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Liver fibrosis is a common pathological feature of end stage liver failure, a

severe life-threatening disease worldwide. Nonalcoholic fatty liver disease

(NAFLD), especially its more severe form with steatohepatitis (NASH), results

from obesity, type 2 diabetes and metabolic syndrome and becomes a leading

cause of liver fibrosis. Genetic factor, lipid overload/toxicity, oxidative stress

and inflammation have all been implicated in the development and progression

of NASH. Both innate immune response and adaptive immunity contribute to

NASH-associated inflammation. Innate immunity may cause inflammation and

subsequently fibrosis via danger-associated molecular patterns. Increasing

evidence indicates that T cell-mediated adaptive immunity also provokes

inflammation and fibrosis in NASH via cytotoxicity, cytokines and other

proinflammatory and profibrotic mediators. Recently, the single-cell

transcriptome profiling has revealed that the populations of CD4+ T cells,

CD8+ T cells, gd T cells, and TEMs are expanded in the liver with NASH. The

activation of T cells requires antigen presentation from professional antigen-

presenting cells (APCs), including macrophages, dendritic cells, and B-cells.

However, since hepatocytes express MHCII molecules and costimulators, they

may also act as an atypical APC to promote T cell activation. Additionally, the

phenotypic switch of hepatocytes to proinflammatory cells in NASH

contributes to the development of inflammation. In this review, we focus on

T cells and in particular CD4+ T cells and discuss the role of different subsets of

CD4+ T cells including Th1, Th2, Th17, Th22, and Treg in NASH-related liver

inflammation and fibrosis.
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Introduction

With the high prevalence of obesity, diabetes, and metabolic

syndrome worldwide, the morbidity of nonalcoholic fatty liver

disease (NAFLD) is rapidly increased (1, 2). NAFLD may evolve

from simple steatosis to nonalcoholic steatohepatitis (NASH),

which may further progress to liver fibrosis and cirrhosis (3).

NAFLD now represents the most common liver metabolic

disease all over the world. It is predicted that by 2030, more

than 300 million peoples in China, 100 million in the USA, and

15-20 million in the major European countries will suffer from

NAFLD (4). Moreover, the number of NASH patients in the

USA will reach 27 million by 2030 (4). The prevalence of

NAFLD/NASH has increased from 23.8 to 32.9% in China

during 1998-2018 (5), with the total number of NASH patients

in China reaching 48.26 million by 2030 (4). Hepatic fibrosis is

an independent predictor of disease related mortality in NASH.

The fatality rate in NASH-related cirrhosis ranges from 12 to

25% (6). NASH has become the leading causes for liver

transplantation in the developed countries (6). From 2004 to

2016, the registration number of liver transplantation resulted

from NASH was increased by 114% in males and 80% in females

(7). Unfortunately, the pathogenic mechanisms underlying

NASH remains unclear and the effective new drug(s) and

therapies for the disease are urgently needed.

NASH is characterized by the presence of hepatic steatosis,

hepatocellular damage, inflammation, and varying degrees of

fibrosis, subsequently progressing to cirrhosis and end-stage

liver disease (1, 6). A large body of evidence demonstrates that

lipotoxicity, oxidative stress and inflammation act in concert in

promoting the pathogenesis of NASH and liver dysfunction. If

the liver fails to repair in the event of persistent injury,

progressive fibrosis and functional decline occur (8–12).

Metabolic dysfunction such as hepatic steatosis is considered

an early event in the pathogenesis of NASH. Excessive

accumulation of fat (lipotoxicity) in the liver not only

constitutes the first hit in the disease, but also causes

hepatocyte injury and liver insulin resistance and

inflammation, contributing to disease progression. Currently

known lipids with liver toxicity include saturated fatty acids,

diacylglycerols, ceramide, free cholesterol (FC), and

sphingomyelin (SM). It is generally believed that among many

pathological factors, lipotoxicity-elicited, innate and adaptive

immunity-mediated inflammation plays a central role in the

development and progression of NAFLD/NASH.
Innate immunity in NAFLD/NASH

NLRP3 is an important component involved in the innate

immunity, which functions as a pattern recognition receptor

(PRR) that senses both pathogen- and danger-associated
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molecular patterns (13). NLRP3 is highly expressed in the

Kupffer cells, where its activation significantly aggravates

NASH by secretion of pro-inflammatory cytokines, such as IL-

1b and IL-18 (14). In contrast, palmitic acid-induced

inflammation in the Kupffer cells is reduced and NASH

development is prevented in the NLRP3-/- mice (15). Similarly,

deficiency of NLRP3 protects mice from liver macrophage

infiltration and activation and attenuates liver injury and

fibrosis (16).

Kupffer cells (KCs), the predominant tissue-specific resident

macrophages in the liver (17–19), are situated on the liver

sinusoids and lymph nodes (19). The primary function of the

KCs is to remove pathogens or bacteria-derived toxins and

debris, generating innate immune response. Depletion of

hepatic KCs by clodronate liposomes or gadolinium chloride

alleviates liver steatosis and inflammation in high-fat diet

(HFD)-induced fatty liver animal models, suggesting an

essential role of the KCs in NAFLD/NASH (20, 21).

Additionally, the C-C motif chemokine receptor 2 (CCR2+)

monocytes, which are derived from bone marrow and

recruited to the liver by CCR2, are crucial in contributing to

hepatic fibrosis, since their inhibition has been reported to

ameliorate NASH (22). The KCs can also act as a professional

antigen-presenting cells (APCs) to present antigen to T cells

which are essential in the adaptive immunity (23).

Proinflammatory macrophages were found to be significantly

increased in the periportal zone in the livers of NASH patients

and correlated with the severity of liver fibrosis (22). An

additional mechanism by which the activation of KCs

contributes to the development of NASH is the activation of

local immune system and inflammatory response through

energizing PRRs. The Toll-like receptor (TLR) family is one of

major classes of the PRRs that play an essential role in the

initiation of innate immune response. The roles of hepatic TLR2,

TLR4 and TLR9 in NASH has been repeatedly reported (24–26).

Activation of the TLR4 by LPS or TLR-9 by DNA derived from

intestinal bacteria promotes steatohepatitis, while suppression of

the TLR4 or TLR-9 attenuates liver steatosis, inflammation, and

fibrosis in a few of mouse models of NASH (25, 27). Altogether,

these findings demonstrate that activation of the NLPR3

inflammasome and TLRs may contribute to the development

and progression of NASH.

Besides being a critical metabolic organ to controls body

glucose and lipid metabolism, the liver is also an important

immunological organ in inflammatory and immune response. In

the past decade, a great progress has been made regarding how

the immune cells are reshaped in the livers of animals and

patients with NASH (28–31). However, the exact cellular

composition of normal and steatotic livers in animals and

humans remains incompletely understood. Since single-cell

transcriptome analysis is very useful in uncovering the

compositions and the numbers of immune cells as well as

their differentiation and activation states in the livers, we
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967410
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.967410
utilized publicly available single-cell transcriptome databases

and analyzed the types and numbers of hepatic immune cells

between mice and humans (Supplemental Figure 1). We found

that the percentages of CD4+ T cells, CD8+ T cells, NK T cells,

NK cells, gd T cells, TEMs, and monocytes in murine livers were

less than those in humans, but the number of B cells, dendritic

cells (DCs), and KCs were more in mice than those in humans

(Supplemental Figure 1). Recent study has indicated that

compared to controls, the mice with NASH exhibited

increased proportions of hepatic CD4+ T cells, CD8+ T cells,

gd T cells, TEMs, B cells, DCs, and LAM, with reduced

proportions of hepatic NK T cells, NK cells, monocytes and

KCs (28). These findings demonstrate that in addition to innate

immunity, adaptive immunity also plays a critical role in the

pathogenesis of NAFLD/NASH. Below we will discuss the

consequence of the changes in hepatic immune cell

infiltration, with a focus on the role of T cell-mediated

acquired immunity in NAFLD/NASH.
T cell-mediated adaptive immunity
in NASH

General roles of T cells in NASH

T cells represent a major type of lymphocytes in the

immune system and play a crucial role in the adaptive

immune response. T cell clone can recognize antigen by the

presence of a T cell receptor (TCR) on its cell surface.

According to the differential physiologic functions, T cells

can be subdivided in conventional T cells and innate-like T

cells (unconventional T cells). Conventional T cells can be

further classified into CD8+ cytotoxic T (Tc) cells and CD4+ T

helper (Th) subsets, and innate-like T cells are composed of

natural killer T (NKT) cells, gd T cells and mucosal-associated

invariant T (MAIT) cells (32, 33).
Roles of antigen-presenting cells
in NASH

It is well known that the major histocompatibility complex

(MHC) is essential for specifically recognizing antigen by T cells.

The MHC family includes MHCI and MHCII. The function of

the MHCI molecules is to display intracellular proteins to CD8+

T cell, named as cytotoxic T cells (CTLs), while the MHCII

molecules are highly expressed in antigen-presenting cells

(APCs) to induce CD4+ T cell activation. APCs are divided

into professional APCs and non-professional APCs. Professional

APCs expressing the MHCII molecules include macrophages,

dendritic cells (DCs), and B-lymphocytes. As mentioned above,

the Kupffer cells (KCs), a kind of specified hepatic macrophages,
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are critically involved in the development and progression of

NASH. The DCs act as a bridge between the innate and the

adaptive immune responses (34). Hepatic DCs are mainly

localized at the portal vein, with a minor presence at the

central vein (35) and their numbers are markedly increased in

NASH patients (36). An increase of conventional dendritic cells

(cDCs) and cDC1s specifically presenting XCR1 was observed in

NASH patients and models (37). CD11c+ cells have been found

to exert a defensive effect on methionine and choline-

deficient diet (MCD)-induced liver fibrosis (38). Moreover,

there is a significant correlation between the circulating and

hepatic cDC1 cell numbers and the severity of NASH (37).

NASH was found to be associated with increased proliferating

cDC1 progenitors. Specific depletion of cDC1s attenuates

steatohepatitis in NASH mice (37), suggesting that cDC1s

contribute to the pathogenesis of NASH. However,

contradictory results also exist regarding the role of DCs in

NASH. For example, no significant impact of DCs on the

development of hepatic fibrosis was observed in bile duct

ligation (BDL)- and carbon tetrachloride (CCl4)- induced

NASH models (39). Thus, further studies are needed to clarify

the role of different DCs in the pathogenesis of NASH.

B-lymphocytes, also known as B cells, also represent a classic

type of leukocytes and the major humoral immunity component

involved in adaptive immune response. B cells present essential

immunological functions, such as producing antibody,

presenting antigen, and secreting cytokines (40–42). The

numbers of hepatic B cells in mice are much higher than those

in humans (43) (Supplemental Figure 1). An accumulation of B

cells is evident in the livers of NASH patients, which is

accompanied by marked hepatic inflammation and fibrosis

(44). Similarly, activated intrahepatic B cells were found to be

markedly increased in NASH mouse models. Moreover, B cell

deficiency can significantly ameliorate NASH phenotypes in

mice, possibly because both B cell receptor-mediated adaptive

immune signaling and myeloid differentiation primary response

88 (MyD88)-dependent innate immune response are involved in

pathological actions of B cells on NASH (45). It is also noted that

NASH is associated with altered gut microbiota and increased

intestinal permeability. Thus, hepatic B cells may be

inappropriately activated in a microbiota-dependent manner

to participate in NASH inflammation (45).

Increasing evidence shows some other cell types expressing

the MHCII molecules are capable of presenting antigen as

atypical APCs, including the mast cells, basophils, eosinophils,

neutrophils, innate lymphoid cells (ILCs), endothelial and

epithelial cells (46). Our recent research showed that renal

proximal tubule epithelial cells (PTECs) also represent as an

atypical APC, which may promote the proliferation of CD4+ T

cells in a MHCII-dependent manner (47). Emerging evidences

demonstrate that the MHCII molecules are expressed in mouse

and human hepatocytes (48–50). The levels of MHCII are

increased in the hepatocytes of viral hepatitis and autoimmune
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hepatitis (48, 51). Compared to healthy control, there was higher

expression of MHCII in the liver biopsies of NASH patients.

Significantly increased levels of MHCII were also observed in the

liver samples of patients with alcoholic hepatitis (AH), with

marked upregulation of CD4 expression closely associated with

MHC II producing hepatocytes in AH biopsies (52), suggesting

that hepatocytes may function as important nonclassic APCs in

NASH-related liver fibrosis.
TCR and costimulatory molecules

TCR recognition of antigen as peptides bound to the MHC

molecules provides the primary signal for T cell activation (53).

The TCRs are comprised of two different heterodimers: TCRa/
TCRb or TCRg/TCRd (54). In the majority (95%) of T cells the

TCRs consist of TCRa and TCRb isoforms. ab T cells were

regularly referred to as T cells. However, a small proportion (less

than 5%) of T cells (gd T cells) are composed of TCRg and TCRd
isoforms (54). Antigen recognition is achieved through the TCR-

CD3 complex. CD3 is an essential T cell co-receptor, which is

required for T cell activation. Recent study has showed that there

is a marked decrease in TCR clonotypes (TCR TCRa, TCRb, and
TCRab) in CCl4-induced fibrotic livers (55). Furthermore,

TCRb gene knockout mice showed an aggravated hepatic

fibrosis phenotype compared with WT mice, which is

associated with the activation of hepatic stellate cells (HSCs)

due to the expansion of macrophage and gd T cells (55). These

results indicate that TCR-mediated T cell activation may play an

important role in the pathogenesis and progression of

liver fibrosis.

Additionally, the full activation of CD4+ T cells requires a

second co-stimulatory signal (56, 57). Costimulatory molecules

are present on the surface of T cells and APCs binding with each

other in a paired ligand-receptor manner, which leads to the

activation of these cells and thus triggers immune response (58).

OX40 and its ligand, OX40L are the members of the TNF

receptor superfamily and produce a potent costimulatory

signal that enhances T cell activation, proliferation, and

differentiation (59). Recent study indicates that OX40 plays an

essential role in regulating both liver innate and adaptive

immunity and promotes NASH development and progression

(60). Compared with the wild-type (WT) mice, OX40 global

knockout (KO) mice exhibited an ameliorated NASH

phenotype. Mechanistically, OX40 global deficiency suppresses

Th1 and Th17 differentiation and inhibits monocyte migration

during NASH development. Plasma OX40 levels were found to

be positively correlated with NASH in patients, suggesting that

OX40 may represent a diagnostic parameter and therapeutic

target in NASH (60). Together, these studies have indicated that

T cell costimulatory molecules contribute to the development

and progression of NASH. However, it is still uncertain whether

hepatocytes supply the T cell with costimulatory signal to
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activate and drive inflammation. The expression of OX40L on

hepatocytes in mice is undetectable, although they are expressed

on other hepatic APCs, such as KCs and DCs (61). Thus, further

studies are needed to address these unanswered questions.
The roles and mechanisms of CD4+ T
cells in NASH

T helper cells, as known as CD4+ T cells, are involved in

immune processes and express membrane surface marker CD4

(62). Dysfunction of CD4+ T cells is emerging as an important

pathological factor engaged in the progression of NAFLD and

NASH. An accumulation of peripheral and intrahepatic CD4+ T

cells was revealed in human and mouse NASH models (63–65).

In a study in which human T cells were transferred to NOD-scid

IL2rgnull (NSG) mice to identify human-specific immune

response in NASH, CD4+ T cells were found to be crucial in

promoting liver steatosis-fibrosis transition (65). Moreover, in

vivo depletion of human CD4+ T cells can efficiently reduce

proinflammatory cytokine production and fibrosis in the

humanized NASH mice, further confirming the importance of

CD4+ T cells in the pathogenesis of NASH (65). Other evidence

also supports a potential role of CD4+ T cells in promoting

NASH by releasing proinflammatory cytokines, because MCD-

HFD-induced NASH can be significantly attenuated in mice

deficient for IFNg (66). It is well known that CD4+ T cells have

several functionally diverse subsets, such as Th1, Th2, Th17,

Th22, and regulatory T cells (Tregs), which are characterized by

expression of different cytokines respectively (67, 68). Although

overall CD4+ T cells are critically involved in NASH-related

inflammation and fibrosis, the role and mechanism of each

CD4+ T cell subset in the onset and progression of NASH may

be different and are summarized in Table 1 and discussed in the

following sessions.
TH1 cells and liver fibrosis

T helper 1 (Th1) cells exhibit proinflammtory effects via

expressing the transcription factor T-bet and producing cytokine

IFN-g, IL-2 and TNF-a through the activation of STAT4 and

STAT1 (80). Compared to healthy controls, there was an

elevation in Th1 cell proportions in peripheral blood of

NAFLD and NASH patients although there were not

differences in Th1 cell numbers in peripheral bloods and

hepatic tissues between NAFLD and NASH patients (64).

Nevertheless, there is an increase of genes toward Th1

phenotype in NSAH compared with NAFLD patients (81). In

animals, hepatic Th1 cells were found to be increased in a MCD

diet-induced mouse NASH model (82). Since IFN-g is produced
by Th1 cells, IFN-g gene KO mice are applied to determine the

role of Th1 cells in NASH. IFNg-deficient mice exhibit less
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steatohepatitis and attenuated fibrosis than wild-type (WT)

littermates with an MCD-high-fat diet (66). These results are

indirectly supported by clinical observations that both pediatric

and adult NASH patients have elevated circulating and hepatic

IFN-g-producing CD4+ T cells (69, 70). Consistently, an

upregulation of hepatic Th1-related cytokine IFN-g, IL-12 and

TNF-a was observed in steatotic mice induced by concanavalin

A (CoA) hepatitis plus choline-deficient diet, which was

accompanied with an increase in T-bet and STAT4 expression

(83). Collectively, these findings demonstrate that Th1 cells exert

proinflammatory and profibrotic effects on NASH, probably by

an IFN-g dependent manner.
TH2 cells and liver fibrosis

In general, Th2 cells exert an anti-inflammatory effect to

ensure a protective immune response (82). Th2 cells are

characterized by the transcription factor (TF) GATA3 and

dominantly produce cytokine IL-4, IL-5, and IL-13 by the

activation of STAT5 and STAT6 (78, 84). Several studies have

supported a role of Th2 cells in NASH. Compared to healthy

normal controls, an increase in peripheral blood Th2 cells in

NAFLD patients was observed (64). Moreover, the Th2/Treg

ratio in peripheral bloods was significantly increased in NAFLD

patients, and was markedly decreased in NAFLD patients after

12 months bariatric surgery. However, there is not difference in

Th2/Treg ratio in either peripheral blood or the liver between

NASH and NAFLD patients (65). Serum levels of Th2 cytokine

IL-13 were found to be elevated in NASH patients, accompanied

by increased hepatic expression levels of its receptor IL-13Ra2
(71). It has been reported that functional IL-13Ra2 was

upregulated in activated hepatic stellate cells (HSCs) in NASH,

and IL-13 cytotoxin-mediated killing of IL-13Ra2+ cells can

ameliorate liver fibrosis in a rat model of NASH, indicating the

involvement of the IL-13/IL-13Ra2 pathway in NASH (71).

Since IL-33 can promote Th2 response and increase the

production of type 2 cytokines, such as IL-4, IL-5, and IL-13,

which leads to extracellular matrix accumulation, administration

of recombinant IL-33 to mice exaggerated liver fibrosis in NASH

mice (72). However, IL-33 at the same time decreased hepatic
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triglyceride storage and reduced liver injury (72), suggesting that

the role of IL-33 in NASH is complicated. Therefore, the

contribution of Th2 cell-mediated adaptive immunity to

NASH remains inconclusive and needs to be further defined.
TH17 cells and liver fibrosis

T helper 17 (Th17) cells are commonly known as

proinflammatory cells and characterized by specific expression

of active TF retinoic acid receptor-related orphan receptor gt
(RORgt) and STAT3 (85). Th17 cells mainly produce IL-17, IL-

22 and IL-23. The IL-17 family is composed of six members

namely IL-17A-F (86). An increase in the number of Th17 cells

was repeatedly observed in the livers of NAFLD/NASH animal

models (82, 87–90). Moreover, increased number of Th17 cells

in circulation and the liver is also observed in NAFLD/NASH

patients, accompanied with increased Th1 cells (64). However,

the role of Th17 cells in the progression of liver fibrosis is

uncertain. Several studies have showed an elevation in hepatic

steatosis by administering IL-17, as well as an attenuation in liver

fibrosis when blocking IL-17 (82, 88, 91, 92). However, there are

other studies reporting an opposite effect in which enhanced

liver steatosis was observed after functionally blocking IL-17 (89,

93). Th17 cell can induce hepatic inflammation possibly due to

the accumulation of macrophages by IL-17-dependent elevation

of chemokine CXCL10 (85, 89). It has been previously reported

that IL-17 and IL-22 exhibit opposite effects in the development

of NASH (86). For instance, IL-17 can increase, while IL-22 can

prevent, palmitate-induced lipotoxicity to hepatocytes (82).

Taken together, Th17 cells promote hepatic inflammation and

fibrosis possibly by acting on liver cells particularly the Kupffer

cells and Stellate cells to accelerate the fibrotic process (73–75).
TH22 cells and liver fibrosis

T helper 22 (Th22) cells are specified by producing IL-22 in

the absence of IL-17 (94). The differentiation of Th22 cell is

promoted by IL-6 and TNFa, and hindered in the presence of

TGFb. Activation of the transcription factor aryl hydrocarbon
TABLE 1 Roles of diverse CD4+ T cell subsets in NASH.

Cell subset Effect Mechanism References

Th1 cells Profibrotic IFN-g dependent manner (66, 69, 70)

Th2 cells Complicated Production of type 2 cytokines via IL-33 (71, 72)

Th17 cells Profibrotic An IL-17–driven fibrotic process (73–75)

Th22 cells Bidirectional Production of IL-22 (76, 77)

Treg cells Antifibrotic(mainly) Immunosuppression by secretion of IL-10 (78, 79)
fr
Different CD4+ T cell subsets exhibit diverse effects on liver fibrosis. Th1 and Th17 cells are proinflammatory and profibrogenic while the role of Th2 cells in hepatic fibrosis is complicated.
Th22 and Treg cells may be both anti- and/or pro-fibrotic depending on disease setting and the stage of the disease.
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receptor (AhR) markedly promotes Th22 cells to produce IL-22

(94). IL-22 may exert an inhibitory effect on the development of

NAFLD. In animals, hepatic steatosis was markedly attenuated

and transaminase levels were significantly reduced by the

adminiatration of recombinant IL-22, possibly via a STAT3-

mediated mechanism (76, 77). In addition, short-term IL-22

treatment is capable of decreasing hepatic expression of PPARa,
PPARg, and SREBP-1c, while long-term treatment is able to

decrease the expression of hepatic fatty acid synthase (FAS) and

very long chain fatty acids protein 6 (ELOVL6) (77). It has been

reported that IL-22 can attenuate palmitate-induced lipotoxicity

in a PI3K/Akt-dependent manner to inhibit JNK, which may

explain why IL-22 downregulates transaminase levels.

Intriguingly, IL-22-mediated hepatoprotection was only

effective in the absent of IL-17, which increases the expression

of PTEN, a PI3K/Akt inhibitor (82). Collectively, these findings

indicate that IL-22 can exert an antifibrotic effect, which may be

beneficial in NASH. However, it has been reported that IL-22

treatment may increase the risk of hepatocellular carcinoma

possibly by the activation of STAT3, which limits its clinical use

as a therapeutic agent for NASH (95).
Regulatory T cells and liver fibrosis

Regulatory T (Treg) cells play critical roles in modulating

immune homeostasis. Tregs are defined by the expression of the

transcription factor forkhead box P3 (Foxp3). Tregs exert their

immunosuppressive effects by secreting the cytokine IL-10, and

interfering with T-cell survival by IL-2 depletion to inhibit APCs

maturation and functionality (78). The differentiation of Treg

cells is driven by TGFb in the absent of IL-6 and further

augmented by IL-2- and retinoic acid-induced STAT5

activation (96). IL-6 is an important determinant that balances

the differentiation between the Treg and Th17 (96). Studies

showed that the function of Treg in visceral adipose tissue is

PPARg dependent (97). PPAR-g is a major driver in the

accumulation and the phenotype of Treg cells in adipose

tissue. It has been reported that Treg cells lacking PPAR-g
exhibited a phenotype of insulin resistance, and the PPARg
agonist pioglitazone failed to restore its insulin sensitivity in

Treg-specific PPARg-/- mice (97). Moreover, pioglitazone

treatment can ameliorate HFD-induced hepatic steatosis and

increased Treg cell numbers in the visceral adipose tissue and the

liver (98).

A decrease in hepatic Treg cell numbers was observed in

animal models of NAFLD (90, 99, 100), with the mechanisms

accounting for decreased Treg cell numbers in NAFLD largely

unknown. In steatotic livers, excessive oxidative stress leads to

the apoptosis and reduction of hepatic Treg cells, which can be

prevented by the antioxidant MnTBAP (99). Depletion of

hepatic Foxp3+CD4+CD25+ Tregs may result in steatosis if the

animals are fed with a high-fat diet, while reconstitution of Treg
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cells can attenuate the NASH phenotype, accompanied by the

reduction of hepatic inflammation as evidenced by a

downregulation in hepatic TNFa expression (99). Another

study also showed that adoptive transfer of induced Tregs can

alleviate the pathological (liver steatosis) and metabolic (high

levels of blood glucose, cholesterol, and liver enzymes)

abnormalities in leptin-deficient ob/ob mice, supporting a

potential immunological approach for treatment of diabetes

and steatosis by the induction of Tregs (101). Moreover,

circulating and hepatic resting Treg cell numbers are lower in

NAFLD patients than healthy controls, with even more robust

reduction in patients with NASH (64). Thus, the liver Th17/

resting Treg ratio may be useful in distinguishing patients with

NASH from those with simple steatosis. Unlike resting Treg

cells, although there is an increase in the circulating levels of the

activated Tregs, the change in the numbers of activated Tregs in

the liver remains controversial in NAFLD (102). Thus far, most

available evidence demonstrates that Treg cells are antifibrotic at

least in part due to its immunosuppressive effect through

secretion of IL-10 (79). In fact, in a bile duct ligation animal

model, depletion of Tregs exacerbates liver fibrosis, which is

associated with a marked changes in IL-6 and IL-10 production

(103). However, since Treg cells also secret TGFb, which is

widely regarded as an important profibrotic factor for the

development and progression of liver steatosis and fibrosis (96,

104–106), Treg cells may have a dual role in NASH owing to

their spatial and temporal actions in the process of the disease.
gd T cells and liver fibrosis

In additional to CD4 T cells, there is a significant proportion

of gd T cells in liver, responsible for 15%-25% of total T cells and

3-5% of total lymphocytes (107). Importantly, gd T cells were

found to be significantly increased in NASH in both humans and

mice. gd T cell population is an exclusive subset of CD3+ T cells

characterized by a T cell receptor (TCR) g chain and d chain, and
does not require MHC-mediated antigen presentation. gd T cells

may function as a connection between the innate and adaptive

immunity because they express TCRgd that recognizes certain

antigens and also secrete pro-inflammatory cytokines such as IL-

17A upon stimulation (108). In HFD- or high-fat/high-

carbohydrate diet (HF/HCD)-induced NASH mice, a marked

elevation in both adipose tissue and liver gd T cells were

observed, associated with liver steatosis, damage, and cirrhosis

(109). Furthermore, gd T cell Tcrd-/- mice exhibited a significant

attenuation in steatohepatitis compared to WT mice after HFD

treatment. Transfer of HF/HCD-treated mice with WT hepatic

gd T cells, but not with IL-17A-/- hepatic gd T cells, exacerbated

NASH in Tcrd-/- mice, suggesting that hepatic gd T cells may

contribute to NASH progression (109). It has been reported that

hepatic gd T-cell infiltration is increased in a CCR2-dependent

manner in three animal models of steatohepatitis, including
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alcoholic steatohepatitis (ASH), MCD-induced NASH, and HFD

plus ethanol-induced model (110). Depletion of gd T cells can

reduce liver steatosis, leukocyte infiltration, and inflammation

(110), possibly by inhibiting the innate and adaptive immune

responses during NASH progression (111).
Conclusion and perspectives

Chronic inflammation plays a critical role in NASH.

Increasing evidence has indicated that both innate immunity

and adaptive immunity contribute to the progression of NASH

(Figure 1). Lipid toxicity, oxidative stress, and inflammation may

give rise to the injuries of hepatocytes, macrophages (KCs), and

liver sinusoidal endothelial cells (LSECs), where PRRs including

TLRs and NLPR3 inflammasome sense the signals through both

pathogen- and danger-associated molecular patterns and trigger

proinflammatory responses. The KCs act as a bridge between the

innate and adaptive immune responses. The role of LSECs in

NASH is not discussed in this review due to the length limit of

the article. Although it is still unclear whether hepatocytes

provide T-cell costimulatory signal, they express the MHCII

molecules and may act as nonclassic APCs contributing T cell-

mediated adaptive immunity and liver fibrosis in NASH. In the

past decade, a large body evidence demonstrates that CD4+ T

cells are critically involved in the pathogenesis and progression
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of NASH. Different CD4+ T cell subsets exhibit diverse effects on

liver fibrosis. Th1 and Th17 cells are proinflammatory and

profibrogenic, while the role of Th2 cells in hepatic fibrosis is

complicated. Th22 and Treg cells may be both anti- and/or pro-

fibrotic depending on disease setting and the stage of the disease.

Although great progress has been made in demonstrating

the mechanism of the chronic inflammation and functions of

immune cells particularly the CD4+ T cell subsets in NASH,

many critical questions remain unanswered. With the help of

modern techniques including single-cell or single-nucleus RNA

sequencing combined with interactive analysis, we should be

able to gain more insights into the underlying cellular and

molecular mechanisms of NASH and identify new potential

therapeutic targets for treating liver fibrosis. Finally, it is

noteworthy to emphasize the differences in compositions and

subsets of immune cells in the livers between human and mice.

Thus, mice or rats with humanized immune system are urgently

needed for future study on the role of immune cells and

inflammation in NASH.
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FIGURE 1

The schematic diagram of both innate immunity and adaptive immunity contributing to the progression of NASH. Lipid toxicity, oxidative stress,
and inflammation may give rise to the injuries of hepatocytes, macrophages (KCs), and liver sinusoidal endothelial cells (LSECs), where PRRs
including TLRs and NLPR3 inflammasome sense the signals through both pathogen- and danger-associated molecular patterns and trigger
proinflammatory responses. KCs act as a bridge between the innate and the adaptive immune responses. The roles of LSECs in NASH are not
discussed in the present paper. Hepatocytes as APCs may play a role in T cell-mediated adaptive immunity and express the MHCII molecules,
which are elevated during NASH, providing the first signal for CD4+ T cell activation. Simultaneously, T cell costimulatory signal pathways, such
as OX40-OX40L, which may mediate the cross-talk between hepatocytes and T-cells, are associated with the progression of NASH. Finally,
CD4+ T cells are involved in the pathogenesis and development of NASH.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967410
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.967410
Funding

This work was supported by the National Natural Science

Foundation of China (No. 81970606, 81970595, 81970636 &

81970642); the Shenzhen Basic Research Project (No.

JCYJ20210324095005015).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
Frontiers in Immunology 08
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.967410/full#supplementary-material

SUPPLEMENTARY FIGURE 1

The changes of immune cell subsets in the livers between humans (A)
and mice (B) by single cell RNA-sequencing (scRNA-seq) analysis. We
analyzed and specifically focused on the immune cells from publicly

available liver single-cell transcriptome datasets of humans and mice.

The proportions of CD4+ T cells, CD8+ T cells, NK T cells, NK cells, gd T
cells, TEMs, and monocytes in murine livers were relatively less than

those in humans, but the numbers of B cells, DC cells, and KCs were
more in mice than those in humans. The original data from the

database in the www. livercellatlas.org were downloaded with the
permission of the authors. Notes: TEMs, effector memory T cells;

KCs, Kupffer cells.
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