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Abstract

processes were reflected through the analysis.

Background: Obesity contributes to high cancer risk in humans and the mechanistic links between these two
pathologies are not yet understood. Recent emerging evidence has associated obesity and cancer with metabolic
abnormalities and inflammation where microRNA regulation has a strong implication.

Methods: In this study, we have developed an integrated framework to unravel obesity-cancer linkage from a
microRNA regulation perspective. Different from traditional means of identifying static microRNA targets based on
sequence and structure properties, our approach focused on the discovery of context-dependent microRNA-mRNA
interactions that are potentially associated with disease progression via large-scale genomic analysis. Specifically, a
meta-regression analysis and the integration of multi-omics information from obesity and cancers were presented to
investigate the microRNA regulation in a dynamic and systematic manner.

Results: Our analysis has identified a total number of 2,143 unique microRNA-gene interactions in obesity and seven
types of cancer. Common interactions in obesity and obesity-associated cancers are found to regulate genes in key
metabolic processes such as fatty acid and arachidonic acid metabolism and various signaling pathways related to cell
growth and inflammation. Additionally, modulated co-regulations among microRNAs targeting the same functional

Conclusion: We demonstrated the statistical modeling of microRNA-mediated gene regulation can facilitate the
association study between obesity and cancer. The entire framework provides a powerful tool to understand
multifaceted gene regulation in complex human diseases that can be generalized in other biomedical applications.
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Background

Obesity is becoming one of the leading public health crises
globally and has posed serious threats to human health
and life quality. According to the World Health Orga-
nization (WHO), by 2030, more than 1.2 billion people
globally will suffer from obesity [1]. In the United States,
35.6 percent of adults are affected by obesity. Obesity is
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associated with an increased risk of several common
human cancers and contributes to between 14 to 20 per-
cent of cancer-related mortality cases, making it the lead-
ing preventable cause of cancer [2]. The underlying molec-
ular mechanism of obesity development and relapse as
well as the enhancing effects of obesity on cancer potency
and progression remain largely unknown. In order to gain
more insights on aforementioned unascertained mecha-
nisms, there have been strengthened efforts to study the
genetic basis of obesity, as well as the regulatory and
epigenetic effects on signaling process.
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A group of small non-coding RNAs, called microRNA
(miRNAs), are important gene silencers in animals and
plants [3-5]. For example, over 2,000 human miRNAs
can bind to over 60% endogenous genes [5] in humans
and fine tune numerous biological processes related to
cell growth and signaling [6]. Increasing evidence has
shown strong implication of miRNA in complex human
diseases including obesity (e.g., elevated abundance of
miR-34 in obese mice reduces NAD+ levels and results in
obesity-mimetic outcomes [7, 8]; miR-27, miR-519d, and
miR-30c are obesity related [9-11]); metabolic disorder
(e.g., miR-33a/b, miR-107, miR-103, and miR-34a regulate
different metabolism [12]); pro-inflammatory events (e.g.,
miR-27b, miR-21, miR-34a, miR-106b, miR-130, miR-15b,
miR-155, and miR-200c); aging (e.g., downregulation of
miR-24, and miR-221 in the peripheral blood mononu-
clear cells (PBMCs) of older individuals, and increased
expression other 21 miRNAs [13]), and cancers (e.g., miR-
200 and miR-205 regulates epithelial to mesenchymal
transition [14], miR-21 regulates apoptosis in lung can-
cer [15] and drives melanoma [16]). It should be noted
that such linkages were determined largely based on the
alterations of miRNA expression in those diseases or the
effect of miRNA manipulation in loss-of-function and
gain-of-function studies; only a handful were validated by
elaborate target function in vivo.

More recently, studies began to unravel miRNA'’s role in
the obesity-cancer link. For example, it has been demon-
strated that the epigenetic silencing of miR-200c is capable
of targeting STAT3-G9a signaling and limiting the malig-
nancy of obesity-related breast cancer [17]. miR-10b was
found down regulated in the breast tumors of the obese
subjects compared to the lean; the suppression of miR-
10b in breast cancer cell line increases cell proliferation
and invasion and affects inversely the expression of tar-
gets BCL2L11, PIEZO1 and NCOR?2 cell [18]. As reported
in Kasiappan et al., [19] over 50 miRNAs show altered
expressions in either obesity or breast cancer, and miR-
302b and miR-498 are differentially expressed in obesity-
associated breast cancer. Other examples include a list of
miRNAs potentially linking obesity and colorectal can-
cer, namely miR-425, -196, -155, -150, -351, -16, -34, -148,
-4443, -101, -27b, and let-7 [20]. Note that most such dis-
coveries were made based on the expression analysis and
the causality of the disease development is not fully val-
idated. Many of the dysregulated miRNAs common in
obesity and cancers were evidenced to regulate conditions
such as insulin resistance, low-grade inflammation, cell
proliferation and survival, dysfunction of adipose tissues,
and increased oxidative stress through targeting VEGE,
Ras, HIF1-«, PI3K/Akt, JAK/STAT3, MAPK, ERK/p38,
and NF-kg [19, 21-25]. All those events are important
elements in obesity associated cancer development. In
addition to endogenous regulation, there are growing
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interest in studying extracellular miRNAs associated with
vesicles or protein complexes, e.g., adipose-derived circu-
lating miRNAs, as important regulators in other tissues
and diseases [26]. However, a grand challenge here is the
lack of systems approaches and reliable high-throughput
technologies that can assess miRNA roles in human dis-
ease progression in a holistic and dynamic fashion. In
this regard, the development of sequencing technologies
such as cross-linking, ligation, and sequencing of hybrids
(CLASH) [27] and individual-nucleotide resolution CLIP
(iCLIP) [28] allows the identification of the exact binding
site of the miRNA on mRNAs, however, the drawbacks
of the selection bias in base pairing, low coverage, and
ambiguous downregulation still hinder the broad applica-
tion in this research field.

It is known that miRNAs bind to the 3’-UTR of tar-
get genes to either trigger mRNA degradation or inhibit
protein translation [29, 30]. The interactions between
miRNA and genes exhibits a high level of complexity since
most miRNAs can bind to multiple gene targets while
the genes can be targeted by different miRNAs [31-34].
Additionally, the binding process has been found to be
condition-specific, which means that the same miRNA
may bind to different groups of mRNAs under differ-
ent biological contexts. The underlying binding mecha-
nism involves both competition (when the binding sites
of different miRNAs are in close or overlapping regions
on the target genes) and cooperation (when several
miRNAs bind to different regions of the same target)
[31-34]. This type of dynamic feature is hardly captured
by early computational tools such as PicTar [32], Micro-
Tar [35], miTarget [36], TargetRNA2 [37], TargetScan [38],
and miRwalk [39], which utilize mainly sequence and
structure characteristics to build the models. The second-
generation target prediction tools integrate gene and/or
miRNA expression profiles into the modeling process to
reflect condition-specific mechanisms, including MiRon-
Top [40], mirAct [41], CoSMic [42]. Negatively correlated
expressions between miRNA and their target genes are
largely used as a strong indicator for real interaction in
those methods. Considering the complicated machinery
in gene expression regulation that involves transcription
factor (TFs), methylation, and genetic variations, cur-
rent research is exploring systems approaches that can
take into consideration of these mechanisms underlying
the multifaceted gene regulation and competitive miRNA
binding.

In this article, we conducted a meta-analysis of miRNA
regulation on both obesity and cancer to unravel the
molecular association between these two types of dis-
ease. In order to investigate context-dependent miRNA-
gene interactions, a new meta-regression method was
presented to integrate large-scale genomics profiles in
respective diseases, such as gene and miRNA expression,
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copy number variation (CNV), and DNA methylation.
The inferred interactions were compared with literature
and other resources. For example, we further examined
liver cancer interactions through analyzing our in-house
gene expression data in a liver disease mouse model.
We present the association between obesity and different
types of cancers through identifying common condition-
associated miRNA-mRNA interactions and characteriz-
ing regulatory transition across diseases.

Methods

In this section, a detailed description of the proposed
computational framework is provided, including data col-
lection and processing, binding potential estimation, and
the regression-based model for miRNA-gene interac-
tion identification. The schematic analytical workflow is
shown in Fig. 1.
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Genomic expression profiles
In this study, the genomic data were collected from the
following resources:

1 GSE53378 and GSE25402 on a total of 42 obese
patients from the Gene Expression Omnibus (GEO);
2 A collection of 3,484 patients with 7 major types of

cancer (1,279 early stage patients) from The Cancer
Genome Atlas (TCGA).

Names and download links of datasets used in our exper-
iments are listed in Table 1. All cancer types were cat-
egorized into strong and weak association groups, SAG
and WAG, respectively, according to their hazard ratios
of the association with obesity [43]. Table 2 contains the
detailed statistics of the obesity and cancer samples used
in this study. For each sample, the expression profiles of
gene and miRNA were extracted while information about
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Fig. 1 The overview of the analytic workflow
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Table 1 Names and download links of datasets used in our
experiments

Dataset name Download link

GSE53378 https://go.unl.edu/microarray-pre
GSE25402 https://go.unl.edu/microarray-obese
TCGA-BRCA https://go.unl.edu/tcga-brca
TCGA-KIRC https://go.unl.edu/tcga-kirc
TCGA-KIRP https://go.unl.edu/tcga-kirp
TCGA-LIHC https://go.unl.edu/tcga-lihc
TCGA-LUAD https://go.unl.edu/tcga-luad
TCGA-LUSC https://go.unl.edu/tcga-lusc
TCGA-UCEC https://go.unl.edu/tcga-ucec

hg19 https://go.unl.edu/hg19

miRNA-mRNA interactions https://go.unl.edu/clash

copy number variation and DNA methylation was also
collected for each cancer sample. Note that the dataset
includes both microarray and sequencing data from dif-
ferent disease conditions. In order to make the results
meaningfully comparable, we make sure each data has its
own control (either paired or unpaired with diseased sam-
ples), as well as matched miRNA and mRNA expression
profiles from the same technology (either microarray or
sequencing). Within each disease, normalized expression
was used to calculate the expression change required for
the downstream analysis.

Table 2 The detailed statistics of obesity and cancer datasets

Obesity Normal Obese
Adipose tissue OB1 16 16
(pre- and
post-surgery)
Adipose tissue OB2 30 26
(obese and lean)
Cancer Normal Cancer (Early Stage)
SAG Kidney renal clear ~ KIRC 72 533 (251)
cell carcinoma
Kidney renal KIRP 32 290 (140)
papillary cell
carcinoma
Liver LIHC 50 371 (164)
hepatocellular
carcinoma
Uterine corpus UCEC 24 176 (97)
endometrial
carcinoma
WAG Breastinvasive BRCA 114 1097 (124)
carcinoma
Lung LUAD 59 515 (276)
adenocarcinoma
Lung squamous LUsC 51 502 (227)

cell carcinoma
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Interactome profiles and data preprocessing

We downloaded the raw sequencing data of experimen-
tal miRNA-mRNA interactions from the CLASH analy-
sis [27], as well as ChIP-Seq data on 150 Transcription
factor (TFs) from the Encyclopedia of DNA Elements
(ENCODE) Consortium [44].

First, the raw data from CLASH was re-mapped against
human reference genome (hgl9). Three types of reads
were examined: 1) chimeric reads that contain miRNA-
miRNA binding sites; 2) miRNA single reads that rep-
resent unbound miRNAs; 3) mRNA single reads that
represent unbound mRNAs. After the read counts of each
type were calculated, we utilized the binomial test to
infer the confidence level of an identified binding site &
between miRNA i and mRNA j with respect to a random
observation. A p-value was calculated as follows:

Call

Canl—c¢
_ Car \ [ Cix \* Gy \ ™
prvalue = Z ( ¢ )(Call - Can

c=Cijk

where C,y; denotes the total of supporting chimeric reads
of all interactions; Cjj is the count of supporting chimeric
reads of interactions between miRNA i and mRNA j at the
binding site k.

Binding sites with Bonferroni-multiple-test-adjusted p-
value less than 0.05 were considered to be significant and
included in the further analysis. For quality control, two
additional filters were applied: 1) eliminating the bottom
10% of low confidence binding sites; 2) discarding the
binding sites if the number of supporting chimeric reads
is less than 12.

Estimation of regulatory score (RS)

As described above, we suspected that different regulators
shared an equal possibility to interact with a common tar-
get. Therefore, we designed a procedure to qualitatively
estimate the regulatory potentials between regulators and
their targets.

RS of miRNA-gene interactions

First, we calculated the probability of a binding event
between miRNA i and gene j at the binding site k through
a conditional probability:

_ Cy>
(Ci + M) (G + M)

P ijk

where C; and M; are the total of chimeric reads and single
reads associated with miRNA i, respectively; similarly, C;
and M; indicate the total of interactions and free mRNA
related to mRNA j, respectively.

Then, the RS of a miRNA-gene pair was calculated
based on the aggregation of the binding probability and
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the binding affinity, e.g., represented by the minimum free
energy (MFE) [45] of the interaction, as follows:

K

1
RSj = = > " IMFE(| x Pyir)
k=1

where MFE; represents the minimum free energy of the
binding site k and K is the total number of different
binding sites between miRNA i and gene j.

Considering the competition among all possible targets
of a miRNA regulator, RS was further normalized by the
total number of interactions associated with miRNA i:

RS;;
RS;

where RS; denotes the sum of RS between miRNA i and
all its target.

RS of TF-gene interactions

Unlike the RS of a miRNA-gene pair was calculated based
on abundances, the RS for the TF ¢ and gene j was esti-
mated based on the distance, d, between the TF binding
site k and the transcription start site (TSS) [46, 47], as
follows:

RSy = e—(o.5+4(16i5))

Then, the RSs for all binding sites between a TF and gene
pair (¢ and j) can be aggregated by [46]:

K

RS;=1—]](1—RSk)
k=1

Similarly, considering that the same TF can bind to several

different genes, RS was normalized as RS}, = II%: where
RS; denotes the sum of RS between TF ¢ and all regulated

genes.

The meta-regression model for gene regulation
identification

In this study, each disease was considered as a specific
condition D; (¢t = 1,2,...,9), which includes two con-
ditions for obesity and seven cancers. For each condition
Dy, we created four matrices for each gene as shown in
Equations 1 and 2.
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Expression matrix

Y (S x 1) contains the expression changes of gene j in
each of the s samples associated with D; compared to the
control group. Here, the expression changes of gene j in
sample s were calculated as follows:

gjs
Agjs = log
” > 8jctrl
The background matrix

X1(S x 2) includes values of the CNV and methylation
change of the gene j in each sample versus the normal
group. It must be noted that, in this study, the background
matrix Xj is only constructed for cancer conditions as
CNV and DNA methylation information were not avail-
able for obesity dataset.

The regulator matrix

P(S x R) contains the expression changes of all TF and
miRNA regulators of gene j in s samples versus the control
group. R denotes the total number of regulators of gene ;.

The regulatory score matrix

R(1 x R) contains the RS between gene j and its regula-
tors (TFs and miRNAs). R denotes the total number of
regulators of gene j.

We constructed a linear regression model [7] with a
updated matrix Xo ([P' x R,...,PS x R]T , which are
the products of R and each row in P) to represent the
regulatory effects of TF and miRNA. Since the back-
ground matrix Xj is not our focus, the Frisch—Waugh—
Lovell (FWL) method was employed to transform the
two-component regression model [7] to a standard linear
regression model [8]. Through this linear transformation,
the expression changes of gene (Y) were adjusted by My,
which presents the influences of CNV and methylation on
gene expression change. Last, the linear regression model
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[8] was solved with variable selection by using Mallows’s
Cp method [48].

Y =X181+XoB2 + €
MX1 Y = MX1 (X282 +€)

where My, =1 —X; (XlTXl)_leT. The statistical signif-
icance of each regulator in the final model was assessed
based on the consistency across all samples under
the same condition. False discovery rate (Benjamini-
Hochberg procedure, Q-value < 0.05) [49] was used to
remove any insignificant regulators of corresponding
gene.

Sampling for consensus regulator selection

To minimize the variation on regulator detection, we
repeated the sampling process 20 times and generated 20
randomized datasets. Then, for each randomized dataset
(U;), we conducted regulator detection through the afore-
mentioned model and obtained regulators of gene j(W).
On the other hand, the original dataset (Uorg) was also
applied on the regression-based model to obtain a set of
regulator of gene j, W j. The regulators which were in
Worg-j and have been consistently detected in all Wj;, are
considered as the consensus regulators of gene j. As the
final result, Weon—; that contains all consensus regula-
tors of gene j is reported. For each reported interaction,
a summarized coefficient and consensus measure repre-
sented by a percentage were given to reflect the selection
consistency and confidence. The rationale is as follows.
When regulatory interaction is formulated as a regression
problem where target gene is a response variable and reg-
ulators are predictor variables, the regression coefficients,
B, obtained after optimization indicate a relationship.
Nonzero § values show existence of such relationship.
Proportion of correctly estimated nonzero 8 values shows
the sensitivity, and that of zero 8 values shows specificity.
Without the ground truth of the relationships, calculation
of sensitivity and specificity is not possible for method
performance evaluation. Therefore, we define a consis-
tency metric to show the confidence in our model predic-
tions. Regression coefficients from Meta-lasso model was
obtained for target gene and its regulators in each data
split. Consistency is the proportion of nonzero regression
coefficients in all the splits. We set a threshold at 0.7 for
consistency values.

Over-sampling of the obesity dataset

Since our model considers all major regulators in this
meta-regression analysis, it requires a minimal sample
size for the reliable detection of gene regulators, which
is challenging for the obesity datasets. To overcome this
problem, an over-sampling process was implemented. The
basic idea is to generate new samples by introducing
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random small variations to the existing samples in the
original dataset to maintain the same sample distribution.
As showed in [9], E; is the whole genomic profile of one
original sample s and V;; is a randomly generated variation
vector, which has the same dimension as E;. The elements
in variation vector V, were randomly sampled from 0.95
to 1.05. Then, the new sample E; was created as follows:

E; =Es X Vi Z[ESIVGI)ES2V(72P~~1Esiv(7i1oH ]

where V;; ~ Uniform(0.95, 1)

Subsequently, the same analysis was performed for
every human gene g; (j = 1,2,...,20531) in obesity and
seven cancers.

Results

First, through the aforementioned modeling and data
analysis, we identified the differentially expressed (DE)
genes and miRNAs (with Fold Change (FC) >= 2 and
p-value < 0.05 through t-test) in each cancer and obesity,
as well as the miRNA-gene interactions in each condition.
The detailed statistics are summarized in (Supplementary
Table 1) while the full list of interactions is at http://sbbi-
panda.unl.edu:8001/obesity-regulators/.

Common DE genes and miRNA regulations reflect
associations between obesity and cancers

To investigate the molecular association between obesity
and different cancers, we first looked into the DE-genes
and -miRNAs in each diseased condition versus the cor-
responding normal. In general, there are less DE-genes
and -miRNAs in obesity than in cancers. For example,
405 genes and 9 miRNAs showed significant expression
changes (FC >= 2) in obese group compared to normal
while in average, there are 8,988 DE genes, and 29 DE
miRNAs with FC >= 2 and 1,035 with FC >1 in can-
cers (5,425 DE-genes and 120 DE-miRNAs identified in
the early stage of cancer).

Fewer DE-genes were identified in early stage cancers
from SAG (Mean = 5,296, Confidence Interval = [4,242,
6,244]) than WAG (Mean = 5,599, Confidence Interval =
[4,711, 6,948]). Surprisingly, even with fewer DE-genes,
the SAG still consistently shares more common DE-genes
with obesity than the WAG, i.e. [41.2%, 59.3%] versus
[27.0%, 38.3%)] as shown in Table 3. For example, 59.3% of
DE-genes in obesity were also in early stage kidney cancer
(KIRC), while only 27% of DE genes are common between
obesity and early stage lung cancer (LUSC).

It has been known that not many miRNAs change in
the adipose cells in obesity. As shown in our analysis, only
9 miRNAs were found differentially expressed in obesity,
with FC >= 2. There is no evidence suggesting the signif-
icant commonality between SAG and obesity in terms of
DE-miRNAs. Note that those reported in obesity-cancer
linkage shows consistent expression patterns, e.g., let-7
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Table 3 The Overview of Commonality Between Obesity and Cancers (A, B% denotes the number of overlapped
genes/miRNAs/interactions between obese and cancer, and % of obese is overlapped with the corresponding cancer)

Obesity Strong association group Weak association group
KIRC KIRP LIHC UCEC BRCA LUAD LUSC
Hazard ratio (HR) [32] - 1.25 1.19 1.62 0.97 0.82
Differential expression Genes 405 240, 205, 168, 167, 130, 155, 109,
59.3% 50.6% 41.5% 41.2% 32.1% 38.3% 27.0%
miRNAs 9 2 3, 1, 3, 2, 2, 2,
22.2% 33.3% 11.1% 33.3% 22.2% 22.2% 22.2%
MicroRNA regulatory interactions Interactions 1558 523, 556, 497, 568, 492, 534, 507,
31.6% 33.6% 31.9% 36.6% 31.6% 34.3% 32.5%
Genes 1355 806, 845, 776, 809, 770, 846, 848,
59.5% 62.4% 57.3% 59.7% 56.8% 62.4% 62.6%
miRNAs 180 110, 115, 115, 112, 117, 108, 107,
61.1% 63.9% 63.9% 62.2% 61.7% 60.0% 59.4%

and miR-10b are down regulated in obesity and breast
cancer). However, considering the fact that different miR-
NAs may co-regulate the same gene targets and lead to
the same crucial functional changes, it is highly warranted
to investigate the obesity-cancer associated in terms of
miRNA regulatory interactions.

By examining the miRNA-gene interactions detected in
each disease, we found that miRNA regulations are highly
involved in both obesity and early stage cancers (consis-
tent across all types of cancers). About 92% (out of 1,558)
miRNA-gene interactions in obesity were detected in at
least one type of cancer as shown in Table 3. More than
half of miRNA-mediated genes in obesity were also tar-
gets of miRNAs in cancers. Observations also suggest that
the same miRNAs may interact with different gene targets
under different disease conditions.

miRNA regulated pathways in obesity and early-stage SAG
cancers

To demonstrate that miRNA regulation is involved in
the link between obesity and cancers, particularly at the
early stage, we conducted gene set enrichment analysis
[50] to identify the altered functional pathways based on
miRNA targets in each dataset. As shown in Table 4, we
listed the top five enriched pathways from three major
functional categories that are critical in obesity and can-
cers, such as signaling pathways, metabolism pathways
and inflammation pathways. We found that the patterns
in some particular pathways can differentiate the SAG
and WAG. For example, MAPK signaling pathway was
consistently enriched in down-regulated genes in three
cancers of WAG while being enriched in up-regulated
genes in obesity, kidney and liver cancers. Similarly, two
pathways related to fatty acid metabolism and glycine,
serine and threonine metabolism also showed common

alterations among obesity, kidney cancer, and liver cancer.
With respect to immune response, obesity showed higher
consistency with SAG than WAG.

miRNAs co-regulate the same biological process by
targeting different genes in each disease

Next, we compared obesity with early-stage SAG cancers
and identified 31 common miRNA-gene interactions and
9 common critical pathways, as shown in Table 5. Tak-
ing fatty acid metabolism as an example, 8 miRNAs and 7
genes are involved in obesity as shown in the middle panel
of Fig. 2. Between obesity and early-stage liver cancer,
upper panel of Fig. 2, two interactions (miR-152/ECHS1
and miR-100/ALDH9A1) remained the same (in red)
and another two common miRNAs (miR-193b and let-
7b) regulate different gene targets in LIHC compared
to obesity. Specifically, miR-193b regulates ALDH3A2
and let-7b interacts with ALDH7A1 in obesity, however,
in liver cancer, miR-193b regulates ALDH7A1 and let-
7b targets HADHA, they regulate different genes (miR-
193b /ALDH7A]1, let-7b/HADHA) that participate in the
same functional process. When looking at the fatty acid
metabolism in obesity and uterine cancer, three miRNA-
gene interactions (miR100/ALDH9A1, miR-186/ACAA2
and miR- 193b/ALDH3A2) were shared in common. In
addition, another 5 common genes and 4 miRNAs were
involved with different interactions. For example, miR-
615-3p interacts with CPT1C in obesity and regulates
ACOX1 and ALDHI1BI1 in uterine cancer.

When including all cancer samples regardless of stage
into the comparison, 1,147 common miRNA-gene inter-
actions and 51 common critical pathways were identified
(Supplementary Table 2). Taking two signaling pathways
as examples: 193, 19, and 4 miRNAs regulate MAPK
pathways in obesity, liver cancer and uterine cancer,
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Table 4 Functional pathways enriched in obesity and early stage cancers in the selected categories (1 and | indicate that the
pathways were identified among the up-regulated and down-regulated genes, respectively, in the corresponding condition; those in

bold show consistent patterns between obesity and SAG cancers)

Pathway types Pathways Early stage cancers
KIRC KIRP LIHC UCEC BRCA LUAD LUSC Obesity

Signaling Pathways MAPK signaling pathway 0 0 0 N l 1 0

p53 signaling pathway 4 0 0 0 0 0 0

Calcium signaling ? b 0 N N l l

pathway

PPAR signaling pathway N 0 0

Insulin signaling pathway 0 0 l 0 N 0
Metabolism Pathways Linoleic acid metabolism ? 0 | 0

Fatty acid metabolism N N J N

Glycine, serine and N J J 4 0 1

threonine metabolism

Arachidonic acid 1 J d 0 d ¢ d

metabolism

Glutathione metabolism 0
Inflammation Pathways Cytokine-cytokine 4 0 0 0

receptor interaction

B cell receptor signaling 4 4 0 1

pathway

T cell receptor signaling 0 0 0 0 l 0

pathway

mTOR signaling pathway 4 0 0

respectively. As shown in Fig. 3A, miR-423-5p and miR-
484 are the common regulator in all three diseases by
targeting overlapped sets of genes (including NFKB2,
GNG12, MKNK2, STMNI1, FLNA) in these diseases. Sim-
ilarly, in PI3K-Akt signaling pathway (Fig. 3B), miR-484
and miR-769-5p co-regulate different genes in three dis-
eases. All these observations stressed again the modulated
property of miRNA regulation as different miRNAs can
regulate the similar processes by targeting the same or dif-
ferent genes. An expanded list of pathways revealed by the
common interactions is shown in Fig. 4.

Additionally, 10 interactions were involved in the non-
alcoholic fatty liver disease (NAFLD) pathway, including
miR-423-3p, miR-484, miR-342-3p, miR-146b-5p, miR-
193a-5p, miR-324-3p and their 10 targets. We used a
set of in-house (small) RNA-Seq data generated on a
liver disease mouse model (details can be found in Sup-
plementary Materials) and examined the expression pat-
terns related to these interactions. We found that in the
mouse liver samples collected at 20 wks (with STZ+HFD
induced tumor), the ITCH/miR-324-3p interaction shows
negatively correlated expression between miRNA and
gene (|Pearson correlation coefficient (PCC)| > 0.7) while
RXRA/miR-423-3p, JUN/miR-342-3p, and AKT2/miR-
423-3p show weak negative correlation. Similarly, among
all 721 LIHC interactions identified in the TCGA data,

328 of them show similar negatively correlated expression
(Supplementary Table 3). This coupled result provides
clear indication of miRNA participation in cell prolifer-
ation, differentiation, and inflammatory signaling during
the progression of non-alcoholic fatty liver disease to
cancer.

Discussion

In this study, we identified miRNA-gene interactions in
obesity and seven major types of cancer by integrat-
ing multi-level genomic information through computa-
tional models. A list of common miRNA regulators are
highly likely to be involved in the development of obesity-
associated cancers in terms of growth and inflammatory
signaling and metabolism. Strong evidences show that
most miRNAs contribute in the same functional path-
way through regulating different genes under different
conditions, which indicates that miRNA regulation is a
function-driven dynamic process.

We also observe the patterns among the altered func-
tional pathways which are promising to differentiate two
groups of obesity related cancers, particularly in the
early stage. Note that when including all cancers regard-
less of stage, due to the much higher variability among
the expression profiles, the detected interactions and
enriched pathways are slightly different from the early
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Table 5 Common miRNA Regulatory Interactions and Enriched
Pathways Between Obesity and Cancer of SAG

Strong association group

miR-320a — MLL/OTUD1/PPIALAG/PPP1R7;
miR-18a — CSDA/IRS4/KLHDC10;
miR-193b — GMPR2/MYST3/ZNF71;
miR-484 — FAM128B/NOMO3/TMEM93;
miR-615-3p — KIAA0494/LRRC37A2/MRPL23;
miR-17 — CBL/TRAPT;

let-7b — SPTBN2; let-7e — EIF2C2;

miR-106a — HDHD1A; miR-125b — GPRINT;
miR-149 — JMJD5; miR-186 — INPP5F;
miR-192 — KIAA1671; miR-378 — MLF1;
miR-935 - TALDOT; miR-625 — LASS2;
miR-30e — EXO1; miR-671-5p — CCDC21;
miR-1301 - ZCCHC24

Common obesity-
detected miRNA
regulatory interactions

Enriched pathways
through miRNA
regulations

Fatty Acid Metabolism
Arachidonic Acid Metabolism
Purine Metabolism

MAPK Signaling Pathway
P53 Signaling Pathway

Axon Guidance

Focal Adhesion

Gap Junction

Leukocyte Transendothelial Migration

stage cases. This is a common problem in disease-related
expression analysis given the fact that many genes and
miRNAs show differential expression in different dis-
ease stages in addition to the variability related to gen-
der, age, and other factors. Based on the identified con-
ditional miRNA-gene interactions in each disease, we
observed that miRNAs regulate a few common signal-
ing and metabolic pathways between obesity and can-
cers, which may imply the miR-driven linkage between
these diseases. Obesity comes from a chronic imbalance
between energy intake and energy expenditure, which
results in changes that lead to abnormal growth. The cel-
lular location of these changes, which potentially includes
the regulation, signaling, and genomic and epigenomic
systems, are reflected at the metabolic level. Therefore,
metabolic abnormality as one of major hallmark of can-
cer also reflects the early change involved in the disease
development. We believe by focusing on the metabolic
aspect of disease progression, we can further study how
external factors affect disease progression and under-
stand the association between obesity and cancers at the
systems level where miRNA regulation represents a key
mechanism in terms of signaling from adipose tissues to
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remote tissues. We agree that experimental developments
along the research line of miRNA tracking and targeting
can help better understand miRNA’s involvement in cell
communication and disease progression.

It is noted that miRNA transfer and cross-talk is beyond
the scope of this computational study due to the difficulty
in stratifying miRNAs according to their origins. There
are well-known technical challenges in designing exper-
imental protocols to track miRNA secretion and isolate
exogenous regulation in target tissues.

From a technical perspective, we have developed a new
integrated framework to study dynamic miRNA-mediated
regulation in human diseases and have demonstrated that
such data-driven approaches with novel solutions to infor-
mation fusion and computational modeling can effec-
tively facilitate novel mechanistic discoveries and hypoth-
esis testing in biomedical research. The comparison with
other methods of the same kind has demonstrated advan-
tageous performance of this methodology (Supplemen-
tary materials). In the meantime, we are also well aware
of the challenges in data integration from heterogeneous
resources. For instance, miRNA-mRNA interactions are
deemed to be context-dependent and somewhat cell spe-
cific. Ideally, various levels of genetic and genomic data
should be collected from the same context to avoid biased
discovery. In this study, although all common interac-
tions inferred in obesity and cancers can be validated
in miRecords and mirTarBase, this prediction doesn’t
include interactions known in obesity and cancer link-
age. This is mainly because some miRNAs (e.g., miR-10b,
302b, or -498 in obesity-breast cancer case) were not ini-
tially covered in the CLASH interactome data. This issue
can be possibly addressed by compiling more complete
interactome available in different cell types. For the same
reason, it is also problematic to combine or compare dif-
ferent studies when variant context are presented, which
may partially explain the current inconsistency of miRNA
regulators reported in a disease by different studies in the
literature. However, a higher level of conservation in terms
of miRNA regulated pathways is expected in those scenar-
ios. Furthermore, existing interactome detected in very
few cell types share high level of commonality but as a
whole, it is still infeasible to cover all the possible interac-
tion patterns. To this end, future studies with well-thought
out experimental design and more systematic data gen-
eration can dramatically improve the capacity of similar
computational models.

Conclusion

In this paper, we have examined the association between
obesity and obesity-associated cancer through studying
the miRNA regulation. Particularly, a novel statistical met
hod has been developed to discover the context-dependent
miRNA-gene regulation and identify key miRNA regulators
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integrated into general dynamic gene regulation network
study and be applied in similar biomedical research. [ Additional file 1: Supplementary Materials. }
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