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ABSTRACT 1 
Congenital Zika syndrome (CZS), the set of fetal and neonatal complications associated with 2 

Zika virus (ZIKV) infection in pregnancy, was first noted during the outbreak in the Americas in 3 

2015-16. However, there was an unequal distribution of ZIKV cases and severe outcomes in all 4 

areas where ZIKV emerged in the Americas, demonstrating that the risk of CZS varied over 5 

space and time. Recently, we demonstrated that phenotypic heterogeneity existed between 6 

closely-related ZIKV strains. All ZIKV strains tested infected the placenta but varied in their 7 

capacity to cause overt fetal harm. Here, we further characterized the relative contributions of 8 

virus genotype and infecting dose of two phenotypically distinct ZIKV strains across multiple 9 

timepoints in gestation in pregnant mice that lack type-I interferon receptor function (Ifnar1-/-). To 10 

better understand the underlying causes of adverse fetal outcomes, we used RNA sequencing 11 

to compare ZIKV-infected and uninfected tissues. We found that ZIKV infection triggers retinoic 12 

acid-inducible gene I (RIG-I)-like receptor-mediated activation of the interferon response at the 13 

maternal-fetal interface. However, modest chemical inhibition of RIG-I activation in the decidua 14 

and placenta did not protect against fetal demise. Instead, the fetal interferon response was 15 

significantly associated with fetal demise. Together, these findings suggest that the response to 16 
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ZIKV at the maternal-fetal interface can vary depending on the infecting ZIKV genotype and 17 

dose, and that the fetal immune response is an important mediator of fetal harm. 18 

IMPORTANCE 19 

Previously, we used a mouse model of ZIKV infection during pregnancy to assess the pathogenic 20 

potential to the fetus of a panel of five, low-passage ZIKV strains representing the viral genetic 21 

diversity in the Americas. We found that phenotypic heterogeneity existed between these closely-22 

related ZIKV strains. Here, we show that this heterogeneity is driven by retinoic acid-inducible 23 

gene I (RIG-I)-like receptor-mediated activation of the interferon response at the maternal-fetal 24 

interface. We used chemical inhibition of the RIG-I pathway and measured the transcriptional 25 

activity of interferon stimulated genes in fetuses to demonstrate that the fetal immune response 26 

may contribute to fetal demise.   27 
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INTRODUCTION 28 

Zika virus (ZIKV) infection during pregnancy can cause a spectrum of adverse fetal outcomes 29 

collectively termed Congenital Zika Syndrome (CZS), but not all children exposed to ZIKV in 30 

utero develop these abnormalities. While it is well-established that ZIKV can cause fetal harm, 31 

how ZIKV causes fetal harm remains unclear. Whether fetal pathology manifests for a given 32 

pregnancy is dependent on myriad factors including gestational age of the fetus, maternal 33 

immunity, maternal-fetal barrier integrity, and ZIKV tropism (1, 2). ZIKV can be vertically 34 

transmitted through the maternal-fetal barrier, but the route and frequency of transmission 35 

remains uncertain. It is thought that ZIKV is vertically transmitted from maternal circulation to the 36 

maternal-derived decidua, then to the adjacent fetal-derived placenta, and finally to the fetus (3, 37 

4). ZIKV can replicate in several cell types of the human maternal-fetal interface (MFI) including 38 

maternal decidual cells (5), fetal trophoblast cells, and fetal endothelial cells (3). Many studies 39 

report detection of viral proteins and/or viral RNA (vRNA) in the placental tissues of ZIKV-40 

infected pregnant people (6). Many animal studies recapitulate these findings with ZIKV vRNA 41 

detected in multiple MFI tissues of non-human primates (7, 8), but these same studies were 42 

unable to determine the route of transmission through the tissues. Human cohort studies report 43 

varying frequencies of infection of the MFI and fetus. In one case study, over half of ZIKV-44 

infected mothers had ZIKV vRNA detected in placental and/or fetal tissue at term (9). In cases 45 

of severe microcephaly, evidence of fetal infection was relatively common (10–12), indicating 46 

that fetal infection is likely one mechanism of fetal harm. But with limited screening of 47 

apparently-normal infants who have subtle neurological sequelae, it remains unknown if fetal 48 

infection is a precursor in all cases of CZS.  49 

Ultimately, fetal infection may not be required for fetal harm. Recent cohort studies show that 50 

infants with CZS have high levels of inflammatory markers (13, 14), suggesting a significant 51 

inflammatory response before birth. A robust inflammatory response can cause placental 52 
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dysfunction, a syndrome during which the placenta fails to develop properly and deliver 53 

nutrients, blood, and oxygen to the growing fetus. Placental dysfunction results in intrauterine 54 

growth restriction, abnormal development, and miscarriage (15), which have been observed in 55 

neonates and infants with CZS. ZIKV vRNA persistence at the MFI can also induce high levels 56 

of interferon (IFN) (16). In some animal models, placental damage caused by the IFN response 57 

was a precursor to fetal demise, and fetal infection was not required (17–21). Consistent with 58 

this, certain nucleotide polymorphisms in IFN receptors and immune profiles were associated 59 

with higher levels of IFN-stimulated genes and increased risk of CZS in humans (22, 23). 60 

Together, these findings suggest that ZIKV infection of the fetus is not required in all cases of 61 

fetal harm. 62 

Epidemiological data from the 2015-2016 American outbreak showed that although 63 

Asian/American-lineage ZIKV strains share >99% nucleotide-identity (24), they cause 64 

heterogeneous rates of fetal harm (25–31). This suggests ongoing virus evolution during the 65 

2015-2016 outbreak in the Americas may have given rise to phenotypic variants that differ in the 66 

mechanism by which developing fetuses are harmed. Indeed, we unexpectedly found that 67 

phenotypic heterogeneity existed between closely-related ZIKV strains in a pregnant Ifnar1-/- 68 

mouse model (18). The Asian-lineage ZIKVs we tested had varying capacities to cause fetal 69 

demise, ranging between 9 - 51%—importantly, demise occurred in the absence of detectable 70 

fetal infection(18). Other infection parameters, including maternal viremia, placental infection, 71 

placental histopathology, and intrauterine growth restriction were similarly heterogeneous in our 72 

mouse model (18). Surprisingly, none of these phenotypes positively correlated with the rate of 73 

fetal demise.  74 

Therefore, to identify other factors that may contribute to ZIKV-induced fetal demise, we 75 

leveraged the natural variability in phenotype that exists between closely-related ZIKV strains 76 

and initiated transcriptome profiling studies to assess gene expression changes in the placenta. 77 
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We used two ZIKV strains that showed different pregnancy phenotypes: a strain from Brazil, 78 

ZIKV-BRA (Paraiba_01), that causes significant fetal demise, and a strain from Mexico, ZIKV-79 

MEX (R116265), that does not. We found that ZIKV infection results in strain- and dose-80 

dependent activation of the IFN response at the MFI prior to fetal demise. Further analysis 81 

suggested that retinoic acid-inducible gene I (RIG-I) sensing of ZIKV vRNA was a primary driver 82 

of the IFN response. Since the IFN response is known to be pathogenic during pregnancies (17, 83 

21), we aimed to investigate if chemical inhibition of RIG-I signaling reduced rates of fetal 84 

demise following ZIKV-BRA infection. We found that modest RIG-I inhibition at the MFI does not 85 

protect against fetal demise, but identified a strong association between an increased fetal IFN 86 

response and fetal demise.   87 
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RESULTS 88 

ZIKV strain- and dose-dependent pregnancy phenotypes are present across gestation. 89 

Previously, we determined that there is strain-dependent phenotypic heterogeneity in pregnancy 90 

outcomes following in utero ZIKV exposure in pregnant Ifnar1-/- mice (18). We compared a panel 91 

of five geographically-distinct, low-passage Asian/American-lineage ZIKV strains and assessed 92 

pregnancy outcomes at a single necropsy timepoint (E14.5) to evaluate the extent to which 93 

pregnancy outcomes varied by infecting ZIKV genotype. Viruses from Brazil and Cambodia 94 

caused significantly more embryo resorption than viruses from Panama, Puerto Rico, and 95 

Mexico (18). Now, to determine when strain-dependent outcomes manifest and assess the 96 

influence of dose, we compared pregnancy outcomes at multiple points in gestation. We 97 

inoculated with 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, and 103 PFU ZIKV-BRA. We chose 98 

these two ZIKV strains because they have distinct pregnancy phenotypes—ZIKV-BRA causes 99 

significant fetal resorption and ZIKV-MEX does not—when inoculated with 103 PFU (18). These 100 

virus strains differ by only seven amino acids (Table 1). We included a high-dose inoculation of 101 

ZIKV-MEX (105 PFU ZIKV-MEX) to determine if increasing the dose for this virus strain impacts 102 

the rate of fetal resorption. To assess pregnancy outcomes, Ifnar1-/- dams were time-mated with 103 

wildtype (WT) males to produce fetal and placental tissue with intact IFN signaling, as we have 104 

done previously (18, 19, 32). Pregnant Ifnar1-/- dams then were inoculated with 103 or 105 PFU 105 

ZIKV-MEX or 103 PFU ZIKV-BRA via subcutaneous footpad inoculation at embryonic day 7.5 106 

(E7.5). E7.5 corresponds to the mid-to-late first trimester in humans (33). Dams were monitored 107 

daily for clinical signs until the time of necropsy; no overt clinical signs were observed in any 108 

virus- or PBS-inoculated dams. We collected serum at 2, 4, 7 (105  PFU ZIKV-MEX only), and 10 109 

days post inoculation (dpi) to compare maternal viremia kinetics between the two viruses. At 2 110 

dpi, all groups were significantly different from each other (p < 0.0409), with 105 PFU ZIKV-111 

MEX-inoculated animals having the highest serum titers (Figure 1A). At 4 dpi, the 103 PFU 112 
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ZIKV-BRA group had significantly higher titers than both ZIKV-MEX groups (p < 0.0001). At 10 113 

dpi, titers did not differ significantly between 103  PFU ZIKV-MEX, 105  PFU ZIKV-MEX, and 114 

103  PFU ZIKV-BRA, and were largely undetectable. There was no significant difference 115 

between 105  PFU ZIKV-MEX and 103  PFU ZIKV-MEX and 103 PFU ZIKV-BRA from reference 116 

(Bohm 2021) at 7 dpi (p > 0.9999). 117 

 118 
BRA MEX Protein Codon 

G A NS1 100 

K E NS1 326 

V M NS1 349 

V I NS3 40 

F S NS3 356 

M L NS3 572 

I T NS5 526 

Table 1: Amino acid differences between ZIKV-MEX and ZIKV-BRA. Bold text indicates deviation from other Asian-119 
lineage ZIKVs examined in reference (Bohm 2021).  120 

Next, to compare the range of fetal outcomes across gestation, we necropsied dams on E11.5, 121 

E14.5, or E17.5. In an effort to minimize the use of animals, data for E14.5 for the 103 PFU 122 

ZIKV-MEX and 103 PFU ZIKV-BRA groups are derived from reference (18) and presented here 123 

for comparisons only. Gross examination of each conceptus revealed overt differences among 124 

fetuses within pregnancies, with uninfected counterparts, and across gestation. Fetuses 125 

appeared as either morphologically normal or undergoing embryo resorption, as defined in 126 

reference (19). The proportion of resorbed fetuses for 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, 127 

and 103 PFU ZIKV-BRA-infected animals did not significantly differ from PBS-inoculated controls 128 

at E11.5 (Fisher’s exact test, p > 0.1338)(Figure 1B). At E14.5, dams infected with 105 PFU 129 

ZIKV-MEX exhibited significant fetal resorption compared to PBS-inoculated controls and 103 130 

PFU ZIKV-MEX (Fisher’s exact test, p < 0.0004) and this rate of resorption was similar to the 131 
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rate caused by 103 PFU ZIKV-BRA in reference (18)(Figure 1B). The proportion of resorbed 132 

fetuses at E14.5 for 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA groups was also significantly 133 

higher than what was observed at E11.5 (Fisher’s exact test, p < 0.0001)(Figure 1B), indicating 134 

that fetal resorption becomes grossly detectable between E11.5 and E14.5. At E17.5, the 135 

closest point to term that can be assessed in our model, the proportion of resorbed fetuses in 136 

103 PFU ZIKV-MEX-infected animals remained no different from our PBS control group (Fisher’s 137 

exact test, p > 0.0856)(Figure 1B), demonstrating that infection with 103 PFU ZIKV-MEX does 138 

not result in significant fetal resorption at any point across gestation. Infection with 103 PFU 139 

ZIKV-BRA, on the other hand, had high rates of fetal resorption at E14.5 and E17.5 that were 140 

significantly higher than PBS at all points assessed (Fisher’s exact test, p < 0.0128) but were no 141 

different from each other (Fisher’s exact test, p = 0.0875)(Figure 1B). The rate of fetal 142 

resorption varied significantly between individual pregnancies within each treatment group. Most 143 

groups had modest variation, but 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA displayed high 144 

variability at E14.5 and E17.5, ranging between 9 - 100%(Figure 1C).  145 

We measured crown-to-rump length (CRL) at E11.5 and E17.5 to assess the impacts of ZIKV 146 

infection on fetal growth across gestation (18, 19, 34). Only fetuses that appeared 147 

morphologically normal were included for CRL measurement to examine intrauterine growth 148 

restriction (IUGR). There was no statistically significant difference in mean CRL in 103 PFU 149 

ZIKV-MEX or 103 PFU ZIKV-BRA fetuses compared to fetuses from PBS-inoculated controls at 150 

E11.5 (One-way ANOVA with Tukey’s multiple comparisons, p >0.9797) (Figure 1D). For 105 151 

PFU ZIKV-MEX fetuses, there was not a statistically significant reduction in CRL at E14.5 152 

(Tukey’s multiple comparisons, p = 0.2096), which is consistent with 103 PFU ZIKV-MEX 153 

fetuses but different from 103 PFU ZIKV-BRA fetuses at E14.5 reported in reference (18). We 154 

observed a significant reduction in mean CRL in both 103 PFU ZIKV-BRA and 103 PFU ZIKV-155 

MEX fetuses compared to PBS controls at E17.5 (One-way ANOVA with Tukey’s multiple 156 
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comparisons, p <0.0001, average difference 3.24mm and 6.23mm, corresponding to an 11% 157 

and 21% reduction in fetal size, respectively). Overall, these data indicate that 103 PFU ZIKV-158 

MEX and 103 PFU ZIKV-BRA both have the capacity to cause IUGR, but 103 PFU ZIKV-BRA-159 

induced IUGR manifests earlier in gestation and results in a greater magnitude of restriction. 160 
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161 
Figure 1: ZIKV strain phenotypic heterogeneity is present across gestation. (A) Time-mated Ifnar1−/− dams were 162 
inoculated with 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, or 103 PFU ZIKV-BRA on E7.5. Maternal infection was 163 
assayed by plaque assay on 2, 4, and 7 days post inoculation, and significance was determined by one-way ANOVA. 164 
(B) Rate of normal (black) versus resorbed (colored) fetuses at E11.5, E14.5, and E17.5 after maternal infection at 165 
E7.5. Data are presented as the percent of n = 23-83 total fetuses (from 3 to 10 dams per treatment group). 166 
Significance was determined by Fisher’s exact test. (C) Pregnancy outcomes of individual animals in each treatment 167 
group. Data are presented as percent of fetuses resorbed in each pregnancy. (D) Crown-to-rump length 168 
measurements in mm of morphologically normal fetuses at E11.5, E14.5, and E17.5 using ImageJ software. 169 
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Significance was determined by one-way ANOVA. The color gray indicates historical data from reference (18). 170 
Significance annotations for all figures: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05. 171 

To understand how or if infectious ZIKV virions reach the developing embryo during gestation, 172 

we examined a subset of MFI tissues for the presence of infectious virus using plaque assays. 173 

The MFI is composed of the maternal-derived decidua and the fetal-derived placenta. 174 

Consistent with our previous work (18), no infectious virus, except for one sample at E11.5, was 175 

detected by plaque assay in any fetus sample for any treatment group (Figure 2A). In contrast, 176 

infectious virus was detected in about one third of MFI samples from ZIKV-infected groups. At 177 

E11.5, 105 PFU ZIKV-MEX MFIs had a significantly higher titer than 103 PFU ZIKV-MEX MFIs 178 

(Tukey’s multiple comparisons, p = 0.0028)(Figure 2A). However, at E14.5, 103 PFU ZIKV-BRA 179 

MFIs had a significantly higher titer than both ZIKV-MEX-inoculated groups (Tukey’s multiple 180 

comparisons, p < 0.0001)(Figure 2A). 181 

Given the limited evidence for viral replication in fetuses or at the MFI, we next used RT-qPCR 182 

to examine these tissues for the presence of ZIKV viral RNA (vRNA)—RT-qPCR detects viable, 183 

partial, and non-viable RNA fragments. The presence of vRNA has been shown to induce 184 

antiviral signaling and synthesis of viral proteins (35), and therefore can trigger an antiviral 185 

response. We first analyzed archived MFI and fetus samples at E14.5 from reference (18). We 186 

observed no difference in MFI vRNA load between any ZIKV-inoculated groups (2-way ANOVA 187 

with Tukey’s multiple comparisons, p > 0.2470)(Figure 2B). We did, however, observe 188 

significantly higher fetal vRNA loads in 103 PFU ZIKV-BRA and 105 PFU ZIKV-MEX groups 189 

compared to 103 PFU ZIKV-MEX (Tukey’s multiple comparison, p < 0.0022)(Figure 2B), 190 

suggesting that ZIKV-MEX vRNA can reach the fetus at the same rate as ZIKV-BRA vRNA at 191 

higher doses. Given these differences, we dissected the MFI into the maternal-derived decidua 192 

and the fetal-derived placenta at E11.5 to better understand the vRNA burden in distinct MFI 193 

structures before fetal resorption is clearly evident. At E11.5, we observed high vRNA loads in 194 

all ZIKV-inoculated groups. 103 PFU ZIKV-BRA had significantly higher vRNA loads in all 195 
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tissues compared to 103 PFU ZIKV-MEX (p < 0.0001), but not 105 PFU ZIKV-MEX at E11.5 196 

(Tukey’s multiple comparisons, p = 0.6605). These data demonstrate that vRNA load is 197 

dependent on the dose and the genotype of the infecting ZIKV strain, with significant differences 198 

in vRNA loads observed in the decidua, placenta, and fetus prior to (E11.5) and when (E14.5) 199 

fetal resorption is detectable (Figure 2B).    200 

 201 
Figure 2: Infectious virus and ZIKV vRNA load at E11.5 and E14.5. (A) Tissue titer was measured by plaque 202 
assay for homogenized MFI (comprising decidua and placental tissues) and fetuses at E11.5 and E14.5. (B) ZIKV 203 
vRNA load was measured by qRT-PCR for homogenized decidua, placenta, MFI, and fetuses at E11.5 and E14.5. 204 
For all figures, symbols represent individual MFI or fetus samples from 4 to 10 independent experiments for each 205 
treatment group. The color gray indicates historical data from reference (Bohm 2021). Bars represent the median viral 206 
titer of each treatment group and significance was determined by two-way ANOVA with Tukey’s multiple 207 
comparisons. Significance annotations: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05; ns, P > 0.05. 208 
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ZIKV influences the MFI transcriptome in a strain- and dose-dependent manner. 211 

Phenotypic characterization across gestation established that infection with 103 PFU ZIKV-BRA 212 

and 105 PFU ZIKV-MEX results in significantly greater fetal demise and vRNA load in MFI 213 

tissues compared to infection with 103 PFU ZIKV-MEX. We therefore sought to determine how 214 

infiltration of ZIKV vRNA impacts the function of the MFI, with the aim of identifying potential 215 

mechanisms of fetal resorption. We collected deciduas and placentas from dams (n=5 per 216 

treatment group) that were inoculated with 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, and 103 217 

PFU ZIKV-BRA or PBS. Decidua and placenta tissue samples were collected at E9.5 and 218 

E11.5. These timepoints were chosen because fetal resorption can be a multi-day, four-stage 219 

process (36). We therefore aimed to capture early responses that may be important for driving 220 

the resorption process. Additionally, the MFI can be dissected into functionally distinct tissues 221 

(decidua and placenta) that are large enough to isolate total RNA from a single sample without 222 

pooling. We included equal proportions of male and female decidua and placenta tissues, with 223 

one or two tissues per embryo sex per animal to avoid sex biases in our dataset. These 224 

numbers also ensured robust sampling from each pregnancy, which is critical given the broad 225 

range in fetal resorption we observed at E14.5 (see Figure 1C). We used DESeq2(37) to 226 

identify significantly differentially expressed genes (≥ 1 log2 fold, p < 0.05), Hallmark Gene Set 227 

Enrichment Analysis (Hallmark GSEA)(38, 39) to identify enriched gene families, and Pathview 228 

(40) to map differentially expressed genes to KEGG signaling pathways.  229 

At E9.5, only five transcripts were significantly differentially expressed between PBS, 103 PFU 230 

ZIKV-MEX, and 103 PFU ZIKV-BRA deciduas. In contrast, 52 transcripts were significantly 231 

differentially expressed in the placenta (Figure 3A-C). The majority of these transcripts were 232 

differentially expressed between ZIKV-infected and PBS groups (Figure 3A-B), and only four 233 

transcripts differentially expressed between 103 PFU ZIKV-MEX and 103 PFU ZIKV-BRA 234 

(Figure 3C)(Table 2). Hallmark GSEA revealed that 103 PFU ZIKV-MEX and 103 PFU ZIKV-235 
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BRA E9.5 placentas were enriched for IFN alpha and gamma responses compared to PBS 236 

(Figure 3D-E). Hallmark gene sets are coherently expressed signatures derived by aggregating 237 

many Molecular Signature Database (MSigDB) mouse gene sets to represent well-defined 238 

biological states or processes (38, 39). The Hallmark “IFN alpha response” comprises type I and 239 

type III IFN responses. Hallmark GSEA revealed that 103 PFU ZIKV-BRA E9.5 placentas are 240 

enriched for IFN alpha and gamma responses compared to 103 PFU ZIKV-MEX (Figure 3F). 241 

Additional signatures enriched in 103 PFU ZIKV-BRA compared to 103 PFU ZIKV-MEX include 242 

IL-6 JAK STAT3 signaling and heme, bile acid, and xenobiotic metabolism. 103 PFU ZIKV-MEX 243 

was enriched for MYC targets V1 and G2M checkpoint (Figure 3F). At E9.5, there was no 244 

significant fetal resorption, nor infectious virus detected in the MFI across inoculated strains and 245 

doses (Figure 3G-H). There were no significant differences in ZIKV vRNA loads in the decidua, 246 

placenta, or fetus samples between 103 PFU ZIKV-MEX and 103 PFU ZIKV-BRA (Two-way 247 

ANOVA with Sidak’s multiple comparisons, p > 0.1445)(Figure 3I).  248 

 249 
Gene ID Log2 fold change  

(103 PFU ZIKV-BRA vs 
103 PFU ZIKV-MEX) 

adj p 
value 

Predicted function 

Ntn3 1.40 0.04 Animal organ morphogenesis; neuron projection development; 
and tissue development 

Zfp654 1.67 0.03 DNA-binding transcription factor activity, RNA polymerase II-
specific, expressed in early conceptus 

Gm17711 2.15 0.05 Not annotated 

Gm21742 2.62 0.05 Not annotated 

Table 2: Differential gene expression between ZIKV-BRA and ZIKV-MEX in E9.5 placentas.  250 
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 251 
 252 
Figure 3: ZIKV-induced transcriptome differences in the E9.5 placenta. (A-C) Volcano plots depicting 253 
differentially expressed gene transcripts in the placenta at E9.5 of animals inoculated with 103 PFU ZIKV-MEX, 103 254 
PFU ZIKV-BRA, or PBS. Genes with significant changes |log 2 fold change| >1 and -log10(p.adjust) > 0.05 appear in 255 
color; genes outside these parameters appear in light gray. (D-F) Hallmark gene set enrichment analysis of 256 
differentially expressed genes between ZIKV-infected and PBS groups. Transcriptomic data represent 16-20 embryo 257 
sex-balanced placentas from n=5 dams per inoculation group. PBS = black, 103 PFU ZIKV-MEX = orange, 103 PFU 258 
ZIKV-BRA = blue. (G) Rate of normal (black) versus resorbed (yellow) fetuses at E9.5 after maternal inoculation at 259 
E7.5. Data are presented as the percent of n = 41-47 total fetuses (from 5 dams per treatment group). (H) Tissue titer 260 
was measured by plaque assay for homogenized MFI (comprising decidua and placental tissues) at E9.5 for 8-9 261 
replicates per treatment group. (I) ZIKV vRNA load in decidua, placenta, and fetuses at E9.5 was measured by qRT-262 
PCR for 8-16 replicates per treatment group. Significance was determined by two-way ANOVA with Sidak’s multiple 263 
comparisons. Significance annotations: ns, P > 0.05. 264 
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At E11.5, we identified 179 gene transcripts that were significantly differentially expressed in the 265 

decidua, with most occurring between ZIKV-infected and PBS groups (Figure 4A-C). Hallmark 266 

GSEA revealed that 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, and 103 PFU ZIKV-BRA 267 

transcriptomes were enriched for the IFN alpha and gamma responses, as well as allograft 268 

rejection (Figure 4D-F). We identified multiple transcripts that were significantly differentially 269 

expressed between ZIKV-infected groups (Figure 4G-I). We identified transcripts that were 270 

differentially expressed based on inoculation dose (103 PFU vs 105 PFU)(Figure 4G), the 271 

inoculating ZIKV strain (ZIKV-MEX vs ZIKV-BRA)(Figure 4H), and between two inoculations 272 

that cause similar rates of fetal resorption (105 PFU ZIKV-MEX, and 103 PFU ZIKV-BRA)(Figure 273 

4I). Hallmark GSEA showed that the E11.5 105 PFU ZIKV-MEX decidua was enriched for the 274 

IFN alpha and gamma responses compared to 103 PFU ZIKV-MEX, which was enriched for 275 

oxidative phosphorylation, G2M checkpoint, and E2F targets (Figure 4J). 103 PFU ZIKV-BRA 276 

was also enriched for the IFN responses compared to 103 PFU ZIKV-MEX (Figure 4K). 277 

However, when 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA were compared, 105 PFU ZIKV-278 

MEX was only enriched for IFN gamma and myogenesis gene sets (Figure 4L), indicating that 279 

these groups had similar enrichment for the type I IFN response. These data suggest that 280 

inoculum boluses containing strains or doses (105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA) that 281 

result in significant rates of fetal demise also induce robust type I IFN responses in the decidua 282 

at timepoints just prior to fetal resorption becoming visibly detectable.  283 
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 284 
 285 
Figure 4: ZIKV strain and dose significantly influences the decidua transcriptome at E11.5. (A-C) Volcano plots 286 
depicting differentially expressed gene transcripts in the decidua at E11.5 of animals inoculated with 103 PFU ZIKV-287 
MEX, 105 PFU ZIKV-MEX, or 103 PFU ZIKV-BRA and PBS. Genes with significant changes |log 2 fold change| >1 288 
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and -log10(p.adjust) > 0.05 appear in color; genes outside these parameters appear in light gray. (D-F) Hallmark 289 
gene set enrichment analysis of differentially expressed genes between ZIKV-infected and PBS groups. (G-I) 290 
Volcano plots depicting differentially expressed gene transcripts between ZIKV-infected animals in the decidua at 291 
E11.5. Genes with significant changes |log 2 fold change| >1 and -log10(p.adjust) > 0.05 appear in color; genes 292 
outside these parameters appear in lightgray. (J-L) Hallmark gene set enrichment analysis of differentially expressed 293 
genes between ZIKV-infected E11.5 deciduas. In all figures, 103 PFU ZIKV-MEX, 103 PFU ZIKV-BRA, PBS data 294 
represent 14-20 embryo sex-balanced deciduas from n=4-5 dams per inoculation group. 105 PFU ZIKV-MEX data 295 
represent three embryo sex-balanced deciduas from n=3 dams. PBS = black, 103 PFU ZIKV-MEX = orange, 105 PFU 296 
ZIKV-MEX = brown, 103 PFU ZIKV-BRA = blue. 297 

In the placenta, we identified 540 gene transcripts that were significantly differentially expressed 298 

at E11.5. Most of these differences occurred between ZIKV-infected and PBS groups (Figure 299 

5A-C). Similar to our observations in the decidua, 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, and 300 

103 PFU ZIKV-BRA E11.5 placentas were enriched for IFN responses and allograft rejection 301 

compared to PBS (Figure 5D-F). However, we also observed enrichment for the inflammatory 302 

response and MYC targets V1, suggesting that the placenta is subjected to more robust antiviral 303 

responses than the decidua.  304 

 305 
We identified multiple transcripts from E11.5 placental tissue that were significantly differentially 306 

expressed among ZIKV-infected groups (Figure 5G-I). We identified transcripts that were 307 

differentially expressed based on inoculation dose (103 PFU vs 105 PFU)(Figure 5G), the 308 

inoculating ZIKV strain (ZIKV-MEX vs ZIKV-BRA)(Figure 5H), and between two inoculations 309 

that cause similar rates of fetal resorption (105 PFU ZIKV-MEX, and 103 PFU ZIKV-BRA)(Figure 310 

5I). Hallmark GSEA revealed that the 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA placentas 311 

were enriched for the IFN alpha and gamma responses, inflammatory response, and TNFa 312 

signaling via NFkB compared to 103 PFU ZIKV-MEX (Figure 5J-K). However, when 105 PFU 313 

ZIKV-MEX and 103 PFU ZIKV-BRA were compared, 105 PFU ZIKV-MEX was enriched for the 314 

inflammatory gene set, but not TNFa signaling via NFkB nor the IFN alpha and gamma 315 

responses (Figure 5L), suggesting that 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA similarly 316 

induce these responses. Further, the enrichment scores (NES), number of genes enriched 317 

within a gene set (setSize), and adjusted p-values (-log10(p.adjust)) suggest that the IFN alpha 318 

and gamma responses are more robust than TNFa signaling via NFkB.  319 
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 320 
 321 
Figure 5: ZIKV strain and dose significantly influence the placenta transcriptome at E11.5. (A-C) Volcano plots 322 
depicting differentially expressed gene transcripts in the placenta at E11.5 of animals inoculated with 103 PFU ZIKV-323 
MEX, 105 PFU ZIKV-MEX, or 103 PFU ZIKV-BRA and PBS. Genes with significant changes |log 2 fold change| >1 324 
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and -log10(p.adjust) > 0.05 appear in color; genes outside these parameters appear in lightgray. (D-F) Hallmark gene 325 
set enrichment analysis of differentially expressed genes between ZIKV-infected and PBS groups. (G-I) Volcano plots 326 
depicting differentially expressed gene transcripts between ZIKV-infected animals in the placenta at E11.5. Genes 327 
with significant changes |log 2 fold change| >1 and -log10(p.adjust) > 0.05 appear in color; genes outside these 328 
parameters appear in lightgray. (J-L) Hallmark gene set enrichment analysis of differentially expressed genes 329 
between ZIKV-infected E11.5 placentas. In all figures, data represent 12-20 embryo sex-balanced placentas from 330 
n=4-5 dams per inoculation group. PBS = black, 103 PFU ZIKV-MEX = orange, 105 PFU ZIKV-MEX = brown, 103 331 
PFU ZIKV-BRA = blue. 332 

We mapped the placenta transcriptome at E11.5 of 103 PFU ZIKV-MEX, 105 PFU ZIKV-MEX, 333 

and 103 PFU ZIKV-BRA (compared to PBS), to KEGG pathways using Pathview to identify 334 

homologous pathways that could be implicated in initiating the IFN response (Figure 6)(40). 105 335 

PFU ZIKV-MEX and 103 PFU ZIKV-BRA had significant, uniform upregulation of genes in the 336 

TLR pathways, notably TLR3, which senses dsRNA (Figure 6A-B). When we compared 105 337 

PFU ZIKV-MEX and 103 PFU ZIKV-BRA directly (Figure 6C), we observed variable expression 338 

of genes in TLR pathways, suggesting that these pathways were not uniformly expressed in 339 

animals that received ZIKV boluses that cause significant fetal resorption.  340 

 341 
When we mapped 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA to the RIG-I-like receptor (RLR) 342 

pathway, we observed significant, uniform upregulation of genes compared to 103 PFU ZIKV-343 

MEX (Figure 7A-B). In contrast to our findings with the TLR pathway, we observed almost no 344 

significant differential expression of genes in the RLR pathway between 105 PFU ZIKV-MEX 345 

and 103 PFU ZIKV-BRA (Figure 7C), suggesting that 105 PFU ZIKV-MEX and 103 PFU ZIKV-346 

BRA uniformly induce RLR signaling compared to 103 PFU ZIKV-MEX.  347 

Next, we aimed to understand the association between ZIKV vRNA and the RLR-driven IFN 348 

response. ZIKV infection produces single- and double-stranded RNA intermediates during viral 349 

replication that can signal through RLRs and toll-like receptors (TLRs), which operate to induce 350 

antiviral factors including IFN and proinflammatory cytokines. We therefore plotted gene 351 

expression of IFN-response genes (Rsad2, Mx1, and Stat2), ZIKV pattern-recognition receptors 352 

(Ddx58 aka RIG-I, Ifih1 aka MDA5, and Tlr3), a proinflammatory cytokine (Il1a), and Actin (as a 353 

control)(Figure 8). We found that IFN-response genes were significantly, and proportionally 354 
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expressed when compared to the vRNA load (p < 0.0001)(Figure 8A-C). RLR genes Ddx58 355 

and Ifih1 were also significantly proportionally expressed (p <0.0005) while Tlr3 was not (p = 356 

0.211), suggesting that ZIKV infection preferentially induces RLR expression over other pattern-357 

recognition receptors (Figure 8D-F). These results are consistent with those from our Pathview 358 

analysis, demonstrating that RLR pathways are uniformly upregulated by the two infectious 359 

boluses that result in high vRNA loads at the MFI and cause significant fetal resorption, while 360 

TLRs are not. The gene Il1a was not significantly proportionally expressed (p = 0.238) in 361 

relation to vRNA load suggesting that genes involved in proinflammatory cytokine production 362 

are not proportional to ZIKV vRNA (Figure 8G).  363 
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Figure 6: Differential expression of genes involved in the toll-like receptor (TLR) pathway by ZIKV-infected 364 
animals in the E11.5 placenta. (A-C) Genes with significant differential expression (-log10(p.adjust) > 0.05) in the 365 
E11.5 placenta were mapped to the TLR pathway using Pathview: 103 PFU ZIKV-MEX = orange, 105 PFU ZIKV-MEX 366 
= brown, 103 PFU ZIKV-BRA = blue. Genes that were not significantly differentially expressed appear in gray. Genes 367 
not analyzed appear in white. In all figures, data represent 12-20 embryo sex-balanced placentas from n=4-5 dams 368 
per inoculation group. 369 
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Figure 7: 105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA uniformly induce expression of genes in the RIG-I-like 370 
receptor (RLR) pathway in the E11.5 placenta. (A-C) Genes with significant differential expression (-log10(p.adjust) 371 
> 0.05) in the E11.5 placenta were mapped to the RLR pathway using Pathview: 103 PFU ZIKV-MEX = orange, 105 372 
PFU ZIKV-MEX = brown, 103 PFU ZIKV-BRA = blue. Genes that were not significantly differentially expressed 373 
appear in gray. Genes not analyzed appear in white. In all figures, data represent 12-20 embryo sex-balanced 374 
placentas from n=4-5 dams per inoculation group. 375 
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Figure 8: ZIKV vRNA load positively correlates with interferon-stimulated genes and RLRs. Pearson 376 
correlations with 95% confidence intervals are shown for ZIKV vRNA copies/tissue versus transcript counts (in counts 377 
per million reads) for interferon-stimulated genes Rsad2, Mx1, Stat2 (A-C), RLR genes Ddx58 and Ifih1 (D-E), Tlr3 378 
(F), proinflammatory cytokine Ilra (G), and Actin (H). Symbols represent individual placentas from 4-5 dams 379 
inoculated with 103 PFU ZIKV-MEX (orange), 105 PFU ZIKV-MEX (brown), or 103 PFU ZIKV-BRA (blue). Correlation 380 
coefficients (r) are shown in each panel. Significance annotations for all figures: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, 381 
P ≤ 0.01; *, P ≤ 0.05; ns, > 0.05. 382 
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Modest chemical inhibition of RIG-I activity in the placenta does not reduce the likelihood 383 

of fetal demise during ZIKV infection. 384 

The previous analyses suggested that ZIKV vRNA induces a proportional IFN response via 385 

RLRs at the MFI that can instigate fetal demise. We therefore hypothesized that vRNA sensing 386 

via RIG-I is contributing to fetal demise, because RIG-I has previously been shown to be the 387 

primary sensor of ZIKV vRNA (41, 42). To investigate this, we used RIG012, a potent chemical 388 

inhibitor of RIG-I, to reduce RIG-I activity in pregnant Ifnar1-/- mice (Figure 9A). RIG012 is 389 

transient in serum, but stable in tissue (Figure 9B-C). We therefore aimed to maximize RIG012 390 

concentration at the MFI over the course of our experiment. We intraperitoneally injected 391 

22.5mg/kg RIG012 every 12 hours from E6.5 - E14.5, which resulted in significant tissue 392 

permanence, averaging 0.65µM at the MFI (Table 3)(Figure 9C). This dose was well-tolerated 393 

with no signs of toxicity. A concentration of 0.65µM RIG012 is estimated to reduce RIG-I activity 394 

by ~40% according to in vitro data (43). We could not dose animals with concentrations higher 395 

than this because 45mg/kg RIG012 caused lethal toxicity within 36 hours.  396 

 397 
Group  

(number of animals) 

Inoculation at E7.5 Treatment 

Vehicle/PBS 

(n=10) 

PBS Vehicle: 15uL/g DMSO/Tween80/PBS every 12 hours 

E6.5 - E14 

RIG012/PBS 

(n=7) 

PBS 22.5mg/kg RIG012 every 12 hours 

E6.5 - E14 

Vehicle/ZIKV-BRA 

(n=11) 

103 PFU ZIKV-BRA Vehicle: 15uL/g DMSO/Tween80/PBS every 12 hours 

E6.5 - E14 

Vehicle/ZIKV-BRA 

(n=10) 

103 PFU ZIKV-BRA 22.5mg/kg RIG012 every 12 hours 

E6.5 - E14 

Table 3: RIG012 Treatment and ZIKV-BRA infection of pregnant Ifnar1-/- mice.  398 
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 399 

Figure 9: RIG012 treatment significantly inhibits RIG-I activity in the MFI. (A) Schematic of where RIG012 400 
inhibits activity in the RLR-signaling pathway and downstream interferon (IFN) and interferon-stimulated genes (ISGs) 401 
that are expressed. (B) Concentration of RIG012 in serum of nonpregnant female mice (n=3) intraperitoneally injected 402 
once with 10mg/kg, measured by mass spectrometer. The mean with standard deviation is plotted. (C) Concentration 403 
of RIG012 in MFI at E14.5 of 103 PFU ZIKV-BRA-infected animals, intraperitoneally injected every 12 hours with 404 
Vehicle or 22.5mg/kg RIG012 E6.5-E14. Whole tissue samples were homogenized in water and concentration was 405 
measured via mass spectrometer. Bars represent the median concentration and significance was determined using 406 
an unpaired t-test. Transcript abundance of Ifnb (D), Rsad2 (E), and Mx1 (F) was analyzed from MFI and fetus 407 
samples collected on E14.5 by qPCR. Expression levels were normalized to Hprt and the ddCT was calculated 408 
relative to samples harvested from PBS-inoculated controls. Data points represent individual samples. The mean with 409 
standard deviation is plotted. Significance was calculated with a t-test with Welch’s correction. Significance 410 
annotations for all figures: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05; ns, > 0.05. 411 
 412 

To assess whether our RIG012 treatment schedule was sufficient to interfere with RIG-I 413 

activation in vivo we measured relative transcript abundance of Ifnb, Rsad2, and Mx1 in the MFI 414 

because these genes are known indicators of RIG-I activity (43). At E14.5, the MFI of animals 415 

treated with RIG012 and challenged with 103 PFU ZIKV-BRA (Vehicle/ZIKV-BRA) had 416 

significantly lower Ifnb, Rsad2, and Mx1 expression than animals mock-treated with vehicle and 417 
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challenged with 103 PFU ZIKV-BRA (RIG012/ZIKV-BRA) (p = 0.049, 0.026, and 0.022, 418 

respectively)(Figure 9D-F). Fetuses from Vehicle/ZIKV-BRA and RIG012/ZIKV-BRA groups had 419 

no difference in relative Ifnb, Rsad2, and Mx1 expression (p = 0.057, p = 0.463, and p = 0.437, 420 

respectively).  421 

 422 
To evaluate the extent to which RIG012 treatment protects against ZIKV-induced fetal demise, 423 

we subcutaneously inoculated RIG012-treated and vehicle-treated pregnant Ifnar1-/- mice in the 424 

footpad with 1 × 103 PFU ZIKV-BRA, or phosphate buffered saline (PBS) to serve as 425 

experimental controls. The proportion of resorbed fetuses for RIG012/PBS did not differ 426 

significantly from Vehicle/PBS (16% vs. 11%; Fisher’s exact test, p = 0.4083)(Figure 10A). 427 

Consistent to what we have reported previously (18), Vehicle/ZIKV-BRA induced a rate of 428 

resorption that was significantly higher than Vehicle/PBS group (43% vs. 11%; Fisher’s exact 429 

test, p < 0.0001)(Figure 10A). However, no differences were observed in the proportion of 430 

resorbed fetuses in RIG012/ZIKV-BRA groups compared to Vehicle/ZIKV-BRA groups (41% vs 431 

43%; Fisher’s exact test, p = 0.8861)(Figure 10A), demonstrating that at this dose, RIG012 432 

treatment did not protect from ZIKV-induced fetal demise. 433 

 434 
We collected serum at 2, 4, and 7 dpi to compare viremia kinetics between Vehicle- and 435 

RIG012-treated animals. There were no significant differences in serum titers between 436 

Vehicle/ZIKV-BRA and RIG012/ZIKV-BRA at any time point (Two-way ANOVA, p > 0.9999) 437 

(Figure 10B). At E14.5 we collected MFI and fetal tissues; we used plaque assay to quantify 438 

infectious virus present and qRT-PCR to determine ZIKV vRNA loads. We found no significant 439 

difference in infectious virus at the MFI, and fetuses had undetectable levels of infectious virus 440 

(Two-way ANOVA with Sidak’s multiple comparisons, p > 0.9990)(Figure 10C). There was no 441 

significant difference in ZIKV vRNA load of the MFI and fetus between RIG012- and Vehicle-442 

treated animals (t-test with Welch’s correction, p = 0.3218 and p = 0.5515, respectively)(Figure 443 

10D).  444 
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 445 
 446 
Figure 10: RIG012 treatment does not protect against fetal demise. (A) Time-mated Ifnar1−/− dams were treated 447 
with Vehicle or 22.5mg/kg RIG012 every 12 hours from E6.5-E14, inoculated with 103 PFU ZIKV-BRA on E7.5, and 448 
the rate of resorption was calculated at E14.5. Data are presented as the percent of n = 61-100 total fetuses (from 7 449 
to 10 dams per treatment group). Significance was determined by Fisher’s exact test. (B) Maternal viremia was 450 
assessed via plaque assay at 2, 4, and 7 days post inoculation (dpi) and significance was determined by two-way 451 
ANOVA with Tukey’s multiple comparisons. (C) Tissue titer was assessed via plaque assay of MFI and fetus samples 452 
harvested at E14.5 and significance was determined by two-way ANOVA with Sidak’s multiple comparisons (D) ZIKV 453 
vRNA load was assessed via qRT-PCR of MFI and fetus samples harvested at E14.5. Significance was determined 454 
by unpaired t-test. For all figures: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05; ns, > 0.05. 455 
 456 
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To evaluate whether there were differences in the MFI vRNA load or IFN response based on 459 

fetal outcome, we compared the vRNA load and relative transcript abundance of Ifnb, Rsad2, 460 

and Mx1 between normal and resorbed concepti (“Outcome”) among Vehicle/ZIKV-BRA and 461 

RIG012/ZIKV-BRA (“Treatment”) groups (Figure 11A-D). Unexpectedly, the vRNA load of the 462 

MFI did not significantly differ between normal and resorbed Outcomes (Two-way ANOVA with 463 

Tukey’s multiple comparisons, p = 0.106). None of the genes we compared were significantly 464 

differentially expressed in response to an interaction between Treatment and Outcome (Two-465 

way ANOVA with Tukey’s multiple comparisons, p > 0.241). Fetal Outcome was not significantly 466 

associated with MFI expression of Ifnb, Rsad2, and Mx1 (Two-way ANOVA with Tukey’s 467 

multiple comparisons, p > 0.291)(Figure 11A-D).  468 

 469 
In contrast, we observed a significant association between fetal Outcome, fetal vRNA load, and 470 

fetal relative Ifnb, Rsad2, and Mx1 expression (Two-way ANOVA with Tukey’s multiple 471 

comparisons. p < 0.041)(Figure 11A-D). Resorbed fetuses had, on average, 1 log10 ZIKV 472 

copies/tissue more than normal fetuses (Two-way ANOVA with Tukey’s multiple comparisons, p 473 

= 0.002). Resorbed fetuses also had nearly 104 higher relative Ifnb abundance (Two-way 474 

ANOVA with Tukey’s multiple comparisons, p = 0.019), 102 higher relative Rsad2 abundance 475 

(Two-way ANOVA with Tukey’s multiple comparisons, p = 0.041), and 101.7 higher relative Mx1 476 

abundance (Two-way ANOVA with Tukey’s multiple comparisons, p = 0.005), compared to 477 

normal fetuses. Overall, resorbed fetuses had higher vRNA loads and IFN-stimulated gene 478 

expression than their normal counterparts. 479 
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Figure 11: Resorbed fetuses have significantly higher relative interferon-stimulated gene expression than 480 
their normal counterparts. ZIKV vRNA load (A), relative Ifnb (B), Rsad2 (C), and Mx1 (D) expression in the MFI and 481 
fetus were plotted against Outcome (resorbed vs normal fetal outcome), and separated by Treatment (Vehicle vs 482 
22.5mg/kg RIG012). Two-way ANOVA with Tukey’s multiple comparisons was used to determine significance. For all 483 
figures: ****, P ≤ 0.0001; ***, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05; ns, > 0.05.  484 
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DISCUSSION 485 

Here, we expanded on our previous work (18), to demonstrate that ZIKV strain-dependent 486 

phenotypic heterogeneity is driven by antiviral immune signaling at the MFI and/or fetus. These 487 

observations substantially contribute to our nascent understanding of the mechanisms by which 488 

ZIKV harms the developing fetus. Our finding, that ZIKV activates a robust IFN response in the 489 

MFI prior to fetal resorption, is consistent with observations from other studies that mostly 490 

support a role for hyperinflammatory and/or hyperimmune responses as mediators of adverse 491 

fetal outcomes during congenital viral infections (17, 21, 44–47). For example, experiments 492 

using a breeding scheme that enabled the examination of pregnant dams that carry a mixture of 493 

fetuses that express type I IFN signaling (Ifnar1+/-) or do not express type I IFN signaling (Ifnar1-494 

/-) within the same uterus found that only Ifnar1+/- fetuses were resorbed after ZIKV infection 495 

during early pregnancy, whereas their Ifnar1-/- littermates continued to develop (17). Similarly, 496 

experiments using mice lacking the IFN lambda (IFN-λ) receptor found that IFN-λ can have 497 

either a protective antiviral effect or cause immune-mediated pathology, depending on the stage 498 

of gestation when IFN-λ signaling occurs (21). Interestingly, the protective and pathogenic 499 

effects of IFN-λ occurred through signaling in maternal immune cells rather than in fetal or 500 

placental tissues. In contrast, and in the setting of maternal immunocompetence, mitochondrial 501 

antiviral-signaling protein (MAVS)-dependent type I IFN signaling in the fetus was found to be 502 

necessary to restrict ZIKV infection in the fetal compartment of the placenta (48). Here we 503 

observe ZIKV strain- and dose-dependent RLR-mediated activation of the IFN response at the 504 

MFI and identify a significant fetal IFN response that correlates with fetal resorption. 505 

 506 
When the ZIKV genome is replicated in the cytoplasm of a host cell it produces multiple ssRNA 507 

and dsRNA intermediates. These ZIKV vRNAs are primarily recognized by RIG-I, which 508 

recognizes the 5’ region of the ZIKV genome, which triggers the production of type I IFN and 509 

proinflammatory cytokines (41, 42). RNA binding triggers a confirmation change in RIG-I that 510 
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promotes interaction with MAVS. Viral sensing via RIG-I and downstream signaling via MAVS 511 

are transiently induced by the host to restrict viral replication (48, 49). However, if vRNA 512 

persists, the host is inundated with an aberrant RIG-I-driven IFN response and this prolonged 513 

RIG-I signalling can trigger immunopathology (50–52). We had therefore posited that prolonged 514 

RIG-I sensing of ZIKV vRNA may be an important driver of adverse pregnancy outcomes during 515 

ZIKV infections, possibly due to increased type I IFN production (53–55). Indeed, our results 516 

showed significant enrichment for IFN responses in the decidua and placenta prior to significant 517 

fetal resorption, with positive correlation between ZIKV vRNA load and IFN-stimulated genes, 518 

but not Tlr3 or the proinflammatory cytokine Il1a. However, chemical inhibition of RIG-I in the 519 

MFI via RIG012 treatment had no effect on the rate of fetal resorption following inoculation with 520 

103 PFU ZIKV-BRA, suggesting that inhibition of RIG-I signalling in the MFI is not sufficient to 521 

protect the feto-placental unit—at least at the doses tested here. Critically, results may have 522 

differed had we been able to achieve more robust inhibition of RIG-I signalling. However, this 523 

was not possible because of RIG012-associated toxicity at higher doses. We chose not to 524 

investigate this phenomenon in RIG-I knockout mice because complete ablation of RIG-I 525 

sensing could result in uncontrolled viral replication in the dam, thus failing to recapitulate the 526 

specific mechanism of fetal harm observed herein. A possible useful alternative could involve 527 

using breeding schemes involving Ddx58-/- mice (note that the Ddx58 gene encodes murine Rig-528 

i) crossed with Ifnar1+/+, Ifnar1+/-, and Ifnar1-/- mice. This may help better disentangle the role of 529 

RLR-driven immunopathology at the MFI and subsequent fetal demise, however it is important 530 

to note that of number of Ddx58-/- mouse models are embryo lethal (56) or develop spontaneous 531 

colitis from commensal viruses (57–59) and therefore would not be suitable for examining 532 

pathologic outcomes following ZIKV-infection during pregnancy.  533 

 534 
Another possible explanation for differences in fetal outcomes observed between treatment 535 

groups could be that ZIKV vRNA also binds TLRs that, in turn, activate IFN responses (60); 536 
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however, recent work determined that TLR7/8, TLR9, MyD88, STING are not substantially 537 

involved in antiviral activity in the fetus and placenta (48). And, surprisingly, MyD88-/- fetuses 538 

(downstream of TLR7/8 and TLR9) resulted in lower viral burden in the decidua and placenta 539 

than those with intact MyD88 (48). In contrast, binding of TLR3 by ZIKV vRNA suppresses the 540 

RIG-I-driven IFN response and promotes viral replication (61). Importantly, we observed 541 

inconsistent and incomplete differential activation of TLR pathways during pathologic ZIKV 542 

infections (105 PFU ZIKV-MEX and 103 PFU ZIKV-BRA). We therefore maintain that RIG-I-543 

mediated IFN activation is a more likely mediator of fetal resorption in the Ifnar1-/- model. 544 

 545 
Because resorbed fetuses had significantly higher ZIKV vRNA loads and relative levels of the 546 

interferon-stimulated genes Rsad1, Ifnb, and Mx1 compared to normal fetuses and normal and 547 

resorbed placentas, we speculate that the fetal, rather than the placental, immune response is 548 

an important driver of fetal resorption. Indeed, Fetal Inflammatory Response Syndrome is 549 

known to be caused by systemic activation of fetal IFNs and this can result in neurological 550 

complications or death (62, 63) similar to what has been observed from infections with 551 

teratogenic pathogens like ZIKV, but more studies are needed to understand the relative 552 

importance of fetal-derived immune responses. As previously mentioned, a prior study found 553 

that Ifnar1-/- fetuses were protected from fetal resorption while Ifnar1+/- fetuses were not (17), but 554 

the fetal IFN response was not examined so its contribution to fetal resorption in that system 555 

remains unknown. Further, in an immunocompetent mouse model, the IFN response was more 556 

robust in fetal endothelial cells compared to placental cells (48), suggesting that the magnitude 557 

of the response may determine its contribution to resorption. 558 

 559 
While the IFN response appears to be a primary mediator of fetal demise in the Ifnar1-/- model, it 560 

is important to consider the possibility that this phenotype is multifactorial. For example, the 105 561 

PFU ZIKV-MEX placenta transcriptome had significant enrichment for MYC targets V1, hypoxia, 562 

and epithelial mesenchymal transition compared to 103 ZIKV-BRA. MYC targets V1 are 563 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.02.12.637947doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.12.637947
http://creativecommons.org/licenses/by-nc-nd/4.0/


associated with cell proliferation (64), suggesting that 105 PFU ZIKV-MEX placentas 564 

experienced greater tissue growth compared to 103 ZIKV-BRA. Because cell proliferation is 565 

closely linked with apoptosis (65), enrichment for MYC targets V1 may indicate compensation 566 

for cell death that is occurring. In fact, enrichment for MYC targets V1 was observed in all of our 567 

ZIKV-inoculated groups when compared to PBS. Hypoxia-induced changes in metabolism drive 568 

placentation in mice and humans (66), however after placentation, hypoxia conditions can 569 

increase inflammation through release of damage-associated molecular patterns (DAMPs)(67). 570 

At certain levels, inflammation and DAMPs increase the risk of intrauterine growth restriction 571 

and stillbirth, even in the absence of a pathogen(67). Murine placentation is complete at E10.5, 572 

suggesting that enrichment for hypoxia in the E11.5 placenta is detrimental (68). Enrichment for 573 

epithelial mesenchymal transition suggests a greater presence of migratory cells (69), which is 574 

critical for formation of the labyrinth and gastrulation (68). Poor labyrinth formation would impact 575 

nutrient and gas exchange between mother and fetus (70), which could result in intrauterine 576 

growth restriction and fetal death. Abnormal gastrulation would impact cell type and location 577 

during embryo development (71), which could result in an improperly formed embryo. While 578 

these signatures may be secondary to a robust IFN response induced by ZIKV-MEX and ZIKV-579 

BRA, they have important implications for potential concurrent mechanisms of fetal resorption.  580 

 581 
ZIKV-MEX and ZIKV-BRA are genetically very similar, but differences observed in fetal 582 

outcomes between the two strains may be due to virus genetic determinants of virulence. The 583 

seven amino acid differences between them occur in the NS1, NS3, and NS5 proteins (Table 584 

1). ZIKV NS1 disrupts endothelial barrier function (72), which is particularly important at the 585 

placenta because endothelial cells remodel the maternal and fetal placental vasculature. 586 

Abnormalities in placental endothelial cells lead to high rates of apoptosis, and subsequent fetal 587 

growth restriction and pre-eclampsia (73). It is possible that ZIKV-BRA may produce higher 588 

levels of NS1 compared to ZIKV-MEX and therefore may be more adept at disrupting 589 
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endothelial barriers, thus contributing to significantly higher rates of fetal resorption—but we did 590 

not test that here. This could also explain why ZIKV-MEX is capable of causing fetal demise at 591 

higher doses. ZIKV NS3 binds dsRNA replication intermediates and associates with NS5 to 592 

promote genome replication, and mutations in the ATPase or RNA-binding region of ZIKV NS3 593 

have both been shown to alter helicase activity and reduce genome replication (74). Therefore, 594 

it is possible that differences in NS3 helicase activity between the two strains may explain the 595 

different ZIKV vRNA loads observed in the decidua, placenta, and fetus. Further, ZIKV NS3 has 596 

been associated with brain calcifications in ZIKV-infected fetuses (75), demonstrating that the 597 

overall activity and concentration of ZIKV NS3 can be associated with adverse outcomes.  598 

 599 
Importantly, CD8 T cell epitopes are located in NS1, NS3, and NS5 (76). Therefore, 600 

polymorphisms at these sites between ZIKV-MEX and ZIKV-BRA may alter T cell activation, 601 

including differentially inducing cytotoxic CD8 T cells, but more studies are needed to 602 

investigate this. During congenital infection and/or hyperinflammatory states, maternal and fetal 603 

CD8 T cells infiltrate the MFI (77, 78). ZIKV activation of CD8 T cells has been associated with 604 

significant IFN gamma, TNF alpha, and granzyme B production (79–81), all of which are 605 

cytotoxic, despite being required to control ZIKV infection (76, 82). CD8 T cells induce cytotoxic 606 

effects in response to ZIKV in immunologically privileged spaces like the neuronal cavity (83), 607 

but their role at the MFI remains unknown. Other congenital infections, including human 608 

cytomegalovirus, induce maternal- and fetal-derived CD8 T cell-mediated cytotoxic effects in the 609 

placenta (78, 84, 85), and can even mediate allogeneic intolerance (86). In fact, one study found 610 

that ZIKV-infected placentas from fetuses with microcephaly had increased T cell activation, 611 

suggesting that T cell activation plays a role in the severity of CZS (87). Future work should 612 

consider how T cells, particularly CD8 T cells, mediate pathology during ZIKV-infected 613 

pregnancies. The future spread of ZIKV will remain a threat to pregnant people in many 614 

locations around the globe. While the exact mechanism underlying ZIKV-induced fetal harm 615 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.02.12.637947doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.12.637947
http://creativecommons.org/licenses/by-nc-nd/4.0/


remains unclear, these studies highlight that RIG-I can mediate a pathologic IFN response at 616 

the MFI and that the fetal immune response may be an underappreciated contributor to adverse 617 

pregnancy outcomes during ZIKV infections.    618 
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METHODS 619 

 620 
Ethical approval. This study was approved by the University of Minnesota, Twin Cities 621 

Institutional Animal Care and Use Committee (Animal Care and Use protocol number 2401-622 

41654A).  623 

 624 
Cells and Viruses 625 

African green monkey kidney cells (Vero cells; ATCC CCL-81) were maintained in Dulbecco’s 626 

modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Corning, 627 

Manassas, VA), 1× Antibiotic Antimycotic solution (Corning, Manassas, VA) and incubated at 628 

37°C in 5% CO2. Aedes albopictus mosquito cells (C6/36; ATCC CRL-1660) were maintained in 629 

DMEM supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT), 2 mM L-630 

glutamine, 1.5 g/liter sodium bicarbonate, 1× Antibiotic Antimycotic solution, and incubated at 631 

28°C in 5% CO2. The cell lines were obtained from the American Type Culture Collection, were 632 

not further authenticated, and were not specifically tested for mycoplasma. ZIKV strain R116265 633 

(ZIKV-MEX; GenBank KX766029) was originally isolated from a 73-year-old-male traveling in 634 

Mexico in 2016 with a single round of amplification on Vero cells (CDC, Ft. Collins, CO). ZIKV 635 

strain Paraiba_01 (ZIKV-BRA; GenBank KX280026) was originally isolated from human serum 636 

in Brazil in 2015 with two rounds of amplification on Vero cells, and a master stock was obtained 637 

from Kevin Noguchi at Washington University in St. Louis (St. Louis, MO). Virus challenge 638 

stocks were prepared by inoculation onto a confluent monolayer of C6/36 mosquito cells. Virus 639 

challenge stocks were sequence authenticated as described in reference (18). 640 

 641 

Plaque Assay 642 

Quantification of virus titer in maternal serum, placenta, and fetuses were completed by plaque 643 

assay on Vero cells. Duplicate wells were infected with 0.1 ml aliquots from serial 10-fold 644 

dilutions in growth medium and virus was adsorbed for 1 h. After incubation, the monolayers 645 
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were overlaid with 3 ml containing a 1:1 mixture of 1.2% oxoid agar and 2× DMEM (Gibco, 646 

Carlsbad, CA) with 10% (vol/vol) FBS and 2% (vol/vol) Antibiotic Antimycotic solution. Cells 647 

were incubated at 37°C in 5% CO2 for 3 days (ZIKV-BRA) or 5 days (ZIKV-MEX) for plaque 648 

development. Cell monolayers were then stained with 3 ml of overlay containing a 1:1 mixture of 649 

1.2% oxoid agar with 4% neutral red (Gibco) and 2× DMEM with 2% (vol/vol) FBS, and 2% 650 

(vol/vol) Antibiotic Antimycotic solution. Cells were incubated overnight at 37°C in 5% CO2 and 651 

plaques were counted. 652 

 653 
Mice 654 

Female Ifnar1−/− mice on the C57BL/6 background were bred in the specific pathogen-free 655 

animal facilities of the University of Minnesota within the College of Veterinary Medicine. Male 656 

C57BL/6 mice were purchased from Jackson Laboratories. Timed matings between female 657 

Ifnar1−/− mice and male C57BL/6 mice resulted in Ifnar1+/− progeny. 658 

 659 
Subcutaneous Inoculation 660 

All pregnant dams were between 6 and 10 weeks of age and were randomly assigned to 661 

infected or control groups. Matings between Ifnar1−/− dams and wild-type sires were timed by 662 

checking for the presence of a vaginal plug, indicating gestational age E0.5. At embryonic day 663 

7.5 (E7.5) dams were inoculated in the right hind footpad with 1 × 103 or 1 x 105 PFU of the 664 

selected ZIKV strain in sterile phosphate-buffered saline (PBS) or with sterile PBS alone to 665 

serve as experimental controls. All animals were closely monitored by laboratory staff for 666 

adverse reactions and/or clinical signs of disease. A submandibular blood draw was performed 667 

at 2, 4, 7 and/or 10 days post inoculation (dpi), and serum was collected to verify viremia. Mice 668 

were humanely euthanized and necropsied at E9.5, E11.5, E14.5, or E17.5. 669 

 670 
 671 
 672 
 673 
 674 
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Intraperitoneal administration of RIG012 675 

RIG012 (MedChemExpress, Monmouth Junction, NJ) was dissolved in sterile DMSO at a 676 

concentration of 30mg/mL before being mixed with an equal volume of Tween 80 and stored at 677 

4°C. Mice were weighed and doses were calculated. The RIG012 in DMSO/Tween 80 solution 678 

was diluted with nine parts sterile water immediately prior to injection to make a final 679 

concentration of 5/5/90 (DMSO/Tween 80/H2O) which was dosed at 15uL/g to provide a dose of 680 

22.5mg/kg. A control solution of 5/5/90 (DMSO/Tween 80/H2O) was dosed at 15uL/g. Animals 681 

were intraperitoneally injected using a 28G needle with a 1mL syringe. Animals were monitored 682 

for signs of toxicity for up to 1 hour post injection, and every 12 hours following injection.  683 

 684 
Mouse necropsy 685 

Following inoculation with ZIKV or PBS, mice were sacrificed at E9.5, E11.5, E14.5, or E17.5. 686 

Tissues were carefully dissected using sterile instruments that were changed between each 687 

mouse to minimize possible cross contamination. Each organ and neonate was morphologically 688 

evaluated in situ prior to removal. Using sterile instruments, the uterus was removed and 689 

dissected to remove individual concepti. Each conceptus was placed in a sterile culture dish and 690 

dissected to separate the fetus and the maternal-fetal interface (MFI) for gross evaluation. 691 

Fetuses were characterized as “normal” or “resorbed,” with the latter being defined as having 692 

significant growth retardation and reduced physiological structure compared to littermates and 693 

controls, accompanied by clearly evident developmental delay or visualization of a macroscopic 694 

plaque in the uterus. The MFI included maternal-derived decidua tissue and fetal-derived 695 

placental tissue. At E9.5 and E11.5, the MFI was further dissected under a stereoscope to 696 

separate decidua and placenta tissues. Tissues isolated at E9.5, E11.5, and E17.5 were snap 697 

frozen in RNase-free tubes on dry ice. Tissues isolated at E14.5 were snap frozen as described 698 

or frozen in PBS supplemented with 20% FBS and 1% Antibiotic Antimycotic. A subset of 699 
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tissues from each timepoint were fixed in 10% neutral buffered formalin for 24 to 96 hours 700 

(depending on tissue mass) then transferred to 70% ethanol until imaged. 701 

 702 
Crown-to-rump length 703 

Crown-to-rump length (CRL) was measured by tracing the distance from the crown of the head 704 

to the base of the tail, using ImageJ. Resorbed fetuses were excluded from measurement 705 

analyses because they would not survive if the pregnancy was allowed to progress to term (19). 706 

 707 
Fetal and MFI viral titers 708 

An Omni TH115 homogenizer (Omni International, Kennesaw, GA) was used to homogenize 709 

fetus and MFI samples following necropsy. Samples were submerged in chilled PBS 710 

supplemented with 20% FBS and 1% Antibiotic Antimycotic solution in 2 ml Safelock tubes 711 

(Eppendorf, Hamburg, Germany). Omni soft tissue probes (Omni International, Kennesaw, GA) 712 

were used to homogenize samples at medium speed. Homogenized samples were clarified by 713 

centrifugation at 10,000 × g for 2 min. The supernatant was removed and 0.1 ml was 714 

immediately plated in duplicate for plaque assay. The remainder was stored at −80°C. 715 

 716 
Determination of fetal sex 717 

DNA was extracted and purified from E9.5 and E11.5 fetuses using a Zymo Quick-DNA 718 

miniprep plus kit (Zymo Research, Irvine, CA) or Maxwell RSC Tissue DNA kit (Promega, 719 

Madison, WI). PCR and gel electrophoresis were conducted as previously described (88).  720 

 721 
Total RNA extraction 722 

Total RNA was extracted and purified from deciduas, placentas, and fetuses using a Direct-zol 723 

RNA miniprep kit (Zymo Research, Irvine, CA). RNA was eluted in 50 to 100uL RNase-free 724 

water. RNA concentration and purity were measured by a Qubit 4 fluorometer (ThermoFisher, 725 

Waltham, MA).  726 

 727 
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Quantification of vRNA load 728 

Viral RNA was quantified from extracted total RNA from maternal-fetal tissues by quantitative 729 

reverse transcription-PCR as described previously (18, 19, 89). Total RNA was titrated by qRT-730 

PCR using TaqMan Fast virus 1-step master mix (Applied Biosystems, Waltham, MA) on a 731 

QuantStudio3 (ThermoFisher, Waltham, MA). ZIKV RNA titers were interpolated from a 732 

standard curve of diluted in vitro-transcribed ZIKV RNA. The limit of detection for this assay is 733 

150 ZIKV genome copies/ml (1.60 log10 copies/tissue). 734 

 735 
Illumina RNAseq library preparation and sequencing 736 

Multiplex sequencing libraries were generated from 500 ng of total RNA (per library) using 737 

Illumina’s TruSeq sample prep kit and multiplexing sample preparation oligonucleotide kit 738 

(Illumina Inc., San Diego, CA) following the manufacturer’s instructions. Up to four samples per 739 

tissue per animal per inoculation group, with equal proportions male and female, were submitted 740 

for sequencing. Samples were sequenced on an Illumina NovaSeq, which generated 2x150 bp 741 

paired-end reads at a depth of 20 million reads. Illumina’s bcl2fastq v2.20 was used for de-742 

multiplexing, and sequence quality was assessed based on %GC content, average base quality, 743 

and sequence duplication levels. 744 

 745 
Sequence alignment and transcript quantification 746 

RNA sequencing data were quality-checked using FastQC (v0.11.9)(90) and summarized using 747 

MultiQC (v1.12)(91). The resulting trimmed reads were aligned to the Mus musculus genome 748 

[Mus_musculus.GRCm39.cdna.all.index] using kallisto (v0.46.1)(92), which relies on a 749 

pseudoalignment framework. Out of 3.7 billion sequence reads, 73–93% of reads mapped 750 

unambiguously to the Mus musculus reference genome. Downstream analysis followed the DIY 751 

Transcriptomics R workflow (93) in R (v4.2.3), supplemented by Pathview analysis (40). Aligned 752 

reads were annotated using the tximport (v1.28.0) R package (94). Differentially expressed 753 

genes were identified using raw gene counts. Differential gene expression analysis was 754 
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performed using the DESeq2 package (v1.40.1)(37) using a significance cutoff of 0.05 and a 755 

fold change cutoff of 1 log2 fold change. Volcano plots, temporal plots, and heatmaps were 756 

generated using the ggplot2 package (v3.4.2) in R (95). Gene Set Enrichment Analysis was 757 

performed using GSEA (v4.3.2)(39) on normalized data against Hallmark gene sets available 758 

from MSigDB (Mouse MSigDB Collections 2004). All data processing and analysis scripts are 759 

publicly available on GitHub (https://github.com/aliotalab/ZIKVplacentaRNAseq/tree/main). 760 

 761 
Quantification of RIG012 in serum and maternal-fetal interface (MFI) tissue 762 

5 µL plasma samples were directly loaded to a 96-well Millipore Multiscreen Solvinert 0.45 763 

micron low binding PTFE hydrophilic filter plate. MFI samples were homogenized with water (x3 764 

dilution) then 5 µL was loaded to the filter plate. All plasma/tissue samples were treated with 75 765 

µL 90/10 acetonitrile/water with Atorvastatin as I.S. to extract the analyte and precipitate protein. 766 

The plates were agitated on ice for approximately ten minutes prior to centrifugation into a 767 

collection plate. Separate standard curves were prepared in blank mouse plasma and tissue 768 

homogenate and processed in parallel with the samples. The filtrate was directly analyzed by 769 

LC-MS/MS analysis against. HPLC and MS/MS parameters are provided in the accompanying 770 

tables (Table 4 - Table 6).  771 

Compound RIG012 I.S. (Atorvastin) 

Column Thermo Betasil C18 5µ, 50x2.1mm 

Mobile phase A: Water with 0.1% Formic Acid  
B: Acetonitrile with 0.1% Formic Acid 

Flow rate (ml/min) 0.35 

Temperature (°C) 35 

Injection volume (µl) 10 

Table 4: LC (Shimadzu UFLC XR) conditions  772 
 773 
 774 
 775 
 776 
 777 
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Time (min) Mobile phase A (%) Mobile phase B (%) 

0.2 90 10 

0.5 90 10 

2.0 5 95 

3.0 5 95 

4.0 90 10 

5.9 90 10 

Table 5: Gradient elution conditions 778 
 779 

Compound RIG012 I.S. (Atorvastatin ) 

MRM(-) 359.4/268.2 557.1/397 

Collision Gas Low 

Curtain GAS 30 

Ion Source Gas1 55 

Ion Source Gas2 55 

Ion Spray Voltage -4500 

Temperature (°C) 550 

Collision Energy -26 -50 

Declustering Potential -75 -75 

Entrance Potential -10 

Collision Cell Exit Potential -10 

Table 6: MS (API6500+) conditions 780 

 781 
Gene Expression of RIG-I-induced genes 782 

RNA was extracted and purified from placentas using a Direct-zol RNA kit (Zymo Research). 783 

The High-Capacity RNA-to-cDNA kit (Applied Biosystems) was used to synthesize cDNA. 784 

Quantitative PCR using Fast Advanced Master Mix (TaqMan) was used to quantify RIG-I-785 

induced genes on a QuantStudio3 (Applied Biosystems). The following TaqMan assays were 786 

used: Hprt (Mm00446968_m1), Ifnb (Mm00439552_s1), Rsad2 (Mm00491265_m1), and Mx1 787 
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(Mm00487796_m1). Ifnb, Rsad2, and Mx1 were normalized to Hprt and then the threshold cycle 788 

value (2-delta delta CT) was calculated relative to Vehicle/PBS controls. 789 

 790 

Statistical analyses 791 

All statistical analyses from the pathology data were conducted using GraphPad Prism 9 792 

(GraphPad Software, CA, USA) or RStudio (Posit Software, PBC, Boston, MA, USA). Statistical 793 

analyses from the transcriptomic data were conducted in RStudio, under the null hypothesis of 794 

equal gene expression between groups. Statistical significance was designated to P-values of 795 

less than 0.05. 796 

 797 
Data availability 798 

Raw Illumina sequencing data are available on the NCBI Sequence Read Archive under 799 

BioProject no. SUB15084024 (https://www.ncbi.nlm.nih.gov/bioproject/SUB15084024). All data 800 

processing and analysis scripts are publicly available on GitHub 801 

(https://github.com/aliotalab/ZIKVplacentaRNAseq/tree/main).  802 
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