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Abstract: Bearings are nonlinear systems that can be used in several industrial applications. In
this study, the combination of a strict-feedback backstepping digital twin and machine learning
algorithm was developed for bearing crack type/size diagnosis. Acoustic emission sensors were used
to collect normal and abnormal data for various crack sizes and motor speeds. The proposed method
has three main steps. In the first step, the strict-feedback backstepping digital twin is designed for
acoustic emission signal modeling and estimation. After that, the acoustic emission residual signal is
generated. Finally, a support vector machine is recommended for crack type/size classification. The
proposed digital twin is presented in two steps, (a) AE signal modeling and (b) AE signal estimation.
The AE signal in normal conditions is modeled using an autoregressive technique, the Laguerre
algorithm, a support vector regression technique and a Gaussian process regression procedure. To
design the proposed digital twin, a strict-feedback backstepping observer, an integral term, a support
vector regression and a fuzzy logic algorithm are suggested for AE signal estimation. The Ulsan
Industrial Artificial Intelligence (UIAI) Lab’s bearing dataset was used to test the efficiency of the
combined strict-feedback backstepping digital twin and machine learning technique for bearing crack
type/size diagnosis. The average accuracies of the crack type diagnosis and crack size diagnosis of acoustic
emission signals for the bearings used in the proposed algorithm were 97.13% and 96.9%, respectively.

Keywords: bearing; digital twin; machine learning; acoustic emission; autoregressive technique;
Gaussian process regression; Laguerre filter; fuzzy logic; strict-feedback backstepping observer;
support vector regression; support vector machine; crack size diagnosis; crack type diagnosis

1. Introduction

Bearings are very important components in rotating machines, as they are used to
reduce the friction between moving parts for linear and rotational motion. These compo-
nents have been widely used in rotating machinery in various industries, such as steel
mills, paper mills and wind power generators, to improve their lifespan and efficiency by
reducing friction and facilitating motion. Due to the widespread use of these components,
complexities of the tasks and nonlinear parameters, it is particularly significant to investi-
gate their associated faults. Different types of faults have been introduced in the bearing which
can be categorized into four main groups, inner fault, outer fault, roller fault and cage faults [1,2].

To analyze the bearing conditions, several condition monitoring procedures based
on acoustic emissions, bearing circuit analysis, stator current, vibration, shaft voltage and
bearing current have been considered [1,2]. The types of sensors and crack diagnosis approaches
in bearings can be quite different, depending on the projects and facilities. Among these, vibration
and acoustic emission measurement techniques have been the most widely used [2].
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Multiple techniques exploring the time domain, frequency domain and time–frequency
domain features have been carried out to design bearing fault diagnosis schemes. In
feature-based analyses, time and frequency domain analysis has the challenge of a high-
dimensional feature set. On the other hand, the analysis of the bearing signals by classical
signal processing, such as the fast Fourier transform, is considered to be insufficient,
because it provides a global transformation that is unable to properly capture the local
time–frequency properties of a signal [3]. The nonlinear and nonstationary behavior in
bearing can be explored by various time–frequency analysis techniques, including the
Wigner Ville distribution (WVD) [4], short-time Fourier transform (STFT) [5,6] and wavelet
packet transform (WPT) [7].

Crack diagnosis approaches can be characterized into three main divisions, classical
techniques (e.g., model-reference approach), intelligent approaches (data-driven approach)
and a combination of classical and intelligent algorithms (hybrid approach) [1]. The model-
reference and data-driven approaches have various benefits and disadvantages [8]. The
biggest issues of model-reference schemes are model dependence and low efficiency in
uncertain environments [8]. On the other hand, robustness and reliability are two essential
deficiencies of data-driven techniques [9]. Recently, a lot of attention has been paid to
hybrid techniques for fault diagnosis. These techniques can increase the reliability and
accuracy of fault identification through a combination of other procedures [10]. To reduce
the obstructions of model-reference and data-driven algorithms, heterogeneous schemes
have been suggested [11]. The combination of feature extraction in AE signals and support
vector machines was introduced in [12]. Moreover, Junayed Hassan et al. [13] suggested
the combination of AE feature extraction, genetic algorithm-based feature selection and
k-nearest neighbor (k-NN) classifier for fault diagnosis.

Digital twins are an emerging technique that can be used in anomaly diagnosis. These
methods allow various and much more detailed analyses to be performed by designing
digital models of the system [14]. Digital twins have many uses, but the most notable ones
are modeling and estimation. Various techniques can be selected for system modeling,
including mathematical and data-driven approaches [14].

Recently, many articles have represented data-driven methods for system modeling.
The main principle of most data-driven modeling techniques is regression. The application
of system modeling using an autoregressive external input with the Laguerre technique
was presented in [15]. Moreover, to improve the performance of system/signal modeling
using the autoregressive technique, Zhou Yihong and Feng Ding [16] represented the
combination of an autoregressive technique and radial basis function. The application of
nonlinear autoregressive techniques for modeling systems controlled using an intelligent
Kalman filter approach are explained in [17]. Linear regressors can provide acceptable
results for modeling stationary signals, but they have many limitations for non-stationary
signals such as vibration or acoustic emission (AE) signals. Thus, to modeling vibration
signals, Tayebihaghighi and Koo [18] introduced the machine learning-based autoregressive
technique. To improve the robustness and reliability of signal modeling, a signal estimation
technique using observation techniques has been proposed. Various kinds of observers
have been used in several applications and can be categorized into two main groups, linear
observers (e.g., proportional integral observer, proportional multi-integral observer and
proportional integral derivative observer) and nonlinear observers (e.g., sliding mode
observer, feedback linearization observer, backstepping observer, fuzzy logic observer
and neural network observer) [19]. Apart from the applications of linear observers for
fault diagnosis, these techniques suffer from reliability, robustness and nonlinear signal
estimation issues [15]. Njima and Garna [15] improved the performance of proportional
integral observers using an autoregressive external input with the Laguerre technique. To
improve linear observers, feedback linearization observers were introduced in [20].
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The main issue associated with this approach is robustness. To solve this robustness
problem in feedback linearization observers, sliding mode observers and backstepping
observers have been suggested [21,22]. The chattering phenomenon is one of the main
critical challenges of a classical siding mode observer. On the other hand, reliability is the
main issue for fuzzy and neural network observers [23–26]. Moreover, the application of fuzzy
logic approaches for fault classification of bearings is presented in [27]. To improve the reliability
of fuzzy techniques, global fuzzy entropy with fuzzy-based classifier was introduced in [28].

Diverse algorithms have been recommended to accomplish the decision-making pro-
cedure, which are distributed into two principal groups, (a) classical techniques and (b)
machine learning-based approaches. Classical methods such as rule-based algorithms have
been widely used for decades in different expert systems [29]. On the other hand, machine
learning algorithms for decision making are currently more frequently used for condition
monitoring in nonlinear and nonstationary systems/signals. The most popular algorithms
for classifying the signals are the support vector machine (SVM) [30], decision tree [31],
k-nearest neighbors [32], naive bayes [33] and logistic regression [34]. The SVM is known as
a robust machine learning algorithm that is impervious to the curse of the dimensionality
problem. One of the main advantages of the SVM is that it can be proficiently applied for
the classification of both linear and nonlinear separable types of datasets, which is possible
due to the availability of different types of kernels, such as linear, polynomial and radial
basis function kernels [30]. In this work, an intelligent signal identification algorithm for
modeling, hybrid-based AE signal observation and the support vector machine (SVM)
classification method are recommended for bearing crack type/size diagnosis. In the pro-
posed algorithm (digital twin), first, the AE signal in normal condition is modelled using
the combination of proposed linear regression, a nonlinear regressor and a Laguerre filter.
Next, the unknown AE signals are estimated using the proposed digital twin. Finally, the
SVR is used for crack type and crack size diagnosis.

This work has the following contributions:

1. AE signal modeling using a combination of autoregressive techniques, Laguerre filters,
support vector regression and Gaussian process regression.

2. Design of a strict-feedback backstepping digital twin using the proposed signal mod-
eling, strict-feedback backstepping observer, integral term, support vector machine
and fuzzy algorithm for normal and abnormal AE signal estimation.

3. Proposal of a digital twin and machine learning algorithm for crack type/size diagnosis.

This work is organized as follows: The acoustic emission bearing dataset is explained
in Section 2. The strict-feedback backstepping digital twin, AE residual signal generation
and crack type/size classification using the SVM are presented in Section 3. The results
and discussion are analyzed and explained in Section 4. Finally, conclusions and future
works are in Section 5.

2. Dataset

Figure 1 illustrates a block of the fault simulator. A three-phase induction motor
is suggested to transfer the torque to the non-drive end shaft using a gearbox. Figure 2
illustrates an Ulsan Industrial Artificial Intelligence (UILI) Lab testbed for the simulation of
the bearing faults.
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each shaft, a bearing (FAG NJ206-E-TVP2) was attached. In this experiment, a wideband 
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drive end shaft bearing at a 21.48 mm displacement [35–38]. In this paper, crack sizes in 
the bearings 3 mm and 6 mm in length, 0.35 mm in width and 0.3 mm in depth were tested 
[35,39,40]. Furthermore, the following eight different conditions to test the bearing were 
introduced: healthy conditions (HC), ball conditions (BC), inner conditions (IC), outer 
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Figure 2. Experimental setup for bearing data collection: (a) recording the data and (b) acoustic
emission data acquisition.

This testbed had the following parts: (a) a three-phase induction motor; (b) a gearbox,
to transfer the load to the shaft; and (c) acoustic emission sensors for data collection. For
each shaft, a bearing (FAG NJ206-E-TVP2) was attached. In this experiment, a wideband
frequency AE sensor (PAC WSα) was used to acquire data when placed on the top of
non-drive end shaft bearing at a 21.48 mm displacement [35–38]. In this paper, crack sizes
in the bearings 3 mm and 6 mm in length, 0.35 mm in width and 0.3 mm in depth were
tested [35,39,40]. Furthermore, the following eight different conditions to test the bearing were
introduced: healthy conditions (HC), ball conditions (BC), inner conditions (IC), outer condi-
tions (OC), inner–ball conditions (IBC), inner–outer conditions (IOC), outer–ball conditions
(OBC) and inner–outer–ball conditions (IOBC). Figure 3 shows the bearing crack types.
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Moreover, the sampling rate to collect the data was 250 kHz. Fault diagnosis of low-
speed bearings under variable speed conditions is still a challenging problem and the motor
rotational speeds were 300, 400, 450 and 500 RPM. Table 1 shows the AE signal information.
Moreover, Table 2 illustrates the detail of the data acquisition system [36].

Table 1. AE UIAI-Lab bearing signal information.

Classes Motor Speed (RPM) Crack Sizes (mm)

HC 300, 400, 450 and 500 -
OC 300, 400, 450 and 500 3 and 6
IC 300, 400, 450 and 500 3 and 6
BC 300, 400, 450 and 500 3 and 6

IOC 300, 400, 450 and 500 3 and 6
IBC 300, 400, 450 and 500 3 and 6
OBC 300, 400, 450 and 500 3 and 6
IOBC 300, 400, 450 and 500 3 and 6

Table 2. Data acquisition system information [36].

AE Sensor (PAC WSα) [41] PCI Board with 2-Channel AE Sensor [42]

Peak sensitivity (V/µbar): −62 dB 18-bit 40 MHz A/D conversion
Operating frequency range: 100–900 kHz AE input: 2 channels (a 10 M samples/s rate one

Directionality: ±1.5 dB and a 5 M samples/s one, as two channels
Resonant frequency: 650 kHz were simultaneously used)

3. Proposed Scheme

Figure 4 illustrates the proposed technique for crack diagnosis in bearings using AE
signals. Based on this figure, the proposed method has the following three main parts:
(a) proposed digital twin technique for AE signal modeling and estimation, (b) generation
of residual AE signals and (c) crack type/size diagnosis using a machine learning algorithm
(support vector machine). To design the proposed digital twin algorithm, the main step
is signal estimation. In this work, a proposed hybrid robust observation algorithm was
designed for estimating the AE signals. To extract the state-space function from AE signals
to design the proposed hybrid robust observer, signal approximation (modeling) is the first
step. A nonlinear function of support vector regression (SVR) and the nonlinear Gaussian
process regression (GPR) are applied to the robust autoregressive Laguerre to have a robust
and accurate hybrid AE signal modeling algorithm. After modeling the AE signal in normal
conditions, the hybrid modeling algorithm and fuzzy logic approaches are applied to the
proposed strict-backstepping observer to design a proposed digital twin for AE signal
estimation. According to Figure 4, after the digital twin is designed in the first step, the AE
residual generation, which is the difference between the original and the estimation signal,
is obtained in the second stage. Finally, in the last stage, the crack size can be identified
using a support vector machine (SVM). So, first, the AE residual signal is resampled and
the root-mean-square (RMS) feature is extracted from AE signals. Then, the RMS of the
residual signal is identified by SVM classification algorithms.
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3.1. Proposed Digital Twin for Signal Modeling and Estimation

To design the proposed digital twin algorithm, the main step is signal estimation. In
this work, a proposed hybrid robust observation algorithm was designed for estimating
the AE signals. To extract the state-space function from AE signals to design the proposed
hybrid robust observer, signal approximation (modeling) is the first step. This section has
two sub-sections. First, the design of AE signal modeling in normal conditions based on
the proposed hybrid technique is explained. After that, the design of the proposed hybrid
observer to estimate the AE signals is presented.

3.1.1. Proposed Signal Modeling Using ALS-GL Algorithm

To model the AE signal, a proposed Gaussian support vector autoregressive Laguerre
technique (ALS-GL) was designed. So, based on Figure 4, first, the autoregressive algorithm
was developed for AE signal extraction. After that, the Laguerre technique was applied
to the autoregressive method (AL) to improve the robustness. Next, the support vector
regression was designed with autoregressive Laguerre (ALS) to have a nonlinear regressor.
Finally, the Gaussian process regression Laguerre was designed with the support vector
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autoregressive Laguerre (ALS-GL) to reduce the error and develop the proposed AE signal
modeling. The autoregressive technique is described by Equation (1).{

ΨA(k + 1) = [σΨΨA(k) + σiΦi(k)] + eA(k) + ϕ(k)

HA(k) = (σo)
TΨA(k)

(1)

where ΨA(k), Φi(k), eA(k), ϕ(k), HA(k) and (σΨ, σi, σo) are the state of the AE signal in
normal conditions using the autoregressive technique, the measurable AE signal, the
error for signal modeling using the autoregressive approach, the unknown (uncertain)
conditions in normal states, the output state of the AE signal in normal conditions using
the autoregressive technique and the coefficients (state, measurable AE signal and output
state of the AE signal), respectively. The error of signal modeling using the autoregressive
approach was generated using the following definition:

eA(k) = HA(k)−HA(k− 1) (2)

To improve the robustness of autoregressive AE signal modeling, the Laguerre filter
was combined with the autoregressive technique (referred to as AL) and was introduced
using the following definition:

ΨAL(k + 1) = [σΨΨAL(k) + σiΦi(k) + σHHAL(k)] + eAL(k) + ϕ(k)

HAL(k) = (σo)
TΨAL(k)

(3)

where ΨAL(k), eAL(k), HAL(k) and σH are the state of the AE signal in normal conditions
using the AL technique, the error of signal modeling using the AL approach, the output
state of the AE signal in normal conditions using the AL technique and a coefficient,
respectively. Moreover, the error of signal modeling using AL approach was generated via
the following description:

eAL(k) = HAL(k)−HAL(k− 1) (4)

To reduce the effects of complexity and nonlinearity of the bearing behavior, the nonlin-
ear technique using a support vector regression (SVR) is suggested. Thus, the combination
of the AL technique and SVR (referred to as ALS) is introduced by the following definition:

ΨALS(k + 1) = [σΨΨALS(k) + σiΦi(k) + σHHALS(k) + σSVRHSVR(k)] + eALS(k)

+ϕ(k)

HALS(k) = (σo)
TΨALS(k)

(5)

where ΨALS(k), eALS(k), HALS(k), HSVR and σSVR are the state of the AE signal in normal
conditions using the ALS technique, the error of signal modeling using the ALS approach,
the output state of the AE signal in normal conditions using the ALS technique, the
output state of the AE signal in normal conditions using the SVR method and a coefficient,
respectively. Furthermore, the error of signal modeling using the ALS approach is given by
the following equation:

eALS(k) = HALS(k)−HALS(k− 1) (6)

The SVR technique is a learning-based algorithm that can be used for signal approximation.
The nonlinear regression function using the kernel trick is given by the following definition:

HSVR = ∑i

(
$i

+ − $i
−)K(φi, φ) + β (7)
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where HSVR, ($i
+ − $i

−), K(φi, φ) and β are the output state of the AE signal in normal
conditions using the SVR method, the Lagrange coefficients in the SVR function, the kernel
of the SVR function and the bias of the SVR function, respectively. The Gaussian kernel
function is defined as follows:

K(φi, φ) = e(−
1

2ε2 ||φi−φ||2) (8)

where ε is the variance of the signal. Additionally, to minimize ($i
+ − $i

−), we have

min ∑i ∑j

(
$i

+ − $i
−)($j

+ − $j
−)Θij (9)

where K(φi, φ) is defined by Θij. So, Equation (9) can be re-written as follows:

min ∑i ∑j $i
+$j

+Θij − $i
−$j

+Θij − $i
+$j
−Θij + $i

−$j
−Θij (10)

If Θ =
[
Θij
]
∈ Rn×n, $ =

[
$+

$−

]
2n×1

and v =

[
Θ −Θ
−Θ Θ

]
, we have

min 0.5$Tv$ + ∆T$ (11)

where ∆ =

[
−H + ρ
H + ρ

]
2n×1

, H and ρ are the output state of the AE signal and accepted

boundary layer (error) of signal modeling, respectively. Furthermore, the bias of the SVR
function can be introduced as the following function:

β =
1
|S| ∑

s∈S

 Hs − ∑
i∈S

($i
+ − $i

−)×

K(φi, φ)− ρ
×sgn($i

+ − $i
−)

 (12)

where Hs and S are the output support vector and support vector, respectively. In addition,
the support vector, S, is introduced by the following definition:

S =
{

i
∣∣0 < $i

+ + $i
− < η

}
(13)

where η is an upper band constant. The Vapnik loss function (VLF) was defined to deter-
mine the signal modeling accuracy based on the SVR.

V∈(HSVR, H) =


0

f or : |HSVR − H ≤ ρ|
|HSVR − H| − ρ
f or : Otherwise

(14)

The bearing is a nonlinear system. Moreover, extracting the state-space function from
AE signals is very difficult. In the second step, the combination of the Gaussian process
regression (GPR) algorithm and Laguerre technique (referred to as GL) is recommended. To
increase the accuracy and improve the reliability of AE signal modeling, the ALS approach
was combined with the GL technique, referred to as ALS-GL. The GPR is a nonlinear
approach for function approximation based on nonlinear kernels. The state-space function
using the GPR technique is described by Equation (15).

ΨG(k + 1) = [χGΨG(k) + YiΦi(k)] + eG(k)
+ϕ(k)
HG(k) = (Yo)

T(ωn)χG
−1ΨG(k)

(15)

where ΨG(k),χG, Φi(k), eG(k), ϕ(k), HG(k) and (Yi, Yo) are the state of the AE signal in
normal conditions using the GPR technique, the covariance matrix for the AE signal in
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normal conditions using the GPR technique, the measurable AE signal, the error of signal
modeling using the GPR approach, the unknown (uncertain) conditions in normal states, the
output state of the AE signal in normal conditions using the GPR technique and coefficients
(measurable AE signal and output state of AE signal), respectively. Additionally, the error
of signal modeling using the GPR approach was generated using the following definition:

eG(k) = HG(k)−HG(k− 1) (16)

Moreover, the covariance matrix for the AE signal in normal conditions using the GPR
technique is introduced by the following definition:

χG = γ2e(−0.5ΨG
TW−1ΨG) + ϑ (17)

W = diag(T)2 (18)

where γ, ϑ and T, respectively, are the variance in the AE signal in a normal state, the
variance in noise and the width of the kernel. To improve the robustness of the GPR
algorithm, the combination of the GPR and Laguerre methods, hereafter called GL, is
introduced by the following equation:

ΨGL(k + 1) = [χGLΨGL(k) + YiΦi(k) + YHHGL(k)] + eGL(k) + ϕ(k)

HGL(k) = (Yo)
T(ωn)χGL

−1ΨGL(k)
(19)

where ΨGL(k),χGL, eGL(k), HGL(k) and (YH) are the state of the AE signal in normal
conditions using the GL technique, the covariance matrix for the AE signal in normal
conditions using the GL method, the error of signal modeling using the GL approach, the
output state of the AE signal in normal conditions using the GL technique and a coefficient,
respectively. Furthermore, the error of signal modeling using the GL method is given by
the following definition:

eGL(k) = HGL(k)−HGL(k− 1) (20)

Moreover, the covariance matrix for the AE signal in normal conditions using the GL
technique is given by the following definition:

χGL = γ2e(−0.5ΨGL
TW−1ΨGL) + ϑ (21)

To improve the accuracy, robustness and reliability of bearing modeling, the ALS
approach and GL method are suggested for AE signal in normal conditions, as described
by the following equation:

ΨALSGL(k + 1) = ΨALS(k) + ΨGL(k)

HALSGL(k) = HALS(k) + HGL(k)
(22)

Consequently, we have
ΨALSGL(k + 1) = [χALSGLΨALSGL(k) + YiΦi(k) + YHHALSGL(k)] + eALSGL(k) + ϕ(k)

HALSGL(k) = (Yo)
T(ωn)χALSGL

−1ΨALSGL(k)
(23)

Moreover, the error of system modeling using the proposed ALS-GL approach was
calculated using the following equation:

eALSGL(k) = HALSGL(k)−HALSGL(k− 1) (24)
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The covariance matrix for the AE signal in normal conditions using the ALS-GL
technique is introduced by the following definition:

χALSGL = γ2e(−0.5ΨALSGL
TW−1ΨALSGL) + ϑ (25)

where ΨALSGL(k),χALSGL, eALSGL(k), and HALSGL(k) are the state of the AE signal in nor-
mal conditions using the proposed ALS-GL technique, the covariance matrix for the AE
signal in normal conditions using the ALS-GL method, the error of signal modeling using
the ALS-GL approach and the output state of the AE signal in normal conditions using
the ALS-GL technique, respectively. Figure 5 shows the flow chart typical of AE signal
modeling using the proposed ALS-GL technique.
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3.1.2. Proposed Signal Estimation Using Hybrid Algorithm

Apart from the accuracy of the proposed bearing modeling, it has limitations for
uncertain conditions. To address this issue, a digital twin (PDT) was designed in this work.
After modeling the AE signal in normal conditions, based on Figure 4, the hybrid modeling
algorithm and fuzzy logic approaches were applied to the proposed strict-backstepping
observer to design a proposed digital twin for AE signal estimation. To design the proposed
digital twin, first, the proposed hybrid AE signal modeling algorithm (ALS-GL) was applied
to the nonlinear robust strict-feedback backstepping observer (SBO). After that, the integral
term was applied to the strict-feedback backstepping (SBI) observer to reduce the signal
estimation error. Finally, in the last part of the proposed digital twin design, the fuzzy logic
approach was applied to the strict-feedback integral backstepping observer to improve the
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effect of uncertainty estimation. Thus, the classical strict-feedback backstepping observer
(SBO) is defined by the following equation:

ΨALSGL-SB(k + 1) = [χALSGLΨALSGL-SB(k)

+YH(HALSGL-SB(k) + Z(k)] + eALSGL-SB(k)

+ϕSB(k) + YiψSBΦi(k)

HALSGL-SB(k) = (Yo)
T(ωn)χALSGL

−1ΨALSGL-SB(k)

(26)

where ΨALSGL-SB(k), eALSGL-SB(k), Z(k), ϕSB(k), ψSB and HALSGL-SB(k) are the state estima-
tion of AE signals using the ALSGL-SB observation technique, the error of the AE signal
estimation using the ALSGL-SB observation approach, the nonlinear function of the output
state for the AE signal in normal conditions using the ALSGL-SB technique, the uncertainty
estimation using the SB observer, the backstepping parameters and the output of the state
estimation for AE signals using the ALSGL-SB technique, respectively. Moreover, the error
of AE signal estimation using the ALSGL-SB observation approach was calculated using
the following equation:

eALSGL-SB(k) = Φi(k)−HALSGL-SB(k) (27)

The uncertainty estimation using the SB observer can be introduced by the following
definition:

ϕSB(k + 1) = ϕSB(k) + Z(k) + YiψSBΦi(k) (28)

To improve the effect of uncertain estimation accuracy, the combination of ALSGL-SB
algorithm and an integral term, referred to as ALSGL-SBI, is recommended and introduced
by the following equations:

ΨALSGL-SBI(k + 1) = [χALSGLΨALSGL-SBI(k)

+YH(HALSGL-SBI(k) + Z(k)] + eALSGL-SBI(k)

+ϕSBI(k) + YiψSBΦi(k)

HALSGL-SBI(k) = (Yo)
T(ωn)χALSGL

−1ΨALSGL-SBI(k)

(29)

where ΨALSGL-SBI(k), eALSGL-SBI(k), ϕSBI(k) and HALSGL-SBI(k) are the state estimation of AE
signals using the ALSGL-SBI observation technique, the error of AE signal estimation using
the ALSGL-SBI observation approach, the uncertainty estimation using the SBI observer
and the output of the state estimation for AE signals using the ALSGL-SBI technique, re-
spectively. The error of AE signal estimation using the ALSGL-SBI observer was considered
using the following equation:

eALSGL-SBI(k) = Φi(k)−HALSGL-SBI(k) (30)

The uncertainty estimation using the SBI observer can be introduced via the following
definition:

ϕSBI(k + 1) = ϕSBI(k) + Z(k) + ψSBeALSGL-SBI(k) + YiψSBIΦi(k) (31)

The ALSGL-SBI observer faces issues of nonlinear AE signal estimation. To improve
the performance of estimation accuracy for AE signals, the combination of ALSGL-SBI and
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support vector regression (SVR), referred to as ALSGL-SBIS, is recommended. ALSGL-SBIS
is introduced by the following definition:

ΨALSGL-SBIS(k + 1) = [χALSGLΨALSGL-SBIS(k)

+YH(HALSGL-SBIS(k) + Z(k) + HSVR(k)] + eALSGL-SBIS(k)

+ϕSBIS(k) + YiψSBΦi(k)

HALSGL-SBIS(k) = (Yo)
T(ωn)χALSGL

−1ΨALSGL-SBIS(k)

(32)

where ΨALSGL-SBIS(k), eALSGL-SBIS(k), ϕSBIS(k), HSVR(k) and HALSGL-SBIS(k) are the state
estimation of AE signals using the ALSGL-SBIS observation technique, the error of AE
signal estimation using the ALSGL-SBIS observation approach, the uncertainty estimation
using the SBIS observer, the AE signal estimation using SVR as calculated by Equation (7)
and the output of the state estimation for AE signals using the ALSGL-SBIS technique,
respectively. In addition, the error of AE signal estimation using the ALSGL-SBIS observer
was considered using the following equation:

eALSGL-SBIS(k) = Φi(k)−HALSGL-SBIS(k) (33)

The uncertainty estimation using the SBIS observer can be introduced via the following
definition:

ϕSBIS(k + 1) = ϕSBIS(k) + Z(k) + ψSBeALSGL-SBIS(k) + YiψSBISΦi(k) + HSVR(k) (34)

To improving the accuracy and reduce the effects of uncertainty estimation, the com-
bination of the ALSGL-SBIS and TS-fuzzy logic, referred to as the proposed digital twin
(PDT), is suggested. The PDT is introduced by the following equations:

ΨPDT(k + 1) = [χALSGLΨPDT(k)

+YH(HPDT(k) + Z(k) + HSVR(k)] + ePDT(k)

+ϕPDT(k) + YiψSBΦi(k)

HPDT(k) = (Yo)
T(ωn)χALSGL

−1ΨPDT(k)

(35)

where ΨPDT(k), ePDT(k), ϕPDT(k), H f (k), and HPDT(k) are the state estimation of AE sig-
nals using the PDT approach, the error of AE signal estimation using the PDT approach, the
uncertainty estimation using the PDT approach, the AE signal estimation using the fuzzy
technique and the output of the state estimation for AE signals using the PDT technique,
respectively. In addition, the error of AE signal estimation using the PDT approach was
considered using the following equation:

ePDT(k) = Φi(k)−HPDT(k) (36)

Moreover, the uncertainty estimation using the PDT approach can be introduced by
the following definition:

ϕPDT(k + 1) = ϕPDT(k) + Z(k) + ψSBeALSGL-SBIS(k) + YiψSBISΦi(k) + HSVR(k) + HF(k) (37)

The TS-fuzzy approach can be defined as follows:

I f Ho(k) is Γ Then HF(k + 1) = HF(k) + α f e f (k) (38)

where Ho(k), Γ, eF(k) and α f are the output of the signal estimation using the TS-fuzzy
approach, the condition’s level, the error of signal estimation based on the fuzzy approach
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and a coefficient, respectively. The AE signal estimation using the fuzzy technique, H f (k),
can be introduced by the following definition:

HF(k + 1) =
∑ HF(k)∏ µ(e f (k))

∑ ∏ µ(e f (k))
(39)

where µ(e f (k)) is the membership of the error. Moreover, the error of the signal estimation
using the T-S fuzzy approach is given by the following equation:

eF(k) = Φi(k)−HF(k) (40)

Thus, based on these definitions, the PDT was designed based on a combination of
data-driven AE signal modeling and AE signal estimation to estimate the unknown AE
signals. Figure 6 illustrates the flowchart of the AE signal estimation using the proposed
digital twin. In the next part, the generation of the AE residual signal is presented.
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3.2. Acoustic Emission Residual Signal Generation

After modeling and estimation of the unknown AE signal using the PDT, the residual
signal, which is the difference between the measurable AE signal and the estimated AE
signal, can be calculated using the following equation:

RPDT(k) = Φi(k)−HPDT(k) (41)

3.3. Crack Diagnosis Using the Machine Learning Approach

After generating the residual AE signals using the PDT algorithm, the root-mean-
square (RMS) feature was extracted from residual signals using the following equation:

RPDT(k)rms =

√
1
K ∑K

i=1 (RPDT(k))
2 (42)

where RPDT(k)rms and K are the resampled RMS value for the AE residual signals calculated
using the PDT algorithm and the number of windows, respectively.



Sensors 2022, 22, 539 14 of 28

The number of samples for the healthy and each unhealthy condition was 120,000.
The residual signal was divided into 100 windows for each state. It means that we obtained
the RMS feature for each window (every 1200 samples). So, we had 100 new RMS samples
for each state. On the other hand, based on Table 3, we had eight different conditions. Each
faulty conditions had four different speeds (300 RPM, 400 RPM, 450 RPM and 500 RPM)
and two different crack sizes (3 mm and 6 mm). Thus, in each condition (for example inner
fault), we had eight parts (four different speeds multiplied by two different crack sizes).
Thus, we had 800 new RMS samples for each type of fault. Moreover, the support vector
machine (SVM) was selected for bearing crack diagnosis [30]. The SVM is known as a
robust machine learning algorithm that is impervious to the curse of the dimensionality
problem. One of the main advantages of the SVM is that it can be proficiently applied for
the classification of both linear and nonlinear separable types of datasets, which is possible
due to the availability of different types of kernels, such as linear, polynomial and radial
basis function kernels [30]. In this work, 75% of the resampled RMS residual signal was
used for training and 25% was used for testing. Thus, 0.75 × 800 resampled RMS signal
was used for training and 0.25 × 800 resampled RMS signal was used for testing. Table 3
presents the details of the training and testing data for crack detection and diagnosis.

Table 3. Training and testing samples for RMS residual signals for signal classification using the
SVM.

States Training Samples (Numbers) Testing Samples (Numbers)

Crack Type Diagnosis

HC 300 100
OC 600 200
IC 600 200
BC 600 200

IOC 600 200
IBC 600 200
OBC 600 200
IOBC 600 200

Crack Size Diagnosis (OC, IC, BC, IOC, IBC, OBC and IOBC)

3 mm 300 100
6 mm 300 100

Algorithm 1 illustrates the steps for designing the proposed digital twin, machine
learning and backstepping for leak detection and localization in a chemical plant.

Algorithm 1 Proposed strict-feedback backstepping digital twin and machine learning solution algorithm for bearing fault diagnosis.

Step 1.1: Acoustic Emission (AE) Signal Modeling
1: Acoustic Emission (AE) signal modeling using the AR technique; Equation (1)

Detail
1.1 Calculate eA(k)← HA(k)−HA(k− 1) , Equation (2)

1.2 Compute ΨA(k + 1)← [σΨΨA(k) + σiΦi(k)] + eA(k) + ϕ(k) , Equation (1)

1.3 Compute HA(k) = (σo)
TΨA(k), (1)

2: Improving the robustness of the AR technique for AE signal modeling using a Laguerre filter (AL); Equation (3)
Detail

2.1 Calculate eAL(k)← HAL(k)−HAL(k− 1) , (4)

2.2 Compute ΨAL(k + 1)← [σΨΨAL(k) + σiΦi(k) + σHHAL(k)] + eAL(k) + ϕ(k), (3)

2.3 Compute HAL(k) = (σo)
TΨAL(k). (3)

3:
Reducing the effects of complexity and nonlinearity of the AL technique for AE signal modeling using support vector
regression, ALS; Equation (5)

Detail
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3.1 Compute K(φi, φ)← e(−
1

2ε2 ||φi−φ||2), (8)

3.2 Compute S =
{

i
∣∣0 < $i

+ + $i
− < η

}
, (13)

3.3
Calculate β← 1

|S| ∑s∈S


Hs −∑i∈S

(
$i

+ − $i
−)×

K(φi, φ)− ρ

×sgn
(
$i

+ − $i
−)

, (12)

3.4 Compute HSVR ← ∑i
(
$i

+ − $i
−)K(φi, φ) + β, (7)

3.5 Calculate eALS(k)← HALS(k)−HALS(k− 1) , (6)

3.6 Compute HALS(k)← (σo)
TΨALS(k), (5)

3.7 Compute ΨALS(k + 1)← [σΨΨALS(k) + σiΦi(k) + σHHALS(k) + σSVRHSVR(k)] + eALS(k) + ϕ(k). (5)

4: Acoustic emission (AE) signal modeling using the GPR technique; Equation (15)
Detail

4.1 Compute W ← diag(T)2, (18)

4.2 Calculate χG ← γ2e(−0.5ΨG
TW−1ΨG) + ϑ, (17)

4.3 Compute eG(k)← HG(k)−HG(k− 1) (16)

4.4 Calculate ΨG(k + 1)← [χGΨG(k) + YiΦi(k)] + eG(k) + ϕ(k), (15)

4.5 Compute HG(k)← (Yo)
T(ωn)χG

−1ΨG(k). (15)

5: Improving the robustness of the GPR technique for AE signal modeling using a Laguerre filter (GL); Equation (19)
Detail

5.1 Compute χGL ← γ2e(−0.5ΨGL
TW−1ΨGL) + ϑ, (21)

5.2 Compute eGL(k)← HGL(k)−HGL(k− 1), (20)

5.3 Calculate ΨGL(k + 1)← [χGLΨGL(k) + YiΦi(k) + YHHGL(k)] + eGL(k) + ϕ(k), (19)

5.4 Compute HGL(k)← (Yo)
T(ωn)χGL

−1ΨGL(k). (19)

6:
Increasing the accuracy and reliability of AE signal modeling using Gaussian process regression and a Laguerre filter with the
ALS approach, ALSGL; Equation (23)

Detail
6.1 Compute ΨALSGL(k + 1)← ΨALS(k) + ΨGL(k), (22)

6.2 Compute ΨALSGL(k + 1)← [χALSGLΨALSGL(k) + YiΦi(k) + YHHALSGL(k)] + eALSGL(k) + ϕ(k), (23)

6.3 Calculate HALSGL(k)← HALS(k) + HGL(k). (22)

6.4 Compute HALSGL(k)← (Yo)
T(ωn)χALSGL

−1ΨALSGL(k). (23)

6.5 Compute eALSGL(k)← HALSGL(k)−HALSGL(k− 1). (24)

Step 1.2: Acoustic Emission (AE) Signal Estimation Using the Proposed Digital Twin

7:
Reducing the effects of uncertainties in AE signal modeling using ALS-GL and the proposed strict-feedback observer,
ALSGL-SB; Equations (26) and (28).

Detail
7.1 Compute ΨALSGL-SB(k+ 1)← [χALSGLΨALSGL-SB(k) +YH(HALSGL-SB(k) +Z(k)] + eALSGL-SB(k) + ϕSB(k) +YiψSBΦi(k), (26)

7.2 Calculate HALSGL-SB(k)← (Yo)
T(ωn)χALSGL

−1ΨALSGL-SB(k). (26)

7.3 Compute eALSGL-SB(k)← Φi(k)−HALSGL-SB(k), (27)

7.4 Calculate ϕSB(k + 1)← ϕSB(k) + Z(k) + YiψSBΦi(k). (28)

8:
Improving the effects of uncertain estimation accuracy for AE signals using the ALSGL-SB algorithm and integral term,
ALSGL-SBI; Equations (29) and (31).

Detail
8.1 Compute ΨALSGL-SBI(k+ 1)← [χALSGLΨALSGL-SBI(k)+YH(HALSGL-SBI(k)+Z(k)]+ eALSGL-SBI(k)+ ϕSBI(k)+YiψSBΦi(k), (29)

8.2 Calculate HALSGL-SBI(k)← (Yo)
T(ωn)χALSGL

−1ΨALSGL-SBI(k). (29)

8.3 Solve eALSGL-SBI(k)← Φi(k)−HALSGL-SBI(k), (30)

8.4 Compute ϕSBI(k + 1)← ϕSBI(k) + Z(k) + ψSBeALSGL-SBI(k) + YiψSBIΦi(k). (31)
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9:
Improving the performance of estimation accuracy for AE signals using ALSGL-SBI and support vector regression,
ALSGL-SBIS; Equations (32) and (34).

Detail
9.1 Calculate ΨALSGL-SBIS(k + 1)← [χALSGLΨALSGL-SBIS(k) +YH(HALSGL-SBIS(k) +Z(k) +HSVR(k)] + eALSGL-SBIS(k) + ϕSBIS(k) +YiψSBΦi(k), (32)

9.2 Solve HALSGL-SBIS(k)← (Yo)
T(ωn)χALSGL

−1ΨALSGL-SBIS(k), (32)

9.3 Compute eALSGL-SBIS(k)← Φi(k)−HALSGL-SBIS(k), (33)

9.4 Calculate ϕSBIS(k + 1)← ϕSBIS(k) + Z(k) + ψSBeALSGL-SBIS(k) + YiψSBISΦi(k) + HSVR(k). (34)

10:
Improving the accuracy and reducing the effects of uncertainty estimation for AE signals using ALSGL-SBIS and TS-fuzzy
logic, referred to as the proposed digital twin (PDT); Equations (35) and (37)

Detail
10.1 Solve ΨPDT(k + 1) = [χALSGLΨPDT(k) + YH(HPDT(k) + Z(k) + HSVR(k)] + ePDT(k) + ϕPDT(k) + YiψSBΦi(k), (35)

10.2 Compute HPDT(k) = (Yo)
T(ωn)χALSGL

−1ΨPDT(k). (35)

10.3 Calculate ePDT(k) = Φi(k)−HPDT(k), (36)

10.4 Solve ϕPDT(k + 1) = ϕPDT(k) + Z(k) + ψSBePDT(k) + YiψPDTΦi(k) + HSVR(k) + HF(k). (37)

11:
Generating AE residual signals using the difference between the original AE signals and PDT-based estimated AE signals;
Equation (41)

Detail
11.1 Compute RPDT(k) = Φi(k)−HPDT(k). (41)

Step 3: Crack Diagnosis Using Machine Learning Approach

12.1: RMS feature extraction from the AE residual signal; Equation (42)
12.2 Crack detection and diagnosis using SVM [30].

4. Experimental Results

The Ulsan Industrial Artificial Intelligence (UIAI) Lab acoustic emission (AE) dataset
was used to test the power of PDT for crack diagnosis in the bearing. Figure 7 shows the
AE bearing signals for all abnormal conditions. Figure 8 illustrates the error of AE signal
modeling in healthy conditions based on the ALS technique, GL method and proposed
ALSGL approach. Regarding this figure, the error of the proposed ALSGL was less than
that of the other two methods. The main reason for errors during system (signal) modeling
was uncertain conditions.
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Figure 9 shows the residual signal based on the proposed digital twin (PDT). The
visibility of the PDT was perfect for classifying the bearing conditions. Based on this
figure, the residual signal had 120,000 samples and had 8 different conditions, including
HC, BC, IC, OC, IBC, OBC, IOC and IOBC. The minimum residual signal was for the
healthy condition. Because the signal was modeled for this condition and we had the best
estimation accuracy, the residual signal was minimum in this condition.
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Figure 9. AE residual signals for normal and abnormal conditions using proposed digital twin.

Additionally, to test the power of AE signal estimation for crack type diagnosis and
have a clear visibility, the RMS of the resampled AE residual signals for normal and
abnormal states based on a classical strict-feedback backstepping (ALSGL-SB) observer,
the combination of the ALSGL-SB algorithm and integral term (ALSGL-SBI) and PDT
approaches are illustrated in Figures 10–12, respectively. Figure 10 illustrates the power
of AE signal estimation for crack type diagnosis of the RMS of the resampled AE residual
signals for normal and abnormal states based on a classical strict-feedback backstepping
(ALSGL-SB) observer. Based on this figure, the level of the signal in some conditions of
bearing, including IC, IBC, OC, IOC, OBC and IOBC, had overlapping. These overlaps in
different cases reduced the accuracy of the classification.

Furthermore, Figure 11 shows the power of AE signal estimation for crack type
diagnosis of the RMS of the resampled AE residual signals for normal and abnormal states
based on a combination of the ALSGL-SB algorithm and integral term (ALSGL-SBI).
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Figure 11. RMS of the resampled AE residual signals for crack type diagnosis in normal and abnormal
conditions using the ALSGL-SBI technique.

Based on Figure 11, the level of the signal in some conditions of bearing, including IC,
IBC, OC and IOC, had overlapping. Compared to the ALSGL-SB technique, the ALSGL-
SBI method had lower overlapping, which can cause an increase in the accuracy of the
classification.

Additionally, Figure 12 shows the power of AE signal estimation for crack type
diagnosis of the RMS of the resampled AE residual signals for normal and abnormal states
based on the proposed digital twin (PDT). Based on this figure, the overlapping was very
low. therefore, the power of separability of the PDT was better than that of the other two
methods, that could have caused it to have the highest accuracy for classification.
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Figure 12. RMS of the resampled AE residual signals for crack type diagnosis in normal and abnormal
conditions using the proposed digital twin (PDT).

Figures 13–15 show the confusion matrix for the combined ALSGL-SB and SVM,
combined ALSGL-SBI and SVM and combined PDT and SVM for crack type diagnosis,
respectively.
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Figure 15. The average of crack type diagnosis using the combination of the PDT and SVM ap-
proaches.

Based on these figures, the range of misclassification accuracy using the combined
PDT and SVM methods was less than that of the other two techniques. Moreover, Table 4
shows the average accuracy of crack diagnosis.

Table 4. Average accuracies of crack type diagnosis using the combined ALSGL-SB and SVM, ALSGL-
SBI and SVM, and PDT and SVM approaches.

Conditions ALSGL-SB and SVM (%) ALSGL-SBI and SVM (%) PDT and SVM (%)

HC 100 100 100
BC 88 92 98
IC 89 90 96
OC 83 91 96
IBC 85 89 94
IOC 89 89 97
OBC 84 90 98
IOBC 80 92 98

Average 87.25 91.63 97.13

Based on this table, the average accuracy of crack type diagnosis for various crack
sizes (3 mm and 6 mm) and motor speeds (300 RPM, 400 RPM, 450 RPM and 500 RPM)
were 87.25%, 91.63% and 97.13% for the combined ALSGL-SB and SVM, ALSGL-SBI and
SVM, and PDT and SVM approaches, respectively. Thus, the combination of PDT and
SVM improved the average accuracy for crack type diagnosis by 9.88% compared with
the combination of ALSGL-SB and SVM and by 5.5% compared with the combination of
ALSGL-SBI and SVM. To test the stability and robustness of the fault type diagnosis, the
experiment was repeated 20 times with a random selection of samples to form the train
and test sets each time [43,44]. Figure 16 shows the robustness of the combined ALSGL-SB
and SVM, ALSGL-SBI and SVM, and PDT and SVM approaches. Based on this figure, the
proposed method was more robust than the other two approaches and the fluctuations
were less than two other techniques.
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Figure 16. Test of reliability and robustness for crack type diagnosis using the combination of the
ALSGL-SB and SVM approaches, the ALSGL-SBI and SVM methods and the combination of the PDT
and SVM procedures (20 times).

Furthermore, to test the power of AE signal estimation for crack size (3 mm and
6 mm) diagnosis, the RMS of the resampled AE residual signals for normal and abnormal
states, including BC, IC, OC, IBC, OBC, IOC and IOBC, based on a classical strict-feedback
backstepping (ALSGL-SB) observer, the combined ALSGL-SB algorithm and integral term
(ALSGL-SBI) and PDT approaches are illustrated in Figures 17–23, respectively.
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Figure 18. RMS of resampled AE residual signals for crack size (3 mm and 6 mm) diagnosis for inner
conditions using ALSGL-SB, ALSGL-SBI and PDT methods.
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Figure 19. RMS of resampled AE residual signals for crack size (3 mm and 6 mm) diagnosis for outer
conditions using ALSGL-SB, ALSGL-SBI and PDT methods.
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Figure 21. RMS of resampled AE residual signals for crack size (3 mm and 6 mm) diagnosis for
outer–ball conditions using ALSGL-SB, ALSGL-SBI and PDT methods.
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Based on these figures, the power of separability for crack size diagnosis of the PDT
was better than that of the other two techniques. Figures 24–26 provide the confusion
matrices for the combined ALSGL-SB observer and SVM, ALSGL-SBI and SVM, and PDT
and SVM approaches for crack size diagnosis, respectively.
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and SVM approach for all abnormal conditions.
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SVM approach for all abnormal conditions.

Based on these figures, the range of misclassification accuracy using the combined
PDT and SVM methods for crack size diagnosis was smaller than that of the other two
techniques. Moreover, Table 5 displays the average accuracy of crack size diagnosis for the
combined SBO and SVM, ALSGL-SBI and SVM, and PDT and SVM techniques.

Table 5. Average accuracies for crack size diagnosis using the combined ALSGL-SB and SVM,
ALSGL-SBI and SVM, and PDT and SVM approaches.

Fault Type Crack Sizes
(mm)

ALSGL-SB and
SVM (%)

ALSGL-SBI and
SVM (%)

PDT and SVM
(%)

IC
3 80 87 96
6 84 91 98

OC
3 86 89 97
6 90 92 98

BC
3 82 90 96
6 85 89 96

IBC
3 83 88 98
6 84 91 98

IOC
3 81 90 96
6 80 90 94

OBC
3 80 89 95
6 81 89 98

IOBC
3 82 88 98
6 85 92 98

Average 83.1 89.7 96.9

Based on this table, the average accuracy for crack size diagnosis for various conditions
and motor speeds (300 RPM, 400 RPM, 450 RPM and 500 RPM) were 83.1%, 89.7% and
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96.9% for the combined ALSGL-SB and SVM, ALSGL-SBI and SVM, and PDT and SVM
approaches, respectively. Thus, the combination of PDT and SVM improved the average
accuracy for crack size diagnosis by 13.8% compared with the combined ALSGL-SB and
SVM method and by 7.2% compared with the combined ALSGL-SBI and SVM method. To
test the stability and robustness of crack size identification, the experiment was repeated
20 times with a random selection of samples to form the train and test sets each time [43,44].
Figure 27 shows the robustness of the combined ALSGL-SB and SVM, ALSGL-SBI and SVM,
and PDT and SVM methods.
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Figure 27. Test of reliability and robustness for crack size (3 mm and 6 mm) diagnosis using the com-
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of the PDT and SVM procedures (20 times).

Based on this figure, the proposed method was more robust than the other two
approaches for crack size diagnosis.

5. Conclusions

In this research study, a strict-feedback backstepping digital twin for bearing crack
diagnosis was proposed. The proposed feedback backstepping digital twin has two layers.
The first layer is for AE signal modeling in normal conditions using the proposed hybrid
Gaussian support vector autoregressive Laguerre technique, while the subsequent layer is
used for AE signal estimation using the proposed hybrid fuzzy strict-feedback backstepping
observer. The proposed hybrid strict-feedback backstepping digital twin is formed to
overcome the nonstationary and nonlinear behavior of the AE bearing signals. Moreover,
a residual signal generator is used to obtain the difference between the estimated and
original AE signals. A machine learning crack size/type diagnosis that includes resampling
and RMS feature extracting is used in combination with a support vector machine for
the diagnosis of different bearing defects with various levels of severities. A bearing
dataset containing normal conditions and seven fault severities was used to validate the
proposed algorithm. It was observed that the proposed hybrid strict-feedback backstepping
digital twin was able to estimate the normal and abnormal signals, which resulted in a
superior diagnostic performance of the proposed model for both fault pattern and crack
size identification. Moreover, the proposed hybrid strict-feedback backstepping digital
twin was compared to two fault diagnosis algorithms (i.e., ALSGL-SBI and ALSGL-SB).
The results demonstrate that the proposed algorithm was more effective than the other
methods regardless of the nonlinearity contained in the AE signals due to multiple fault
severities. However, in the case of the identification of inner–ball faults, the performance of
the proposed method slightly depreciated, which underscores the need for more complex
classification algorithms in future work which could eventually result in superior diagnostic
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performance. In future work, combining deep-learning and observation techniques will be
studied to improve the reliability and robustness of digital twins.
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