Starch-Capped Silver Nanoparticles via Green Method

Starch-capped Ag–NPs were synthesized via green method as reported elsewhere [35,36].
Powdered starch (0.5 g) was added into the alkaline solution prepared by dissolving 0.25 g of
NaOH in 5 mL DI water. The resultant solution was heated at 70 ◦C for about 10 min with stirring.
In another flask, AgNO3 (0.6 g) was added into 2-mL DI water with stirring followed by the addition of
3 mL isopropyl alcohol for lowering boiling point to ease evaporation of solvent during the synthesis
of Ag–NPs. This silver nitrate solution was added dropwise into previously prepared starch-alkali
solution with stirring and heated at 70 ◦C for 30 min. The resultant yellowish-brownish colored
solution has confirmed the synthesis of Ag–NPs. This solution was finally dried in a heating oven at
80 ◦C for 24 h which furnished powdered Ag–NPs.

2.3. Synthesis of Silver Nanoparticles Encapsulated PVA Films

PVA (1 g) was dissolved in 10 mL DI water at 80 ◦C with constant stirring for 4 h. Different
concentrations (3% & 5% w/w) of starch-capped/chemically reduced Ag–NPs were mixed in DI water
separately. The chemical cross-linking agent solution was made by adding 0.1 g glutaraldehyde and
0.01 mL HCl in 1 mL ethanol. Each prepared silver nanoparticle solutions were added separately to
PVA solution at room temperature with constant stirring. Afterward, cross-linking agent solution and
0.4 g ethylene glycol were added to the mixtures with constant stirring and reaction mixtures were
homogenized by sonication for 30 min. The resulting mixtures were cast onto the Petri dishes and left
for drying at room temperature. After 24 h, the cured hydrogel membranes were removed from Petri
dishes with the help of forceps and stored in airtight bags [37,38].

2.4. Synthesis of Propyl Amine-Substituted Poly Vinyl Alcohol Films

Derivatized PVA was synthesized by a modified two-step reaction [39–41]. PVA (1 g) was added
into a round bottom flask containing 50 mL DI water, heated at 80 ◦C for half an hour with stirring and
left overnight at stirring to obtain a clear PVA solution. Subsequently, NaOH (0.92 g) was added into
the PVA solution with stirring for 30 min. A solution containing 1 g of N-(3-bromopropyl) phthalimide
into 40 mL DMF, was added in portions into the PVA solution with stirring. The resultant turbid
reaction mixture was refluxed at 100 ◦C until clear homogenous solution was obtained. Afterwards,
the reaction mixture was cooled to 0 ◦C in an ice bath and pH was neutralized by 10% HCl aqueous
solution with constant stirring. The mixture kept undisturbed for 48 h which furnished gel-like material.
The mixture was precipitated by the addition of 100 mL acetone while precipitates were filtered out
and dried. In the next step de-protection of the phthalimide group was performed. Dried precipitates
(0.5 g) were placed into a round bottom flask, hydrazine (2.5 g) was added along with ethanol (20 mL)
and kept on reflux overnight. The schematic representation of the reaction is given in Figure 1.
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Figure 1. Chemical synthesis of propylamine-substituted polyvinyl alcohol (PVA).

2.5. Synthesis of Silver Nanoparticles Encapsulated Propyl Amine-Substituted PVA Films

Propyl amine PVA derivative (0.1 g) was dissolved into 10 mL boiling DI water by constant
stirring for 4 h. The solution was allowed to cool down at room temperature. Previously prepared
Ag nanocolloids were introduced into the derivatized PVA solution with gentle stirring for 30 min.
Turning the dark yellow color of reaction mixture into a light yellow color indicated that encapsulation
has occurred. The resulting colloidal solution was cast into the Petri dishes and dried in a vacuum
oven for 24 h at 50 ◦C. Resultant hydrogel membranes were removed from Petri dishes with the help
of forceps and stored in airtight bags [42–44]. Details of all prepared samples are mentioned in Table 1.

2.6. Instrumentations and Methods

Resultant synthesized materials were characterized by Fourier transform infrared spectroscopy
(FTIR) using a Bruker platinum ATR model Alpha (Germany) spectrophotometer in the spectral range
of 4000–750 cm−1 and X-ray diffraction analysis (XRD) using an X-ray diffractometer (D8 advance
BRUKER) equipped with CuKα radiation source, having a wavelength of 0.154 nm and graphite
monochromator in a 2θ range of 10◦–80◦. The morphology, size, and composition of synthesized
materials were investigated via Scanning electron microscope (VEGA3 TESCAN) at an accelerating
voltage of 20 kV. 1H-NMR was carried out at a Bruker AVANCE III 500 MHz spectrometer. Mechanical
properties of prepared blends were studied according to ASTM D882 by using Shimadzu Trapezium–X
Universal Testing Machine (AG-20RRKNXD Plus). Test was carried out using dumbbell shaped
samples of 20 mm × 10 mm dimensions. The extension rate was kept 10 mm/min. five samples of each
film were tested at 27 ◦C.

2.7. Antibacterial Activity

Antibacterial activities of all the prepared films were studied by the disc diffusion method against
two microorganisms, i.e., Gram positive S. aureus and Gram negative E. coli bacteria. Gentamycin and
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PVA film were employed as positive and negative controls, respectively. Both strains of bacteria were
cultivated in lysogeny broth and incubated at 37 ◦C for 24 h. Bacterial culture was uniformly spread
on prepared agar plates. Sample discs of 6-mm diameter were placed on these plates with the help of a
sterile forceps. Plates were incubated at 37 ◦C for 24 h and minimum inhibitory concentrations were
measured [45–47]. All the experiments were done in triplicate and mean values with standard error
are given in Table 2.

Table 1. Details of all prepared samples.

Sample Code Sample Details

Ag–NPs(C) silver nano particles prepared by chemical method using NaBH4 as
reducing agent

Ag–NPs(G) silver nano particles prepared by green method via starch capping
Pristine PVA unsubstituted poly vinyl alcohol film

3% Ag–NPs(C)–PVA film 3% w/w silver nano particles (prepared by chemical method) were
loaded into unsubstituted poly vinyl alcohol film

5% Ag–NPs(C)–PVA film 5% w/w silver nano particles (prepared by chemical method) were
loaded into unsubstituted poly vinyl alcohol film

3%Ag–NPs(G)–PVA film 3% w/w silver nano particles (prepared by green method) were
loaded into unsubstituted poly vinyl alcohol film

5%Ag–NPs(G)–PVA film 5% w/w silver nano particles (prepared by green method) were
loaded into unsubstituted poly vinyl alcohol film

Pristine PA–PVA As-prepared propyl amine-substituted poly vinyl alcohol film

3% Ag–NPs(C)-encapsulated PA–PVA 3% w/w silver nano particles (prepared by chemical method) were
encapsulated into propyl amine-substituted poly vinyl alcohol film

5% Ag–NPs(C)-encapsulated PA–PVA 5% w/w silver nano particles (prepared by chemical method) were
encapsulated into propyl amine-substituted poly vinyl alcohol film

3% Ag–NPs(G)-encapsulated PA–PVA 3% w/w silver nano particles (prepared by green method) were
encapsulated into propyl amine-substituted poly vinyl alcohol film

5% Ag–NPs(G)-encapsulated PA–PVA 5% w/w silver nano particles (prepared by green method) were
encapsulated into propyl amine-substituted poly vinyl alcohol film

Table 2. Mechanical properties of various as-prepared samples.

Sample Tensile Strength Tensile Modulus Ultimate Strain
(MPa) (MPa) (%)

Pristine PVA 14.2 ± 3 21.8 ± 2 52.8 ± 5
3% Ag–NPs(C)–PVA film 28.2 ± 5 47.5 ± 3 98.8 ± 6
5% Ag–NPs(C)–PVA film 18.5 ± 6 35.5 ± 3 68.2 ± 3
3% Ag–NPs(G)–PVA film 27.5 ± 6 31.2 ± 3 297.0 ± 5
5% Ag–NPs(G)–PVA film 19.3 ± 7 26.1 ± 2 158.2 ± 2

Pristine PA–PVA 74.1 ± 5 1734.9 ± 3 13.2 ± 6
3% Ag–NPs(C)-encapsulated PA–PVA 152.6 ± 4 1986.4 ± 4 25.4 ± 5
5% Ag–NPs(C)-encapsulated PA–PVA 104 ± 6 2278.6 ± 6 18.7 ± 7
3% Ag–NPs(G)-encapsulated PA–PVA 147.5 ± 4 2037.2 ± 5 48.9 ± 7
5% Ag–NPs(G)-encapsulated PA–PVA 168.2 ± 5 2468.8 ± 7 56.2 ± 7

3. Results and Discussion

Aiming to synthesize a modified PVA with improved antimicrobial active wound dressing
hydrogels, propylamine-substituted PVA was prepared by replacing the hydrogen of the PVA polymer
(-OH) with propylamine (-CH2-CH2-CH2-NH2). The synthetic reaction of the derived PVA is shown in
Figure 1. Propyl amine moiety was introduced in PVA by using N-(3-bromopropyl)phthalimide. PVA
polymer has reacted with N-(3-bromopropyl)phthalimide to yield N-(3-propyl)phthalimide bonded
PVA polymer. It was treated with monohydrated hydrazine to remove bonded phthalimide resulting
propylamine-substituted PVA (PA–PVA).
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3.1. FTIR Results

Along with TLC, the synthesis reaction of modified PVA was also monitored via FTIR spectroscopy.
Indication of the bonding of N-(3-propyl)phthalimide with PVA and removal of the Phthalimide group
was observed by vibrational studies using FTIR. In Figure 2 various vibrational bands have confirmed
successful synthesis of N-propyl phthalimide -substituted PVA including C–H alkyl group stretching
(2810–2940 cm−1), C=O (1650–1580 cm−1), CH2 sym band (1460 cm−1), CH2 asym band (1390 cm−1),
C–N (1130 cm−1), C–O stretch (1080 cm−1) and =C–H banding (675–1000 cm−1) [48,49].
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Figure 2. FTIR Spectra of PVA, phthalimide-substituted PVA, propylamine-substituted PVA and
starch-capped Ag–NPs.

In the spectrum for propyl amine-substituted PVA (Figure 2), N–H stretch at 3500–3350 cm−1 was
masked by the very strong O–H stretch at 3621–3315 cm−1, but an overtone has emerged at 1590 cm−1

while the absence of vibrational bands of C=O indicated the removal of phthalimide. Furthermore,
bands of C–H stretch (2810–2940 cm−1), CH2 sym band (1440 cm−1), CH2 asym band (1330 cm−1) and
C–N stretch (1090 cm−1) have confirmed propyl amine substitution in PVA. Both spectra have shown
that there was strong inter and intramolecular hydrogen bonding present because of O–H functionality
and presence of associated water molecules [50,51]. FTIR spectrum of starch-capped Ag–NPs has
exhibited shift in characteristic bands of starch like OH stretching has absorbed at 3143 cm−1, carbonyl
stretching at 1634 cm−1, C–O–C symmetrical stretching at 1348 cm−1 and COH bending at 981 cm−1.
These shifts in vibration bands have indicated interaction between functional groups of starch and
Ag–NPs due to capping of Ag–NPs by starch [36,52,53].

3.2. NMR Analysis

1H-NMR spectroscopy has been widely used to derive the information about the local environment
of the proton in the Polymer. Pristine PVA has characteristic CH2 doublet at chemical shift value δH
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1.37 while the DMSO solvent resonates at δH 2.5 and water at δH 3.16. CH has demonstrated triplet at
δH 3.8 due to shielding by OH while OH has furnished peak at δH 4.1 [54,55].

1H-NMR of the PA–PVA has depicted five peaks with different splitting and chemical shift values
because of different chemical environments. PA–PVA resonances have included methylene proton
δH 1.37 (2Ha, doublet), methine proton δH 4.5 (1Hb, triplet), methylene proton δH 4.2 (2Hc, triplet),
methylene proton δH 1.44 (2Hd, nonet) and methylene proton δH 3.8 (2He, triplet). Peak at δH 3.16
has shown that there was much water present in the sample. R-NH2 signal was observed between
δH 1–2.5 which is overlapped by water and DMSO because of the small differences in chemical shift
values and limited resolution power of spectrum. 1H-NMR of PA–PVA is in good agreement with
the relevant FTIR results. Magnetic resonance of methylene protons (2Hc) at downfield, i.e., δH 4.2
is justified by the close vicinity of highly electronegative oxygen atom [39,56]. Some peaks of the
N-(3-bromopropyl)phthalimide were also found to be present at down fields in the spectrum around
the DMSO peak. Methylene protons of the -CH2-bromo group have furnished peak at δH 3.43 in
N-(3-bromopropyl)phthalimide [57,58].

3.3. XRD Analysis

X-ray diffraction pattern was analyzed to study the crystal structure of Ag–NPs precipitated by
chemical and green methods [59,60]. For the Ag–NPs(C) synthesized by chemical method, characteristic
peaks for face centered cubic (fcc) metallic silver were observed at 2theta 38◦, 44◦, 64◦ and 77◦ for the
corresponding Bragg’s values (111), (200), (220) and (311), respectively (JCPDS card no. 04-0783).

In X-ray diffraction pattern for the green method, all characteristic Ag–NPs(G) peaks of the zero
valent Ag–NPs have appeared in good agreement with the reported standard values of JCPDS No.
04-0783. Peak shapes have augmented the crystalline nature of Ag–NPs(G). On the basis of average
crystallite sizes derived from XRD spectra using Scherrer’s equation, it was inferred that the starch
employed in the green method has more reducing effect thus synthesized nanoparticles are of smaller
crystallite size (9 nm) while by chemical method the synthesized nanoparticles are of larger crystallite
size (20 nm). Some residual starch peaks were also observed in the XRD pattern of green synthesized
nanoparticles (Figure 3).
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3.4. UV-Vis Spectroscopy

Although color change helps in the visual assessment for the formation of Ag–NPs as already
mentioned in the experimental section, but for the instrumental proof synthesized Ag–NPs were
analyzed by UV-Vis spectrophotometer [61–63]. Uniformly suspended Ag–NPs synthesized by the
green and chemical synthesis methods have furnished surface plasmon resonance peaks as shown in
Figure 4. Appearance of the intense absorption peaks at 400 nm because of the collective excitation of
all the free electrons is indicative of the successfully synthesized Ag–NPs.Polymers 2020, 12, x FOR PEER REVIEW 10 of 19 
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Figure 4. Surface plasmon resonance peaks of: (a) Ag–NPs (chemical and green synthesis);
(b) Ag–NP-encapsulated PVA film; (c) Ag–NP-encapsulated PA–PVA.

Peak intensity has increased in the case of chemically synthesized Ag–NPs with a slight shift
of peak to lower wavelength value. Surface plasmon resonance peaks intensity has indicated the
formation of uniform Ag–NPs of smaller size distribution. Shift of the value from 1.8 to 1.2 has
indicated that in the case of green synthesis, starch has influenced the size, reduction process and
stabilization for the formation of Ag–NPs. Spectra for derivatized PVA encapsulated Ag–NPs(C)
absorption is spread over a wide range, but the appearance of a curve around 400 nm has confirmed
the presence of Ag–NPs. In the case of derivatized PA–PVA encapsulated Ag–NPs(G) the resultant
dark color solution has absorption over a wide range. Peak positions in the case of derivatized PA–PVA
have a slight difference of intensity indicating that both have different stabilization and reducing effect
for the AgN’s synthesis. Moreover, the wavelength absorption at lower values means that synthesized
Ag–NPs are of smaller size.
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3.5. SEM Results

Scanning electron microscopy was employed for morphologic studies of Ag–NPs and Ag–NPs
loaded PVA/PA–PVA films (Figure 5). SEM micrographs have depicted that synthesized nanoparticles
have spherical shape while the size of particles were 19 nm and 40 nm for Ag–NPs synthesized by
green and chemical methods, respectively. Green synthesis method was found to be more efficient
than the chemical reduction method because starch capping effect caused difficulties in promoting
lager size nanoparticles, so the growth of smaller size nanoparticles was favored. Surface morphology
of the Ag–NPs loaded PVA films have shown that nanoparticles were evenly distributed in PVA films
at 3% loading, but a slight clustering of nanoparticles was observed at higher concentration, i.e., 5%
Ag–NPs [64–66].Polymers 2020, 12, x FOR PEER REVIEW 11 of 19 
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Figure 5. SEM micrographs of: (a) Ag–NPs (chemical synthesis); (b) Ag–NPs (green synthesis);
(c) 3% Ag–NPs(C)–PVA film; (d) 5% Ag–NPs(C)–PVA film; (e) 3% Ag–NPs(G)–PVA film; (f) 5%
Ag–NPs(G)–PVA film; (g) 3% Ag–NPs(C)-encapsulated PA–PVA; (h) 5% Ag–NPs(C)-encapsulated
PA–PVA; (i) 3% Ag–NPs(G)-encapsulated PA–PVA; (j) 5% Ag–NPs(G)-encapsulated PA–PVA.
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SEM morphology of encapsulated Ag–NPs in PA–PVA film is depicted in Figure 5g–j. Particles
synthesized in situ in PA–PVA film have a smaller size which was in line with the surface plasmon
resonance peak results. This is due to the dense structure of the PA–PVA film which acted as the
stabilizing as well as nucleation site for smaller sized Ag–NPs while the less dense PVA film provides
enough space to grow relatively larger Ag–NPs.

3.6. Mechanical Testing

Tensile stress–strain curves of Ag–NPs loaded PVA and substituted PVA films are shown in
Figure 6. Different parameters obtained by performing mechanical testing were also tabulated in
Table 2. These modified films have shown improved mechanical properties than pristine PVA film
whose tensile strength was measured as 14.2 MPa. Ag–NPs loaded PVA and PA–PVA films were proven
to be mechanically good. Tensile strength and strain percent at elongation and break point are depend
on the Ag–NPs contents and the nature of polymers. Ag–NPs loading in PVA has resulted in strong
and ductile film. PA–PVA film loaded with 5% Ag–NPs(G) has exhibited maximum tensile strength
while 3% Ag–NPs(G) has demonstrated the highest values for ultimate strain percent thus the tougher
material. For 3% loading of nanoparticles, the ultimate strain percent values were 98.8% for Ag–NPs(C)
and 297.0% for Ag–NPs(G) which demonstrated 187% and 562% increment in the elongation at break
values as compared to bare PVA films. Upon further increase of Ag–NPs (C & G) content in the
films, i.e., 5% the ultimate strain% and tensile strength values were decreased. Tensile strength of 5%
Ag–NPs(C)-PVA film was decreased to 18.5 MPa than 28.2 MPa of 3% Ag–NPs(C)-PVA film while
for 5% Ag–NPs(G)-PVA film it decreased up to 19.3 MPa than 27.5 MPa for 3% Ag–NPs(G)-PVA film.
This may be due to the fact that hydrogen bonding between the PVA and Ag–NPs decreased upon
5% Ag–NPs loading by agglomeration. Hydrogen bonding interaction was enhanced in the case of
Ag–NPs(G) due to organo-compatible starch capping which led to higher values of tensile strength.
Reinforcing effect of the Ag–NPs has increased the elongation values at the breaking point of polymer
nanoparticle system. However, at elevated contents of Ag–NPs there was an agglomeration of the
Ag–NPs in the polymer matrix which led to a decrease of hydrogen bonding and reinforcing effect
thus causing failure of the polymer at lower tensile strength and ultimate strain% values.
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Young’s modulus values of the PVA films impregnated with Ag–NPs were found between
26.1 MPa to 47.5 MPa. Ag–NPs(C)-PVA films with both 3% and 5% loading have shown higher values
of modulus, i.e., 47.5 MPa and 35.5 MPa while Ag–NPs(G)-PVA films were failed at lower modulus
values, i.e., 31.2 MPa and 26.1 MPa for 3% and 5% loading, respectively. Ag–NP-encapsulated PA–PVA
film has shown a high modulus values of 1734.98 MPa.
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PA–PVA films have exhibited relatively high Young’s modulus in the range of 104 to 168 MPa and
tensile strength values range 1986.4 MPa to 2468.8 MPa. 5% Ag–NPs(G)-encapsulated PA–PVA film
has shown maximum tensile strength among all samples, i.e., 168.2 MPa which is 227% higher than
that measured for bare PA–PVA film (74.1 MPa). This composition has also exhibited maximum values
of young modulus and% strain, i.e., 2468.8 MPa and 56.2%, respectively.

3.7. Antibacterial Assay

All the prepared film samples were subjected to antibacterial assay against Gram positive S. aureus
and Gram negative E. coli bacterial strains in the terms of inhibition zone measurement by disk diffusion
method [67–69]. All as-prepared films have exhibited significant antibacterial activity than pristine PVA
film (Figures 7 and 8 and Table 3). The unsubstituted PVA films containing 3% and 5% Ag–NPs (green)
concentration have demonstrated inhibition zones of 8 mm and 11 mm against E. coli while 9 mm
and 10 mm against S. aureus, respectively. PVA films containing 3% and 5% chemically synthesized
Ag–NPs have resulted 6 mm and 7 mm inhibition zone against E. coli while 7 mm and 7 mm against
S. aureus, respectively. No inhibition zone was observed for bare PVA films.Polymers 2020, 12, x FOR PEER REVIEW 14 of 19 
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Figure 7. Antibacterial activities against S. aureus by: (a) blank; (b) pristine PVA; (c) 3% Ag–NPs(C)–PVA
film; (d) 5% Ag–NPs(C)–PVA film; (e) 3% Ag–NPs(G)–PVA film; (f) 5% Ag–NPs(G)–PVA film; (g) pristine
PA–PVA; (h) 3% Ag–NPs(C)-encapsulated PA–PVA; (i) 5% Ag–NPs(C)-encapsulated PA–PVA; (j) 3%
Ag–NPs(G)-encapsulated PA–PVA; (k) 5% Ag–NPs(G)-encapsulated PA–PVA.
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Figure 8. Antibacterial activities against E. coli by: (a) blank; (b) pristine PVA; (c) 3% Ag–NPs(C)–PVA
film; (d) 5% Ag–NPs(C)–PVA film; (e) 3% Ag–NPs(G)–PVA film; (f) 5% Ag–NPs(G)–PVA film; (g) pristine
PA–PVA; (h) 3% Ag–NPs(C)-encapsulated PA–PVA; (i) 5% Ag–NPs(C)-encapsulated PA–PVA; (j) 3%
Ag–NPs(G)-encapsulated PA–PVA; (k) 5% Ag–NPs(G)-encapsulated PA–PVA.

Table 3. Antibacterial activities of various as-prepared samples.

Sample Inhibition Zone (mm)

Escherichia coli Staphylococcus aureus

Pristine PVA 0 0
3% Ag–NPs(C)–PVA film 6 ± 0.1 7 ± 0.3
5% Ag–NPs(C)–PVA film 7 ± 0.15 7 ± 0.2
3% Ag–NPs(G)–PVA film 8 ± 0.4 9 ± 0.25
5% Ag–NPs(G)–PVA film 11 ± 0.3 10 ± 0.3

Pristine PA–PVA 5 ± 0.2 4 ± 0.3
3% Ag–NPs(C)-encapsulated PA–PVA 8 ± 0.25 8 ± 0.15
5% Ag–NPs(C)-encapsulated PA–PVA 10 ± 0.3 9 ± 0.2
3% Ag–NPs(G)-encapsulated PA–PVA 9 ± 0.15 10 ± 0.1
5% Ag–NPs(G)-encapsulated PA–PVA 13 ± 0.1 11 ± 0.2

Bare propyl amine-substituted PVA film has exhibited inhibition zone 5 mm against E. coli while
4 mm against S. aureus, respectively. The inhibition zone increased up to 9 mm and 13 mm against
E. coli while 10 mm and 11 mm against S. aureus upon starch-capped Ag–NPs encapsulation into
PA–PVA films.
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4. Conclusions

Various substituted/unsubstituted PVA films impregnated with Ag–NPs prepared by
chemical/green methods via starch capping were successfully synthesized and characterized by
FTIR, NMR, UV-Vis spectroscopy, SEM and XRD while their mechanical attributes and antibacterial
activities were also appraised. Synthesis of propylamine-substituted PVA was well corroborated in the
FTIR spectrum where vibrational bands of OH group vanished, and new absorbance bands of amine
were appeared above 3300 cm−1 corresponded to (O-CH2-CH2-CH2-NH2) substitution. Similarly,
NMR spectra have depicted the disappearance of OH resonance at δH 4.1 while the emergence of amine
peaks at δH 1–2.5. In UV-Vis Spectra, a sharp peak around 400 nm due to collective excitation of all
the free electrons has indicated the successful formation of Ag–NPs. SEM micrographs have depicted
particle shape morphology with sizes 19 nm for green and 40 nm for chemical synthesis of Ag–NPs.
XRD pattern also confirmed the synthesis of Ag–NPs by characteristic intense peaks at 38 and 44 for
metallic silver on 2θ reflections. All as-prepared films have exhibited significant antibacterial activity
than pristine PVA film. The highest activity was demonstrated by 5% (w/w) Ag–NPs (G)-encapsulated
into PA–PVA film. This has also shown maximum tensile strength among all samples, i.e., 168.2 MPa
which was 227% higher than that measured for bare PA–PVA film. Thus, Ag–NP-encapsulated by
PA–PVA film are good candidates for the wound dressing applications.
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