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Abstract: This review outlines the role of electrostatics in computational molecular biophysics
and its implication in altering wild-type characteristics of biological macromolecules, and thus the
contribution of electrostatics to disease mechanisms. The work is not intended to review existing
computational approaches or to propose further developments. Instead, it summarizes the outcomes
of relevant studies and provides a generalized classification of major mechanisms that involve
electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the
complex role of electrostatics in molecular biophysics, such that the long range of electrostatic
interactions causes them to dominate all other forces at distances larger than several Angstroms, while
at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have
pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant
at long-range and being very specific at short-range, their implications for wild-type structure and
function are quite pronounced. Therefore, any disruption of the complex electrostatic network of
interactions may abolish wild-type functionality and could be the dominant factor contributing
to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules,
the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not
necessarily be deleterious.

Keywords: electrostatics; computational biophysics; disease mechanism; mutations; pH-dependence;
protein–protein interactions; protein stability

1. Introduction

In this review, we consider the role of electrostatics on the structure and function of bio-
logical macromolecules and summarize the specific features that manifest
electrostatic interactions. We refer to electrostatic interactions that result from charged
atoms, including the atoms of water molecules. This allows us to attribute these specific
features and their disruption caused by missense mutations to molecular mechanisms
implicated in diseases. We focused on computational findings; however, when possible,
these findings are backed up by experimental observations. The review emphasizes recent
investigations to assess current interest in this field.

The electrostatic features in biological molecules are described in this review within
three functions: long-range effects [1,2]; short-range effects [3–5]; and pH-dependent
effects [6–8]. The long-range electrostatic force is the main force making biomolecules
travel and bind to other biomolecules over a long distance [1,9]. Due to the limitations
of current computing, it is challenging to simulate long-range electrostatics in molecular
dynamic simulations. Therefore, many efforts have been proposed and developed for
simulations involving long-range electrostatic interactions [2,9]. Long-range effects are
introduced in Section 2.1. Such algorithms of long-range electrostatics are widely used
in biological problems, such as protein–protein interactions [10–12], protein–DNA/RNA
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interactions [9,13], etc. Short-range interactions, including salt bridges and hydrogen bonds,
which are favorable interactions in terms of Coulombic energy, are present inside/among
the macromolecules, serving as an important feature contributing to macromolecular archi-
tecture. Short-range effects frequently contribute to receptor–ligand binding [14,15] and
to the specificity of the binding mode [16,17]. The pH-optimum is the particular pH at
which biological activity, macromolecular stability, and binding are best optimized [18].
It originates from the pKa values of the ionizable groups, indicating the importance of
assigning correct protonation states in molecular dynamics simulations [19–23]. Recent con-
tributions to modeling pH-dependent phenomena are shown in Section 2.3. Constant pH
MD (CpHMD) approaches are an efficient tool to explore the effects of pH on biomolecular
stability [24] and binding [25].

Electrostatics plays a crucial role in biomolecular stability and binding. Thus, mu-
tations causing deviation of electrostatic properties may influence macromolecular ther-
modynamics, resulting in dysfunctional biomolecules. Mutations can either delete or
reverse a charge, and these changes are expected to cause serious effects on both long- and
short-range interactions [26,27]. Recent works on salt-bridge disruption and hydrogen-
bond disruption [28,29] are shown in Section 3. The last section is about drug discovery,
and we focus on computational works that indicate the role of salt bridges and hydrogen
bonds [30–33] to identify efficient drugs. This includes inhibitor screening methods for hep-
atitis C virus [34,35], insulin amyloid fibril [36], and antibiotics against SARS-CoV-2 [37,38].
The goal of this review is to highlight the role of electrostatics in the field of computational
biophysics and related disease mechanisms. Electrostatics is related to various molecular
mechanisms for wild-type functionality and disease causality [27,39]. Electrostatic fea-
tures are the key component in drug design according to short- and long-range effects.
Another prominent representation of the role of electrostatics is pH-dependence, which typ-
ically originates from both long- and short-range electrostatic interactions. Overall, many
biological processes at the molecular level are strongly affected by electrostatics, which
should be seriously considered in any atomistic-level studies.

2. Electrostatics of Wild-Type Biological Macromolecules

The role of electrostatics in wild-type biological macromolecules is considered on three
levels: (a) long-range effects, i.e., interactions that do not involve physical contact between
interacting entities; (b) short-range effects, i.e., interaction involving physical contacts, such
as the formation of salt bridges or hydrogen bonds; and (c) pH-dependent phenomena,
which involve a mixture of long- and short-range effects (Figure 1).
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Figure 1. (a) The electric field lines between the JAK3 kinase domain and ATP. The kinase domain
and ATP were separated by 15 Å to show the interactions [40] (the structure is constructed by I-
TASSER [41] to model the missing loops). (b) The electric field lines between barnase and barstar
(PDB: 1BRS [42]). The two proteins were separated by 10 Å to show the interactions. (c) The salt
bridges in 8S α-Globulin (PDB: 2CV6 [43]). The missing loops of the 8S α-Globulin are modeled
by SWISS-MODEL [44]. The salt-bridge pair of ASP326–ARG37 is buried inside the protein, while
GLU205–LYS203 is on the surface of the protein. (d) The hydrogen bonds in Angiotensin-Converting
Enzyme 2 (ACE2) (PDB: 6LZG [45]). The hydrogen bonds of THR445–THR276 and ASN397–TYR421
are inside the protein, while those of GLU160–SER155 are surface-exposed. (e) The β-Lactoglobulin
dimer formed at pH 4. (f) The β-Lactoglobulin monomer formed at pH 7 (PDB:6FXB [46]).

2.1. Long-Range Electrostatic Effects

The electrostatic force is a long-range force that dominates all other forces when there is
no physical contact between the molecules. It is also a universal force in molecular biology
since all atoms carry a partial charge and thus are subject to electrostatic interactions.
Because of this, electrostatics are expected to play a key role in steering interacting partners
toward their binding position (Figure 1a,b—electric field lines demonstrate long-range
attraction between the partners). However, computational modeling of such a process,
especially if the interacting partners are far apart, is quite computationally demanding.
Indeed, in typical molecular dynamics (MD) simulations, one applies cut-offs of long-range
interactions to speed up the calculations [1]. This is valid also for protein folding studies,
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particularly modeling of the unfolded state. Recent work demonstrated that the unfolded
state’s structural characteristics are strongly dependent on the cut-offs and Evald sum
implementation [47] (a method for computing long-range interactions).

To overcome such limitations, a hybrid method involving DelPhi [48–51] (a popular
Poisson–Boltzmann equation solver) and steered MD was developed. The method, termed
DelPhi–Force MD (DFMD) [10,52], was successfully applied to dock substrates to an
enzyme [2] and a biomolecule onto another biomolecule (such as barstar onto barnase) [10].
It was demonstrated that such an approach allows one to take advantage of the MD
protocol to sample different conformations while simultaneously adding electrostatic force-
based guidance of the ligand toward the correct binding pocket/interface [2]. Moreover, it
was shown that DFMD can successfully dock to barnase even if the initial positions and
orientations of both are completely different from the correct ones [10].

Of particular interest are cases involving highly charged large biological objects such
as microtubules. Microtubules are highly negatively charged long objects that serve as
highways for various transport (cargo) proteins such as kinesin and dynein. The cargo
proteins walk on microtubules, and one could expect that their walking is influenced by
long-range electrostatic interactions. Indeed, it was computationally shown that there are
strong electrostatic interactions between microtubules and microtubule binding domains of
both kinesin [53] and dynein [54]. The same observation was made for G-actin and myosin
(Figure 2c). These computational findings were experimentally confirmed in a study of a
series of mutants at the dynein Microtube Binding Domain (MTBD)–microtubule-binding
interface to neutral residues. It was discovered that the altered MTBDs’ binding affinity
for microtubules was significantly increased. Furthermore, it was discovered that the
binding and unbinding rates of MTBDs to microtubules were significantly impacted by
charge screening of free ions in solution. These findings show the importance of long-range
electrostatic interactions in controlling dynein–microtubule affinity [55].

The role of electrostatics in providing a guiding force for macromolecular binding
was demonstrated in a series of examples using the experimental structure of the complex
and calculating the electrostatic force generated by one of the partners on the other one.
The examples included homodimers, calmodulin, protein–DNA/RNA complexes, and
quinone in the reaction center protein [56]. Furthermore, the electrostatic interactions were
found to be a crucial factor for virus assemblies (Figure 2a). Many studies have proven that
the electrostatic interactions among capsomers of the virus provide attractive forces for the
viral capsid assembly [57,58].

Electrostatic force not only guides the binding partners toward their association, but it
also assures that their interfaces are properly oriented [52] (Figure 2b). This is demonstrated
in cases in which the binding partners are deliberately oriented improperly prior to simula-
tions, such that their interfaces are not aligned. The electrostatic force generates torque that
reorients the partners to a proper orientation. This has been demonstrated in a series of ex-
amples, including barnase–barstar [10], dynein–microtubule [12], and capsomer–capsomer
interactions in viral capsid assembly [58].

As mentioned above, long-range electrostatic interactions provide a guiding force that
drives the partners together; however, this force is not uniform and changes as a function
of the distance between the partners. It was demonstrated that electrostatic force profiles
(force as a function of distance) can be grouped into four distinctive categories [11]. In some
cases, electrostatics favor the binding; in others, they oppose it. The most intriguing case is
termed the “soft landing” case such that at large distances electrostatic force attracts the
partners, but just prior to physical contact, the electrostatics oppose the binding and assure
soft binding [11] (Figure 2d). Soft landing may help two binding partners contact each
other in sufficient time, so that they can adjust the configurations at the binding interfaces
to avoid atom–atom clash and can form hydrogen bonds and salt bridges.
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Figure 2. (a) Electrostatic features surrounding a viral capsid (PDB ID: 5J36 [59]). The electrostatic
potential and electric field lines on the surface of the viral capsid illustrate the electrostatic interactions
among the capsomer proteins. (b) The torque in barnase–barstar binding, where the barstar was
separated by 20 Å and rotated by 90◦ to show the torque on the barstar. (c) The electric field lines
on the myosin–actin complex, where the myosin and actin were separated by 15 Å to show the
electric field lines. (d) The relationship between the electrostatic force and distance in protein–protein
interactions. The blue one is alpha-tubulin while the orange one is beta-tubulin.

Of particular interest are cases involving intrinsically disordered proteins (IDP).
Thus, computational and experimental analysis of the cell-cycle regulator p27 have demon-
strated that long-range electrostatic forces acting on enriched charges of IDPs can speed
up protein–protein encounter through “electrostatic steering”, and can simultaneously
promote “folding-competent” encounter topologies to increase the efficiency of IDP fold-
ing upon encounter [60]. Another study of three IDP-forming complexes also outlined
the importance of electrostatics. The authors conducted topology-based coarse-grained
simulations and projected identical electrostatically accelerated encounter and folding
mechanisms for all three complexes. These findings were consistent with earlier research
on the charge distributions in known IDP complexes, which indicates that electrostatic
interactions play a significant role in facilitating effective coupled binding and folding
for quick specific identification [61]. Similarly, computational alanine scanning has been
performed for SARS-CoV-2 Spike and Human ACE2 proteins. The residues identified
with significance to binding and other proximal residues were studied further through
molecular mechanics-based protein-binding free-energy-change prediction [62].



Int. J. Mol. Sci. 2022, 23, 10347 6 of 17

2.2. Short-Range Electrostatic Effects

At large distances between interacting atoms, electrostatics manifest their role via
direct charge–charge interactions; in the case of short distances when there is contact
between interacting partners, electrostatic contributions are more complex. They still
involves direct charge–charge interactions and solvation energy. Direct charge–charge
interactions are very strong at Angstrom scale distance (strictly speaking, short-range
effects are the results of electrostatic interactions, orbital relaxation, and Pauli-repulsion).
In the terminology of continuum electrostatics, the balance is maintained by Coulombic
interactions and desolvation penalty. Thus, a salt bridge or a hydrogen bond, which are
favorable interactions in terms of Coulombic energy, may not contribute to the macro-
molecular stability or binding due to overcompensation coming from desolvation penalty
(Figure 1c,d: the salt bridge pair of ASP326–ARG37 is buried inside the protein, while
for GLU205–LYS203 it is on the surface of the protein. The hydrogen bonds of THR445–
THR276 and ASN397–TYR421 are inside the protein, while those of GLU160-SER155 are
surface-exposed). However, such unfavorable salt bridges and hydrogen bonds may still be
present in the macromolecular universe and are an important structural feature contribut-
ing to macromolecular architecture. Such short-range interactions are frequently found to
contribute to receptor–ligand binding and to the specificity of the binding mode. Below we
outline such short-range electrostatic interactions for specific cases found computationally
and, if possible, backed up with experimental observations.

Polarization of interacting atoms is particularly important when the interactions are
short-range. Thus, the impact of electronic polarization on homogeneous and heteroge-
neous amyloid oligomers using the Drude Oscillator model (a model considering each atom
to be a point particle with a partial charge during the simulation) was recently investigated.
The system of interest was made of two amyloids, amyloid-β (Aβ) and islet amyloid
polypeptide (IAPP), which are involved in the pathology of Alzheimer’s disease [63] and
type 2 diabetes mellitus [64]. It was found that the most stable system was homogenous
A-16-22, which gained stability from salt-bridge formation and reduced polarization in
hydrophobic residues [62]. Similarly, another study investigated β-strand rich oligomers
with Drude force field and found that structural rearrangement occurred, causing some loss
of β-strand structure in favor of random coil content for all oligomers [16]. It was outlined
that low polarization in hydrophobic residues and salt-bridge formation contribute to the
stability of homogenous Aβ16−22 [16].

Short-range interactions are a key factor that contributes to macromolecular stability,
and therefore have received significant interest. The interplay is between favorable direct
interactions and desolvation penalty. Thus, a recent study reported the role of two salt
bridges in ubiquitin: surface-exposed salt bridge (SB1:K11-E34) and buried salt bridge
(SB2:K27-D52). It was shown that if SB1 is broken, the mechanical stability of ubiquitin
increases slightly, but when SB2 is broken, the stability reduces significantly [65]. Stability
and activity are typically related, and thus a study on a particular G-protein coupled re-
ceptor (GPCR), the cannabinoid receptor 1 (CB1), indicated that the switching mechanism
involves a salt bridge, the D263–K328 salt-bridge, that contributes to the stability of CB1 [66].
Salt-bridge involvement in the activation mechanism of calcium-dependent protein kinase-
1 further elucidates the role of short-range interactions in molecular biology. Recent work
focused on calcium-dependent protein kinase-1 of Plasmodium falciparum (PfCDPK1) and
explored the possibility of allosteric inhibition of this kinase. It showed how the truncation
of CAD in PfCDPK1 disrupts a conserved salt-bridge required for stabilizing the kinase
domain in an active state, and the kinase domain adopts an inactive conformation [66].
Similarly, the role of a salt bridge, His59–Asp103, in human granzyme B (hGzmB) was studied.
It was shown that Asp103–Arg216 forms a salt bridge upon activation, breaking the
His59–Asp103 hydrogen bond and enlarging the active site to aid in substrate binding [67].
Furthermore, short-range interactions are implicated in protein–protein binding, and mu-
tations may be disease-related. This was investigated to determine if SARS-CoV-2 infec-
tivity is enhanced by naturally occurring mutations. The structural dynamics of the RBD
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spike protein mutation enhancing ACE2 binding were computed in silico to achieve this.
Due to better interfacial stability of the RBD strand surrounding the ACE2 across salt bridge
hotspots, the interfaces in the RBD region showed stronger affinity for ACE2 [14]. A related
study investigated mutations (S477N–E484K) in the receptor-binding domain (RBD) of the
spike protein. The binding affinity of ACE2–RBD was examined using protein docking
and all-atom simulation. According to the investigation, the mutant modifies the hydrogen
bonding network and binds more strongly than the wild-type [14].

Short-range interactions are essential for gating and transport, which are frequently
involved in selectivity. This was demonstrated in the case of the potassium channel, where
it was observed that S42 mutations in the pore helix significantly slow the shutting of
this filter gate, an effect that is unrelated to the amino acid’s creation of a hydrogen bond
at this location [68]. The role of salt bridges in conformational changes needed for the
mitochondrial ADP/ATP carrier (AAC), which alternates between cytosol-open (c-) and
matrix-open (m-) states to export ATP and import ADP, was investigated via molecular
dynamics simulations. It was shown that short-range interactions are critical for the functioning
of the carrier [69].

Hydrogen bonds are frequently involved in catalysis and the overall function of
biological macromolecules. Thus, it was demonstrated that the wild-type hydrogen bond
network is crucial for the activity of alpha/beta hydrolase domain-containing 5 (ABHD5),
also known as CGI-58, which is the activator of adipose triglyceride lipase (ATGL) [39].
Indeed, computational modeling showed that mutations to E41, R116, and G328 disrupt
the hydrogen bonding network with surrounding residues and inhibit membrane targeting
or ATGL activation [70]. Another study focused on the T cell receptor’s interaction with
the peptide major histocompatibility complex and showed that hydrogen bonds and
Lennard–Jones contacts, which are physicochemical aspects of the TCR–pMHC dynamic
bond strength, are correlated with the immunogenic response brought on by the particular
peptide in the MHC groove [71]. Hydrogen bonds are essential in catalytic reactions
involving proton transfer. This was demonstrated for the breakdown of uracil, in which
the nucleoside triphosphate cyclohydrolase (UrcA) catalyzes the two-step hydrolysis of
uridine triphosphate (UTP). MD simulations showed that hydrogen bond interaction helps
the reaction intermediate undergo spontaneous conformation overturn in the active site of
UrcA [72].

Perhaps hydrogen bonds are the most important for water molecule arrangement.
Since the physiological environment of all biological macromolecules is the water phase, the
properties of the water medium affect their stability and functionality. This inspired inves-
tigations on understanding short-range interactions between neighboring water molecules.
Since the interactions occur at very short distances, one needs to apply quantum
mechanical approaches. Thus, recent work focused on the implications of nuclear quantum
fluctuations on equilibrium and dynamical properties relating to bifurcation routes in
hydrogen-bond dimers of water and ammonia. It was shown that the classical over-the-hill
approach is substituted with a tunneling-controlled mechanism that, from the perspective
of the path integral, can be modeled as coordinated inter-basin migrations of polymer
beads [73]. The application of quantum mechanical approaches was further extended to
probe the development of neighboring hydrogen bonds with water molecules. It was
demonstrated that there is a direct mechanism for the emergence of short-range structural
fluctuations in the hydrogen bond network of liquid water, which shows that the time
development of neighboring hydrogen bonds is closely connected [74,75].

Hydrogen bonds and salt bridges are important for receptor–ligand interactions, in-
cluding drug-like molecules binding to their corresponding targets. Recent work explored
this topic and applied MD simulations with MMPBSA approaches to study the stability of
histone deacetylase inhibitors’ effects on the stability of histone deacetylase-like proteins
(HDLP). The result showed that the stability of HDLP–CBHA (m-Carboxycinnamic acid
bis-hydroxide (CBHA)) is higher than that of the free HDLP enzyme. The higher stability
was contributed by the increased number of hydrogen bonds [15]. Similarly, computational
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modeling of a prospective drug, dorzagliatin, showed it interacting with human glucok-
inase activator (GKA). The results showed that dorzagliatin can create the characteristic
hydrogen bonds of GKA with Arg63, making a tightly binding hydrogen bond network
around dorzagliatin [76]. Even in the case of DNA, a computational study indicated that
the hydrogen bonds, being the main interaction constraining the variability of the link-
ers, are enhanced slightly with DNA twist number [77]. Another study carried out MD
simulations to study riboswitches and found that the binding domain in riboswitch is
stable for molecule recognition and binding, and the switching base pairings are co-evolved
in the translation state [78]. Electrostatic interactions were shown to be a crucial factor
for reversing dysfunctional p53 and thus avoiding tumor progression. The N-terminal
transactivation domain (TAD) of p53 can regulate cell apoptosis by interacting with the
transcriptional adaptor zinc-binding 2 (Taz2) domain of p300. It was demonstrated that
electrostatic interactions govern the affinity of the p300 Taz2–p53 TAD2 complex [17].

2.3. pKa Calculations and pH-Dependent Phenomena

Almost all biological processes are pH-dependent, which indicates the crucial role of
hydrogen ion concentration in living systems [79,80]. This is manifested as pH-dependence
of catalysis, stability, binding affinity, and conformational flexibility [80,81]. Typically, there
is a particular pH at which biological activity, macromolecular stability, and binding are best
optimized, termed pH-optimum [18]. The pH-dependence originates from the pKa values
of the ionizable groups, both ionizable amino acids and nucleic acids, and thus indicates the
importance of assigning correct protonation states before any modeling or introducing of
pH in molecular dynamics simulations (constant-pH MD [19–23]). Below, we outline recent
contributions to modeling pH-dependent phenomena. It is well-understood that pH and
conformational changes are coupled, and in recent times, many researchers have applied
constant-pH MD (CpHMD) approaches to model the effect of pH on protein stability [24],
binding [25], dynamics [82], and reactivity [83]. Additional complexity, if one investigates
membrane proteins, comes from the presence of the lipid bilayer [84]. Thus, the pKa values
of ionizable groups may undergo pKa shift as proteins insert into the membrane [85].
In parallel, a significant amount of work has been completed using either predefined
conformational space [86] or mimicking the conformational stability via Gaussian-based
smooth dielectric function [87]. Furthermore, some methods use coarse-grained lattice-
based models of proteins and train the model on existing experimental data [88] and the
treecode-accelerated boundary integral solver [89].

In terms of long- and short-range electrostatic interactions discussed above, the pH-
dependent phenomena originate from a mixture of both. Thus, a recent computational study
of a particular protein (Apolipophorin-III) that associates with a lipid disk demonstrated
that the association is strongly pH-dependent, but there are no direct interactions between
the titratable group of Apolipophorin-III and charged lipid head groups [90]. In contrast,
another study on cyclic dipeptides showed that the pKa of side chains of lysine increases
for cyclic dipeptides compared to the linear ones, which was attributed to short-range
interactions [91]. The interplay between short- and long-range electrostatic interactions
was demonstrated in a study of virus assembly. The authors outlined that both the stability
and the binding affinity of the E protein are pH-independent in pH range of 6 to 10, and
that this is a result of a network of interactions [92]. The short- and long-range interactions
are specifically important in treating the water phase, either explicitly or implicitly, particularly
when one deals with water channels or wires inside biological macromolecules, where the
water flexibility is highly reduced as compared with bulk water. Thus, water molecules in the
Gramicidin A (gA) channel were investigated to probe the effect of different approaches and
computational techniques. It was concluded that MCCE and Drude analysis led to a small net
dipole moment as the water molecules changed orientation within the channel [93].

The pH-dependence is also pronounced in allosteric regulation. A recent work reported
combined experimental with computation investigations and showed that allostery in pH-
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switching proteins is guided by coupling throughout the protein, featuring a large network of
hydrophobic interactions that work in concert with key electrostatic interactions [94].

3. Electrostatics and Disease Mechanisms

It has been outlined that electrostatics play a crucial role in macromolecular stability
and binding. Therefore, any deviation from wild-type electrostatic properties would
have profound effects on macromolecular thermodynamics and may thus result in a
dysfunctional biological macromolecule. Furthermore, if the biological macromolecule is
important for the wild-type functioning of the cell, its dysfunction could cause disease.
Surely, as demonstrated in the literature, there is a linkage between the effect of missense
mutations on protein stability and/or interactions and the propensity of the mutation to be
photogenic [95,96]. Mutations that either delete a charge or reverse a charge are expected to
cause a dramatic effect on both long- and short-range interactions and thus to have a high
propensity to be disease-causing [26,27]. Below, we outline recent papers that model the
effect of disease-causing mutations on the atomic scale, including disruption of salt bridges
and hydrogen bonds, and in silico design of drugs that could mitigate the disease-causing
effect [28,29].

3.1. Salt-Bridge Disruption

In the previous section, we emphasized the important role that salt bridges play in
stability and interactions of biological macromolecules. However, it should be clarified that
the expectation is that disruption of buried salt bridges should be more deleterious than
that of surface-exposed ones (unless they participate in binding a partner). Even more, due
to the plasticity of biological macromolecules, even a mutation within a buried salt bridge
may not cause a large change in the stability because the macromolecule can rearrange and
accommodate the change [26].

Since electrostatic interactions are long-range interactions, the deleterious effects may
involve charged amino acids situated far apart from each other. Thus, a recent paper
modeled the electrostatic component of the force acting between a kinesin motor domain
and tubulin. The receiver–operating characteristic method is used to show that varia-
tions in the electrostatic component of the binding force can distinguish between disease-
causing and non-disease-causing mutations detected in the human kinesin motor domain.
The prediction rate of 0.843 area under the ROC curve owing to a change in the amplitude
of the electrostatic force alone is notable, because diseases may result from a variety of
causes unrelated to kinesin–microtubule binding [97]. Disruption of intermolecular inter-
actions was implicated in another disease, prion disease. It was proposed that pairs of
amino acids from opposing subunits form four salt bridges to stabilize the zigzag inter-
face of the two protofibrils (Figure 3a). The results provided structural evidence of the
diverse prion strains and highlighted the importance of familial mutations in inducing
different strains. Electrostatics play an essential role in the formation of other complexes,
such as the virulence factor ESAT-6. This is related to mycobacterium tuberculosis (Mtb),
which is a leading death-causing bacterial pathogen. ESAT-6 is hypothesized to form an
oligomer for membrane insertion of Mtb as well as for rupturing [98].
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Figure 3. (a) Mutation of E196K formed a new salt bridge between GLU and LYS in the prion
protein (PDB: 7DWV [99]). (b) Mutation of D196G (SARS-CoV-2 spike protein) caused the loss of the
hydrogen bond between THR and ASP (PDB: 7KMS [100]). (c) The pH-dependence of folding free
energy for the melanosome of oculocutaneous albinism-2 [8]. (d) The image shows p53 protein–DNA
and 1-[2-(1,3-benzodioxol-5-yl) pyrazolo[1,5-a] pyrazin-4-yl]-3-piperidinamine. All mutations in a, b,
and d are achieved using Chimera [101].

3.2. Hydrogen Bond Disruption

Hydrogen bonds are essential for maintaining the 3D structure of biological macro-
molecules and the formation of macromolecular complexes. Disruption of wild-type hydrogen
bonds by mutations may or may not be deleterious (Figure 3b). The same considerations apply
as outlined for salt bridges above. Below, we outline recent works on this subject.

The binding and dissociation between myosin and actin filaments are crucial for heart
protection and drug development. It has been demonstrated that the loss of hydrogen bonds sig-
nificantly promotes the detachment of myosin from actin filament, causing state changes from a
rigor state to a post-rigor state [5]. Polyglutamine tracts are regions of low sequence complexity
frequently found in transcription factors. The length of tracts is related to transcriptional
activity, and expansion beyond specific thresholds is the cause of polyglutamine disorders.
The conformation of the polyQ tract of the androgen receptor is associated with spinob-
ulbar muscular atrophy, depending on its length. This sequence folds into a helical struc-
ture, which is stabilized by unconventional hydrogen bonds between glutamine side
chains and main chain carbonyl groups. Its helicity directly correlates with tract length.
These unusual hydrogen bonds are bifurcated with the conventional hydrogen bonds
stabilizing α-helices [102]. TDP-43 is an essential RNA-binding protein forming aggregates
in nearly almost all cases of sporadic amyotrophic lateral sclerosis (ALS), frontotemporal
lobar dementia (FTLD), and other neurodegenerative diseases. TDP-43 aggregates have
a self-templating, amyloid-like structure. This segment adopts a beta-hairpin structure
that forms an amyloid-like structure. This conformer is stabilized by a special class of
hyper-cooperative hydrogen bonding [103]. Moreover, amyloid fibrils of α-synuclein are
the histological hallmarks of Parkinson’s disease, dementia with Lewy bodies, and multiple-
system atrophy. The H50Q mutation results in two novel polymorphs of α-synuclein: narrow
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and wide fibrils, formed from either one or two protofilaments, respectively. These structures
reveal new structural elements, including a hydrogen-bond network and surprising new
protofilament arrangements [104].

3.3. pH-Dependence Alteration

Biological macromolecules have evolved to function at a particular pH, and any devia-
tion of wild-type pH-dependent properties on stability and binding may cause diseases.
Such changes can be caused by mutations involving titratable groups and, less frequently,
by mutations causing conformational changes and thus affecting the pKa of titratable residues.
Even a mutation that involves same-polarity residues, such as Arg to His, could be disease-
causing (Figure 3c). Indeed, since the intracellular pH of most cancers is constitutively
higher than that of normal cells and enhances proliferation and cell survival, the sub-
stitution of Arg with His dramatically changes the activity of mutant proteins at high
pHs [105–107].

The altered pH-dependent properties of biological macromolecules are manifested
not only in cancer but also in many other diseases. Thus, a recent work computationally
studied the pH-dependent stability of several melanosome membrane proteins. The authors
found that disease-causing variants impact the pH-dependence of melanosome proteins [8].
Substitution of wild-type His with Gln was found to alter the function of CLIC2 protein
and to cause X-linked channelopathy with cardiomegaly [108].

The COVID-19 pandemic prompted many investigations on the molecular mecha-
nism of disease and the effect of mutations. Recent work found that severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the COVID-19 pan-
demic, is thought to release its RNA genome at either the cell surface or within endo-
somes, the balance being dependent on spike protein stability and the complement of
receptors, co-receptors, and proteases. The investigator performed pKa calculations on
a set of structures for spike protein ectodomain and fragments from SARS-CoV-2 and
other coronaviruses. It has been predicted that a particular aspartic acid contributes to
a pH-dependence of the open/closed equilibrium [109]. Another work applied multi-
scale computational approaches to study the electrostatic features of spike (S) proteins for
SARS-CoV and SARS-CoV-2. The authors demonstrated that the complex structures of
hACE2 and the S proteins of SARS-CoV/SARS-CoV-2 are stable at pH values ranging from
7.5 to 9 [6]. A plausible route in which variants can alter viral properties is the transition
between receptor binding domain (RBD) up and down forms of the SARS-CoV-2 spike
protein trimer. The work predicted that pH-dependence in the mild acidic range, with
stabilization of the locked form as pH, reduces from 7.5 to 5 [110].

4. In Silico Drug Discovery

Here we do not attempt to outline the work in the general field of drug discovery;
rather, we focus on investigations of molecular effects of disease-causing mutations or
the seeking of inhibitors from natural compounds (Figure 3d). In the latter case, we
emphasize works that manifest the role of salt bridges and hydrogen bonds to identify
efficient inhibitors.

Once the effect of a disease-causing mutation is revealed, it is tempting to seek
a small molecule, a potential drug, which can mitigate the effect; this frequently in-
volves electrostatic alteration. This is affordable because genotypes aggregate into sev-
eral phenotypes only. Thus, a particular drug is supposed to be efficient for many geno-
types within the same gene. Indeed, in the case of Rett syndrome, the majority of the
most frequent disease-causing mutations have been experimentally and computationally
shown to lower the affinity of MeCP2 to the cognate DNA, while not affecting protein
stability [111,112]. Similarly, many genotypes, meaning many mutations in the spermine
synthase gene that cause Snyder–Robinson syndrome, were found to affect spermine
synthase homo-dimerization, and thus the electrostatic funnel that guides the substrate
to the active site [30–33]. This resulted in investigations that proposed drugs capable of
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mitigating disease-causing effects [28,29,113]. The most common approach to developing
drugs is to design inhibitors. Such a design requires considering long- and short-range
electrostatic effects. A recent study carried out residue study to investigate tyrosine kinase
enzyme inhibitors. The result showed that a pair of aspartic residues, providing negative
potential, plays an important role in providing attractive interactions in the binding site of
the enzyme [114].

Hepatitis C virus (HCV) affects millions of people worldwide. Existing drugs have
different efficiencies against different genotypes of HCV. This prompted a computational
investigation to select the most efficient inhibitor against the most prevalent genotype
in South Asia; it was shown that short-range hydrogen bonds contribute the most to the
binding energy [35]. Molecular docking was utilized in another study to identify inhibitors
of insulin amyloid fibril formation. It was elucidated that hydrogen bonds play a crucial
role in the interactions between the ligands and insulin [36]. Molecular dynamics and
MMPBSA methods were also used to probe the effect of inhibitors. This was done in
the case of histone deacetylase-like proteins, and showed that affinity increases with the
increase in hydrogen bonds [15]. Similarly, inhibitors against cyclin G-associated kinase
involved in hepatitis C virus entry into host cells were studied, and short-range interactions
were analyzed [34]. The importance of hydrogen bonds was demonstrated in a study of
amoxicillin, widely known as an antibiotic, to bind to COVID-19 protein in Mpro pro-
tease [37]. Another study focused on the observation that SARS-CoV-2 entrance into the
host cells occurs via interactions between the receptor binding domain (RBD) of the spike (S)
protein on the virus with the angiotensin-converting enzyme 2 (ACE2) receptor. Thus, the
authors took a peptide consisting of residues 19–48 of ACE2 as the wild-type peptide, along
with six mutants. They showed that short-range interactions are essential for selecting the
best compound [38]. Other plausible inhibitors of SARS-CoV-2 were also suggested by
targeting proteins crucial for SARS-CoV-2 infection and cytokine storm [115]. The role of
electrostatic interactions was demonstrated in another study regarding inhibitors against
DNA methyltransferase [116]. Short-range interactions were analyzed to identify inhibitors
against acetylcholinesterase, which is a key enzyme enhancing cognitive disorder and
leading to Alzheimer’s disease [117]. Aminoquinolines bind to hemoglobin, and thus pre-
vent the degradation of hemoglobin, while by binding to parasitic tissue, aminoquinolines
diminish the strength of the parasite that causes malaria. The role of hydrogen bonds in
these association events was investigated and showed that the number of hydrogen bonds
differs depending on the target [88].

5. Conclusions

This review outlined recent contributions emphasizing the role of electrostatics in
the field of computational molecular biophysics and disease mechanisms. It outlined that
electrostatics are still a hot topic, and it is implicated in various molecular mechanisms for
wild-type functionality and disease causality. Furthermore, electrostatic considerations are
frequently the key component in drug design to mitigate the disease mechanism. While an
attempt was made to group the contributions according to short- and long-range effects,
due to the complex nature of electrostatic interactions, both cases are often present in
biological systems. A prominent manifestation of the role of electrostatics in molecular
biology is pH-dependence, which typically originates from a mixture of long- and short-
range electrostatic interactions. Overall, electrostatics appear to be involved in many
processes at the molecular level and should be considered in any study dealing with an
atomistic level of details.
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