
Open camera or QR reader and
scan code to access this article

and other resources online.

Locality-Sensitive Hashing-Based k-Mer Clustering

for Identification of Differential Microbial Markers

Related to Host Phenotype

WONTACK HAN, HAIXU TANG, and YUZHEN YE

ABSTRACT

Microbial organisms play important roles in many aspects of human health and diseases.
Encouraged by the numerous studies that show the association between microbiomes and
human diseases, computational and machine learning methods have been recently devel-
oped to generate and utilize microbiome features for prediction of host phenotypes such
as disease versus healthy cancer immunotherapy responder versus nonresponder. We have
previously developed a subtractive assembly approach, which focuses on extraction and
assembly of differential reads from metagenomic data sets that are likely sampled from
differential genomes or genes between two groups of microbiome data sets (e.g., healthy vs.
disease). In this article, we further improved our subtractive assembly approach by utilizing
groups of k-mers with similar abundance profiles across multiple samples. We implemented
a locality-sensitive hashing (LSH)-enabled approach (called kmerLSHSA) to group billions
of k-mers into k-mer coabundance groups (kCAGs), which were subsequently used for the
retrieval of differential kCAGs for subtractive assembly. Testing of the kmerLSHSA appro-
ach on simulated data sets and real microbiome data sets showed that, compared with the
conventional approach that utilizes all genes, our approach can quickly identify differen-
tial genes that can be used for building promising predictive models for microbiome-based
host phenotype prediction. We also discussed other potential applications of LSH-enabled
clustering of k-mers according to their abundance profiles across multiple microbiome
samples.
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1. INTRODUCTION

Recent studies of microbiomes (i.e., communities of microorganisms) have shaped a new view of the

biological world in which various microbial organisms play important roles in the health of humans,

animals, plants, and the environment (Altamirano-Barrera et al., 2018; Dai et al., 2018; Haase et al., 2018;

Zhao et al., 2018). Perturbations of the gut microbiota structure are associated with intestinal diseases

including cancer.

Metagenome-wide association studies (Wang and Jia, 2016) have enabled the high-resolution discov-

ery of associations between the microbiome and various human diseases, including type 2 diabetes (T2D)

(Qin et al., 2012), liver cirrhosis (LC) (Qin et al., 2014), atherosclerotic cardiovascular disease ( Jie et al.,

2017), colorectal cancer (Zeller et al., 2014; Silva et al., 2021), and rheumatoid arthritis (Zhang et al.,

2015). A recent comprehensive analysis of the tumor microbiome involving >1000 tumors and their

adjacent normal tissues across seven cancer types revealed that each tumor type has a distinct microbiome

composition and that breast cancer has a particularly rich and diverse microbiome (Nejman et al., 2020).

Using microbial markers that are differential between healthy individuals and patients, predictive models

with promising accuracy have been built for predicting host phenotypes based on microbiome data (Qin

et al., 2014; Le Goallec et al., 2020). In such studies, various microbial features are extracted from

metagenome samples, including the marker genes/species or compositional changes between the samples of

distinct phenotypes. For instance, in an earlier LC study, a set of mere 15 microbial marker genes was used

to build a predictor that had an area under the ROC curve (AUC) of 0.91 for discrimination of patients from

healthy individuals (Qin et al., 2014).

In another research, the metagenome-wide association study of fecal, dental, and salivary samples was

performed on a cohort of individuals with rheumatoid arthritis (RA) (Zhang et al., 2015); dysbiosis was

detected in the gut and oral microbiomes of RA patients and Haemophilus spp. was depleted and negatively

correlated with levels of serum autoantibodies, whereas Lactobacillus salivarius was over-represented in

individuals with RA at all three sites.

A multiomic approach that integrated metagenomics, metatranscriptomics, and proteomics was adopted

to characterize the microbiome associated with different parts of the intestines of the patients with the

inflammatory bowel diseases (IBDs); it was found that the gut microbiome stability (measured by the

metagenomic, metatranscriptomic, and metabolomic profiles) in IBD patients decreased more from the base-

line over time (Lloyd-Price et al., 2019).

Microbiome-based human host phenotype prediction has benefited from the recent advance of machine

learning (ML) algorithms. A recent effort mined microbial reads in the whole genome and transcriptome

sequencing data from different cancer types acquired by The Cancer Genome Atlas (TCGA) project, and

revealed unique microbial signatures in tissues and blood within and between most major cancer

types, resulting in microbiome-based predictive models that can distinguish different cancer types and stages

(Poore et al., 2020). Statistical Inference of Associations between Microbial Communities And host pheno-

Types (SIAMCAT) is a ML toolbox developed to address the issues related to ML algorithms in microbiome

studies such as the poor generalization (Wirbel et al., 2021).

By comparing the prediction performances and the biological interpretation across multiple ML methods

and different types of metagenomic data, Le Goallec et al. (2020) showed that the prediction accuracy

depended on the choice of ML algorithms and features, and presented a computational framework for inferring

microbiome-derived features of host phenotypes. Deep learning methods including various autoencoders were

also exploited for learning the representation of quantitative microbiome profile in a lower dimensional latent

space, which were used for building predictive models for host disease prediction (Oh and Zhang, 2020).

We previously developed a novel computational approach (CoSA: Concurrent Subtractive Assembly)

(Han et al., 2017) for extracting differential bacterial genes by first detecting differential k-mers and then

differential reads, followed by the downstream assembly of the differential reads. The annotation of the

subtractive assembly leads to the rapid identification of differential genes that can be used as features for

microbiome-based phenotype prediction. We further applied CoSA to several microbiome data sets of

human diseases, which were collected and disseminated for testing new methods for deriving microbial

features and for developing predictive models by a broad research community (Han and Ye, 2018).

The CoSA approach worked well on simulated data sets and some real microbiome data sets; however,

its performance was still limited for some microbiome data sets, particularly for those with complex
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community structure (e.g., the gut microbiome data sets from the patients with nonsmall-cell lung can-

cer [NSCLC] that responded to cancer immunotherapy; see Section 3). To overcome this limitation,

we proposed to exploit the clusters of k-mers sharing similar abundance profiles across multiple samples

to improve the detection of differential k-mers between samples of different host phenotypes and thus to

improve the characterization of differential reads and genes for downstream analyses.

It was shown that gene-centric predictive models, which use genes or coabundance groups of genes

(CAGs), achieved superior performance compared with composition-based predictive models for microbiome-

based host phenotype prediction (Le Goallec et al., 2020). Gene-centric approaches typically involve a few

steps that are computationally intensive, including the assembly of the metagenomic sequences, the pre-

diction of genes from the assemblies, the generation of nonredundant gene collection, followed by the

quantification of genes (by reads mapping) and the selection of differential abundant genes that can be used

as features.

The conventional approaches typically result in gigantic collections of microbial genes (Qin et al., 2010;

Kim et al., 2021), imposing challenges for selecting features to be used in the predictive models. Our CoSA

approach dramatically reduces the size of the putative genes to be selected as features. We show here that

our new approach that utilizes clusters of differential k-mers further enhances the ability of the subtractive

assembly approach, generating only a small collection of genes that can be used in the downstream analyses

for assembling differential genes and building predictive models.

2. METHODS

2.1. Overview of kmerLSHSA

We developed kmerLSHSA for subtractive assembly and characterization of genes from microbiome data

that are associated with the host phenotype. It is an extension of our previously developed subtractive

assembly approach CoSA (Han et al., 2017). The kmerLSHSA method relies on the detection of the

differential k-mer coabundance groups (kCAGs), which will be subsequently used for the extraction of

differential reads between two groups of microbiome data sets (e.g., healthy vs. diseased).

In this study, a kCAG represents a group of k-mers that share similar abundance profiles across multiple

samples, and thus are likely from the same or co-occurring microbial genomes/genes. Figure 1 shows the

workflow of kmerLSHSA, including the key steps of building k-mer abundance profiles and using locality-

sensitive hashing (LSH) to group k-mers into kCAGs.

FIG. 1. The schematic illustration of the kmerLSHSA workflow. kCAGs, k-mer coabundance groups; LSH, locality-

sensitive hashing.
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2.2. Building k-mer abundance profiles

The first step of kmerLSHSA is to count all k-mers in metagenomic samples. For comparative meta-

genomic studies, the sheer size of the data sets is a fundamental challenge. KMC3 (Kokot et al., 2017) is

used for k-mer counting, setting the maximal count (the –cs flag) as 65,536 instead of 255 (the default).

Using a larger cutoff helps identify more frequently observed differential k-mers; in addition, each counter

can be represented using a 16-bit unsigned integer, demanding a reasonable amount of memory or disk

space for storing counts of billions of k-mers across multiple samples.

Meanwhile, we exclude k-mers occurring less than two times by the –ci option (minimum count)

considering they are likely from sequencing errors, a practice that was previously adopted by KMC2

(Deorowicz et al., 2015), 2BFCounter (Melsted and Pritchard, 2011), and khmer (Zhang et al., 2014). We

used k = 23, which was selected empirically, balancing the memory assumption and the performance of

kmerLSHSA.

After the k-mer counting using KMC3, kmerLSHSA processes the output of KMC3 by using the KMC

Application Programming Interface (API), and exports all observed k-mers in a hash table, implemented using

the libcuckoo library (downloaded from https://github.com/efficient/libcuckoo). Libcuckoo (Li et al.,

2014) provides a high-performance concurrent hash table, by which we can efficiently update the hash table

using multiple threads. With the k-mers in the hash table, kmerLSHSA parses the output of KMC2 for the

second time and exports the counts of the k-mers onto hard disk following their order in the hash table of every

sample. By storing the counts on the disk, kmerLSHSA loads the counts of k-mers in batches and, therefore,

significantly reduces the memory requirement for recording the counts of all k-mers in every sample.

To compute the abundance profile, kmerLSHSA first computes the count of each k-mer in each meta-

genomic sample (to account for the low count of a rare k-mer, the k-mer count is represented as the number

of occurrences per million k-mers), and then normalizes the count by the centered log ratio (CLR) count.

CLR(x) = log(
x1

g(x)
)‚ log(

x2

g(x)
)‚ . . . log(

xn

g(x)
)

� �
‚ g(x) = (

Yn

i = 1

xi)
1=n:

The CLR approach is capable of removing the unit-sum constraint of compositional data (Aitchison,

1982), and thus is less sensitive to the outliers than the total sum normalization approach (which was used

by CoSA).

2.3. Generating kCAG by LSH

Given the massive set of k-mers in the metagenomic sequences acquired from multiple microbiome samples,

we aim to cluster these k-mers into groups of k-mers with similar abundance profiles across these samples,

referred to as the kCAGs. We view the k-mer clustering problem as a high dimensional vector clustering problem:

each k-mer is represented by an abundance vector in which each dimension represents the normalized count of

the k-mer in a sample, and the similarity between two k-mers is then measured by the cosine of the angle between

their respective abundance vectors. Because the number of k-mers in a metagenomic data set is huge (in billions),

we devised a fast clustering algorithm enabled by LSH to group the k-mers into kCAGs.

Notably, LSH was previously used to speed up sequence comparison. Specifically, the LSH method

MinHash was used to rapidly detect highly similar sequences in genomic data sets (Ondov et al., 2016;

Marçais et al., 2019), and was adopted for the detection of contaminated reads in genomic/metagenomic

sequences (Ondov et al., 2019) and for the clustering of sequences from ChIP-seq data (Soto et al., 2019).

However, the goal of these methods is considerably different from the kmerLSHSA approach: although

these methods attempt to cluster genomic sequences based on their sequence similarities, kmerLSHSA

attempts to cluster k-mers based on their abundance profiles across multiple samples. In fact, we have

previously adopted LSH for clustering tandem mass spectra (Wang et al., 2018), which is a similar

computational problem as the one studied in this article.

In general, LSH is defined as follows: Let H be a family of hash functions h that maps objects in a metric

space M to a bucket s 2 S. The family of hash functions H is called locality sensitive under a distance

threshold R and the collision probability P1 and P2 (P1 > P2) if for any two objects p‚ q 2 M:

if d(p‚ q) � R‚ then Pr[h(p) = h(q)] � P1‚

if d(p‚ q) � cR‚ then Pr[h(p) = h(q)] � P2 where (c > 1)‚
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where d(p‚ q) is the distance between the objects p and q, and Pr[h(p) = h(q)] represents the probability that

p and q collide under a hash function. Specifically, in this article, we used a family of LSH functions called

SimHash (Charikar, 2002; Andoni and Indyk, 2006) to approximate the cosine similarity measure between

abundance vectors using random projection (Wang et al., 2014).

For a given input vector x, the SimHash function is defined as h(x) = sign(wT x)‚ where w is a randomly

chosen vector, and h(x) = + 1 or - 1 depending on which side of the hyperplane (with normal vector of w)

x lies. For any two vectors si and sj, Pr[h(si) = h(sj)] = 1 - h(si‚ sj)

p . Hence, the higher the cosine similarity (i.e.,

smaller h) between the two vectors, the more probable they are mapped to the same side of the hyperplane.

Here, each side of the hyperplane is considered as a bucket, and thus a single SimHash function h defines a

hash table of two buckets.

The key idea of SimHash-based k-mer clustering is to map k-mers into many buckets such that those

sharing similar abundance vectors are likely to be mapped into the same buckets. To cluster the large

number of k-mers, we just need to examine the similarities between the abundance vectors of the k-mers in

the same bucket. Therefore, we hope to create a hash table with millions of buckets (for storing billions of

k-mers) so that on average a small number of k-mers are mapped to each bucket. To create the hash table

with many buckets, we construct a compound hash function g(x) = (h1(x)‚ . . . ‚ hn(x)) by concatenating n

SimHash functions, h1(x)‚ . . . ‚ hn(x), where each function hi(x) is chosen randomly from the family H
(Wang et al., 2014).

When the compound hash functions are used, the LSH algorithm amplifies the gap of the collision

probability between the k-mers with similar abundance profiles and k-mers with dissimilar abundance

profiles. In particular, two k-mers are mapped into the same bucket in a hash table of n concatenated

SimHash functions, only if they have the same compound hash keys; hence for two k-mers with a collision

probability p under a single SimHash function h, their collision probability under the compound hash

function becomes pn, which means two k-mers of similar abundance profiles may be mapped to different

buckets (i.e., the false negatives) with a probability of 1 - pn.

To reduce these false negatives in the LSH algorithm, we implemented an iterative approach: the k-mers

are clustered in L steps, in each step, the k-mers with abundance profile similarity greater than a threshold

are expected to be clustered, and the threshold gradually decreases from a preset maximum value (pmax) to a

minimum value (pmin) in L steps. Therefore, the overall collision probability of two k-mers with similar

abundance vectors (cosine � pmin) becomes 1 - (1 - pn)L.

For example, when we use a compound hash function with 20 SimHash functions and 100 iterations, the

collision probability is � 0:98 for the abundance profile similarity ( p) of 0.85, which means 98% of k-mers

pairs with the abundance vectors of the similarity 0:85 or higher will be mapped into at least one bucket

after 100 iterations. In kmerLSHSA, the number of hash functions (n) is automatically determined ac-

cording to the number of k-mers to be clustered (N), ºlog2Nß. By default, pmax and pmin are set to be 0.95

and 0.85, and L is set to be 100.

One issue in the application of LSH-enabled clustering algorithm is that the k-mers are often not

evenly distributed in the buckets. As a result, a few rich buckets may contain many k-mers while most

buckets contain a small number of k-mers. In this case, the clustering algorithm still needs to examine the

pairwise abundance profile similarities among many k-mers in the rich bucket, making the algorithm

slower. To address this issue, we adopted a nested LSH approach that includes an outerLSH as a typical

compound LSH as already described, and an innerLSH, a compound LSH with fewer (default 15) con-

catenated SimHash functions, that is only applied to the rich buckets (i.e., the buckets containing >1 million

k-mers).

In theory, the nested LSH approach is equivalent to using a single compound function with more

concatenated SimHash functions. However, in practice, the nested LSH approach does not divide the

nonrich buckets into even smaller buckets, thus avoids the extensive computation on hash functions for the

k-mers in these small buckets.

Owing to the huge number (billions) of k-mers in our applications, we cannot load the entire k-mer

abundance matrix into the computer memory (e.g., processing 5 billion k-mers requires >300 GB memory).

Therefore, to reduce the memory consumption, in the kmerLSHSA implementation, the input matrix is

loaded in multiple steps: in each step, only a subset of the matrix is loaded and processed, whereas the

entire matrix is stored as a temporary binary file on the hard disk.
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2.4. Subtractive assembly

Statistical tests are applied to infer kCAGs that are differential between the two groups of samples

(healthy vs. diseased). For each kCAG, its representative abundance profile (the mean of the k-mer

abundances of all k-mers in the kCAG across samples) is used for t-test, for which we employ the

‘‘studentttest2’’ function from ALGLIB (www.alglib.net). Instead of using a fixed p value cutoff to define

differential kCAGs, all kCAGs with p value < 0:001 are considered to be significantly differential, and

in the cases that these kCAGs do not contain enough k-mers, additional kCAGs with higher p values are

to be included such that at least a certain number of k-mers (100,000) are extracted for each group. All

k-mers in selected kCAG are considered differential.

Reads that are composed of differential k-mers tend to be from differential genomes. Thus, we extract

differential reads in each sample based on the differential k-mers using a voting strategy. With the voting

threshold as 0.5, for example, a read is considered to be differential if 50% of its k-mers are differential

k-mers. We empirically tested the voting threshold and found that a value in the range of 0.3–0.8 gives a

good balance between the number of extracted reads and efficiency of the differential gene assembly.

Extracted differential reads from samples of the same group are pooled together and then assembled using

MegaHit (Li et al., 2016). We call it subtractive assembly as the reads from the genomes/genes that are shared

by both groups of samples are likely to be subtracted before assembly (Wang et al., 2015). After the assembly,

the genes are then predicted from the assembled contigs using FragGeneScan (Rho et al., 2010).

2.5. Inference of microbial markers using ML approaches

Genes assembled from kmerLSHSA are putative differential genes and can be used as inputs to build

predictive models for host phenotype prediction based on microbiome data. For comparison, we also used

differential genes derived from CoSA, all genes identified from assemblies of individual microbiome data

sets (referred as Genes), and the species composition (referred as Species) as the input features to build

predictive models and compared their performances. The species and their abundances were estimated for

individual data sets by using Bracken (Lu et al., 2017).

To use all genes, we used MegaHit (Li et al., 2016) to assemble individual metagenomes, used Frag-

GeneScan (Rho et al., 2010) to predict genes from the assemblies, combined the genes, and removed the

redundancy by cd-hit (Fu et al., 2012). Gene abundances are estimated based on reads mapping. As shown

hereunder, genes can be further grouped into CAGs before they are used as features to build predictive models.

2.5.1. Gene abundance quantification and inference of gene CAGs. Abundances of the genes

(differential genes from kmerLSHSA and CoSA, and all genes from the Genes approach) across micro-

biome data sets are approximated based on reads mapping of shotgun reads onto the genes using Bowtie 2

(Langmead and Salzberg, 2012). We calculate a gene’s abundance based on the counts of both uniquely

and multiplely mapped reads (the contribution of multiplely mapped reads to a gene was computed

according to the proportion of the read counts divided by the gene’s unique abundance). The read counts

are then normalized per kilobase of gene per million of reads in each sample.

Genes can be further grouped into CAGs. Similarly to kCAGs, we used LSH to group genes with similar

abundance profiles.

2.5.2. Feature selection and ML algorithms. Genes assembled and quantified as already men-

tioned were then used as candidate features for selecting microbial marker genes and for training predictors

for microbiome-based host phenotype prediction. In microbiome-based phenotype prediction, the number

of input features is typically a lot greater than the number of samples, leading to the ‘‘Large p (features),

Small n (observations)’’ problem (Wang and Liu, 2020); our study is subject to the same limitation. It is,

therefore, important to apply feature selection to narrow down the feature space. In our study, the number

of selected features is regulated by the number of samples so that it does not exceed the number of samples

to prevent overfitting.

For feature selection, we used two different feature selection methods (tree-based feature selection and

L1-based feature selection) to select a smaller number of microbial genes to be used as microbial marker

genes. It has been shown that no single ML algorithm works the best for all, so we tried different ML

algorithms for phenotype prediction, including Support Vector Machines (SVM), Random Forests (RF),

Stochastic Gradient Descent (SGD), and Gradient Boosting Classifier (GBC).
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To reduce overfitting and select the optimum algorithm and its hyperparameters, we employed the nested

cross-validation approach that consists of two steps of cross-validation: the inner loop builds the classifiers

with all possible combinations of feature selection, ML algorithm, and hyperparameter settings, and selects

the best combination based on the performance of the predictive model (as measured by AUC), and the

outer loop tests the performance of the selected predictive model on the holdout fold (not used for model

selection). Fivefold cross-validation was used for both the outer and inner loops.

We tried the following parameters for feature selection: (1) regularization parameter (50 or 100) and

(2) number of trees (100 or 500) for tree-based feature selection. We considered the following hyper-

parameters for the different ML approaches as follows: (1) regularization parameter for SVM (possi-

ble values: 1, 50, and 100), (2) number of trees for RF (possible values: 10, 50, and 100), (3) number

of boosting stages for GBC (possible values: 10, 50, and 100), and (4) penalty for SGD (L1, L2, and

elasticnet). We used the scikit-learn (http://scikit-learn.org; Pedregosa et al., 2011) implementation of these

ML approaches in this study.

2.6. Data sets

We used one simulated and four real data sets for testing kmerLSHSA. Table 1 summarizes the number

of samples and total number of base pairs in different data sets.

1. SIM (simulated data sets using CAMISIM; Fritz et al., 2019). We randomly selected 100 genomes

from the collection of gastrointestinal tract bacteria to simulate metagenome data sets in two groups

(to mimic the disease vs. control scenario). Among the 100 genomes, 10 genomes were selected as

highly differential genomes (with abundances in the range of 15–20 in one group vs. 0–5 in the other

group) and another 10 genomes had minor differences (with abundances in the range of 10–15 in one

group vs. 5–10 in the other group).

The rest of the genomes had nondifferential abundance distributions across the two groups of samples

(with abundances in the range of 4–7 in all samples). We created two simulated data sets with 10 and

15 samples in two groups (for a total of 20 and 30 samples), respectively.

2. T2D. We used the T2D cohort from a previous study (Qin et al., 2012), which contains microbiome

data from two groups of 70-year-old European women, one group of 50 with T2D, and the other

matched group of 43 healthy controls.

3. LC. This collection includes metagenomic data sets from 98 Chinese patients with LC and 83 healthy

individuals (Qin et al., 2014).

4. NSCLC. This collection includes gut microbiome data sets from 33 patients with NSCLC that responded

to cancer immunotherapy Immune Checkpoint Inhibitor (ICI) (responders) and 32 patients who did not

respond (nonresponders; Routy et al., 2018).

5. Renal cell carcinoma (RCC). We used data sets from the same study (Routy et al., 2018) that involved

20 nonresponders versus 42 responders to a different cancer type, RCC.

2.7. Availability of the program and data

kmerLSHSA is available at (https://github.com/mgtools/kmerLSHSA). The simulated data sets are also

available at the same repository.

Table 1. Summary of the Microbiome Data Sets for Testing

Abbreviation Disease Reference No. of samples

Total no. of

base pairs (Gbps)

SIM Simulated — 20/30 16/23

T2D type 2 diabetes Qin et al. (2012) 93 225

LC Liver cirrhosis Qin et al. (2014) 181 817

NSCLC Nonsmall-cell lung cancer Routy et al. (2018) 65 153

RCC Renal cell carcinoma Routy et al. (2018) 62 147
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3. RESULTS

3.1. Evaluation of kmerLSHSA using simulated data sets

First, we tested kmerLSHSA on the simulated data sets composed of 100 human gut microbial genomes,

including 20 genomes with differential abundances between two groups of samples (see Section 2 for details).

We focused on the assembly of the differential genomes for the comparative studies. Compared with CoSA,

kmerLSHSA was able to retrieve more differential reads from the data sets, which resulted in better as-

semblies of the differential genomes. Both kmerLSHSA and CoSA could extract the reads from the genomes

with high abundance differences between the two groups. However, for genomes having minor but consistent

differences between these two groups, only kmerLSHSA could extract a sufficient number of reads.

For example, among 44,735 reads simulated from a highly differential genome (OTU_97.35197.0)

between the two groups, kmerLSHSA and CoSA extracted 40,368 and 40,345 reads, respectively (recall =
90.2% for both approaches). However, among the 44,984 reads simulated from another genome (OTU_

97.1270.0) with only minor differences between two groups, kmerLSHSA and CoSA retrieved 37,073

(recall = 82.4%) and 5609 (recall = 15.7%) reads, respectively. In contrast, kmerLSHSA and CoSA only

extracted 203 and 394 reads (false positives) from the 1,676,705 reads simulated from nondifferential

genomes, respectively, so both approaches had low false positive rates.

As shown in Figure 2, kmerLSHSA achieved the assemblies with more total bases, and the assembled

contigs tend to be longer than those generated by CoSA. We note that some regions of the differential

genomes may be shared with other genomes (including the nondifferential genomes) and thus they were not

extracted by the subtractive assembly approach. As a result, the cumulative length of the contigs for the

differential genomes is, in general, smaller than the total size of the complete genomes.

FIG. 2. Cumulative length of the contigs generated by kmerLSHSA and CoSA on the two simulated data sets, which

contain 15 and 10 samples in each of the two groups, respectively. The contigs were first sorted in the decreasing order

of their lengths, and the cumulative length (y-axis) of the first i contigs was depicted as a function of the contig index i.

The kmerLSHSA approach generated fewer but longer contigs than CoSA on both simulated data sets. kmerLSHSA_15

represents the performance by kmerLSHSA using 15 samples in each group, and so on.
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3.2. Genes derived from kmerLSHSA can be used to build predictive models for host phenotype
predictions

We applied kmerLSHSA to real microbiome data sets that were derived from patients with different

diseases to test whether kmerLSHSA can produce differential genes useful for building microbiome-based

predictive models for host phenotype prediction. Table 2 summaries the genes derived from these micro-

biome data sets.

The choice of different ML algorithms (and their parameter settings) as well as the type of input features

has high impact on the performance of the resulting predictive models. Here, we attempt to compare the

impact of the data type (the input to the ML algorithms) on the performance of predictive models.

Therefore, we used the same ML protocol and the nested cross-validation where the inner cross-validation

was used to choose the ML algorithm and hyperparameters that gave the most accurate predictive models

(see Section 2). We compared the effectiveness of four different inputs for building ML models: CAGs

from kmerLSHSA, CAGs from CoSA, CAGs from all genes assembled from metagenomes [Genes

(CAGs)], and the species identified from metagenomes [denoted as Species (All)].

To prevent potential information leaks and for fair comparison, we used only the CAGs from kmerLSHSA

and CoSA that are differential between the two groups using 80% of the samples (randomly selected for

training), so features that were only found to be differential ( p < 0.01) because of the 20% test samples were

excluded from the training of the models. Similarly, for Genes and Species, we applied the same step to select

CAGs and Species that are differential between the two groups using 80% of the samples, resulting in two

additional types of inputs to ML: Genes (differential) and Species (differential), for a total of six.

Figure 3 summarizes the performance of the predictive models using the different data types. It shows

that using CAGs from subtractive assemblies (kmerLSHSA and CoSA) as the input resulted in more

accurate predictive models compared with using CAGs from all assembled genes (Genes) and the species

abundances (Species) as input. In addition, kmerLSHSA outperformed CoSA, especially for T2D and

NSCLC. For NSCLC, CoSA outperformed Genes and Species, but its performance was still rather poor.

Using CAGs from kmerLSHSA improved the model significantly, resulting in much more accurate pre-

dictive models with comparable AUC as the predictive models for other diseases.

Using Genes (CAGs) typically resulted in predictive models with poor performance, indicating the

challenge imposed by the large number of CAGs to the feature selection. Using statistical tests to select

the differential features improves the ML algorithms greatly, resulting in more accurate predictive models

[see the performances of Genes (differential)].

Using CAGs from kmerLSHSA as the features resulted in models that have comparable predictive power as

the models using differential genes selected from all genes assembled from the microbiome data sets, indi-

cating that kmerLSHSA was able to effectively identify differential genes for downstream analyses, whereas it

is much faster than the all-gene-based approach (see Table 3). Using Species resulted in worst predictors across

all diseases, and our result is consistent with a previous study that showed using genes as features generally

resulted in better predictive models than using species as the features (Le Goallec et al., 2020).

We examined the combination of ML algorithm and feature selection that gave the best predictive

models. The results show that there was no single ML approach and feature algorithm that outperformed

others for different data types and different diseases. However, as Figure 4 shows, when CAGs from

Table 2. Summary of the Predicted Genes and Coabundance Groups

LC T2D NSCLC RCC

kmerLSHSA

No. of predicted genes 116,972 17,808 3804 5656

No. of CAGs 7259 2508 860 483

CoSA

No. of predicted genes 157,424 296,871 4854 11,287

No. of CAGs 13,793 40,596 1808 2144

Genes

No. of predicted genes 5,627,183 4,013,623 4,044,510 3,914,940

No. of differential genes 651,813 12,123 627 1978

No. of CAGs 1,913,052 808,739 956,237 542,007

CAGs, coabundance groups of genes; CoSA.
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kmerLSHSA and CoSA were used as the inputs, SVM with L1 feature selection often resulted in the most

accurate predictors for LC (Fig. 4a), T2D (Fig. 4b), and RCC (Fig. 4d). For NSCLC, RF with L1 feature

selection was the top performer (Fig. 4c). For comparison, the best performing ML and feature selection

algorithm varied more when other data types were used as the inputs.

Table 3 gives the running times for the different steps in kmerLSHSA and the conventional all-gene-

based approach and their overall running time, using the experiments on the LC data sets as an example. All

the computations were performed on a server with 12-core Intel Xeon E5-2680 v3 CPUs and 512 GB of

RAM. The comparative studies show that although kmerLSHSA has an extra step for the reads subtraction,

it gains its advantage by saving the computational time in the subsequent steps as it only uses a much

smaller collection of potential differential genes in those steps.

3.3. kmerLSHSA generates a compact and effective collection of genes for building predictive
models

We already showed that using CAGs from kmerLSHSA outperformed CAGs from CoSA and all genes

(in which the best subset of CAGs was selected using one of the feature selection approaches in the cross-

validation). Here, we consider a different question: as the collection of CAGs from kmerLSHSA is already

compact, does any subset of CAGs provide a comparable discriminating power for building predictive

models as the selected subset of CAGs by feature selection? To address this question, we randomly selected

a subset of CAGs (of the same size as the number of samples for each disease) and used it as the input

(without feature selection) for building predictive models.

Figure 5 summarizes the performance. Unsurprisingly, because of their large feature space, predictive

models using randomly selected features from Gene (CAGs) and Species (All) gave random predictions for

FIG. 3. Evaluation of the performance of predictive models using different data types as the inputs. Except for the

input data type, all the other settings were kept the same for all the experiments. We conducted a total of 100

replications of training and testing to estimate the variance of the performance; in each iteration, a different splitting of

the data into training and test sets was applied. AUC, area under the ROC curve; LC, liver cirrhosis; NSCLC, nonsmall-

cell lung cancer; RCC, renal cell carcinoma; T2D, type 2 diabetes.

Table 3. Summary of the Running Time (Minutes) Comparison Between

kmerLSHSA and Genes for the Liver Cirrhosis Data Sets

Steps kmerLSHSA Genes

Extraction of differential reads 6924 –

Assembly 97 3354

Gene prediction 1 333

Removal of redundant genes (cd-hit) — 11,687

Mapping 932 25,922

Total 7954 41,296
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T2D, NSCLC, and RCC, respectively. We note that because we used the nested cross-validation to evaluate

the performance of predictive models, the reported performance of some models using randomly selected

features could be worse than random guess. By contrast, using CAGs from subtractive assembly appro-

aches, especially our new approach kmerLSHSA, resulted in much better predictive models for these

diseases. We note that for LC data set, the microbiomes of patients with LC are so different from the

healthy controls such that using any randomly selected small collection of genes or species resulted in good

predictors.

FIG. 5. The performances of the predictors with randomly selected features (genes or species). The box plots show

the mean and standard deviation of AUC on 100 models built from the replicated training/testing experiments.

a b

c d

FIG. 4. Frequency of different combinations of chosen ML algorithm and feature selection that led to the best

predictive models for the different types of inputs for each disease. ML, machine learning. (a)–(d) are for different

diseases LC, T2D, NSCLC and RCC, respectively.
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4. DISCUSSION

In this article, we presented an improved subtractive assembly approach kmerLSHSA using k-mers

clustering for comparative analysis. The key idea of the subtractive assembly approach is to capture the

differential reads coming from the differentially enriched genes/genomes before the analysis such as

assembly, binning, and gene prediction. Considering the complex microbial community in the real world, it

is important to capture the genomes/genes showing low abundances but consistently differences, which

may play an important role related with a human disease, as demonstrated in the results on real microbiome

data sets derived from patients with different diseases.

The kmerLSHSA approach exploits the LSH technique for clustering k-mers based on their abundance

vectors. Because of the huge number of k-mers, it is computationally expensive to directly apply the

conventional clustering algorithms such as k-means or hierarchical clustering. To cluster billions of k-mers

within a feasible time, the number of hash functions for LSH was determined by the log value of the

number of k-mers. The LC data set contains 6 billions of k-mers, which was clustered into 11 millions of

kCAGs with the cosine similarity threshold of 0.85.

If a lower similarity threshold is used, the number of clusters (kCAGs) will be further reduced. However,

at the same time, some false positives (in this case nondifferential k-mers) may be grouped in the dif-

ferential kCAGs. Tests on simulated data sets show that reads from the genomes with minor abundance

differences between two groups could be successfully extracted with high (0.85) similarity threshold.

As shown in Figure 3, the predictive models using CAGs from kmerLSHSA reached higher AUC

compared with the prior version of subtractive assembly and all genes/species assembled from metagen-

omes. In particular, the LC data set contains many differential genes compared with other data sets

(Table 2) that very accurate predictive models could be learned regardless of what features were used. Even

though the differences between the median AUC were small for different input data types, compared with

the data sets from other diseases, the model of kmerLSHSA still reached the highest AUC (0.951) among

all the methods.

In contrast, for NSCLC, the microbiomes of the two groups had much smaller differences (as reflected

in the small number of differential genes), and the input data types had much bigger impact on the

performance of the predictive models; in this case, only two models reached the AUC over 0.9

(kmerLSHSA and Genes [differential]). These results showed that regardless of the input data sets,

kmerLSHSA reported the genes that could serve as good features for building predictive models for

phenotype prediction.

We used a nested cross-validation approach and feature selection that regulated the number of features

to select for building models to avoid overfitting. However, the generalization of our predictive models (in fact

any microbiome-based predictive models) could be relatively low; one needs to be cautious when applying

microbiome-based predictive models to new samples, due to the large variation and heterogeneity of mi-

crobiome data, as well as the potential confounding factors that could cause the microbiome differences and

were not considered properly when building the models (Poussin et al., 2018; Wirbel et al., 2021). Never-

theless, this study demonstrated the importance of curating input features for building predictive models.

Although kmerLSHSA is designed for subtractive assembly, the k-mers clustering result could be

used for other purposes. One direction is to check whether the kCAGs can be directly used as markers

for studying the differences of microbiomes between groups. Another possible application is to use

kCAGs for binning the reads to improve assembly of individual genomes, when multiple microbiome

data sets are available (e.g., time course microbiome data). Finally, we expect that the implementation

strategies we developed (such as the nested LSH) would be useful for clustering other type of large

data sets.
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Marçais, G., DeBlasio, D., Pandey, P., et al. 2019. Locality-sensitive hashing for the edit distance. Bioinformatics. 35,

i127–i135.

Melsted, P., and Pritchard, J.K. 2011. Efficient counting of k-mers in DNA sequences using a bloom filter. BMC

Bioinformatics. 12, 1–7.

Nejman, D., Livyatan, I., Fuks, G., et al. 2020. The human tumor microbiome is composed of tumor type–specific

intracellular bacteria. Science. 368, 973–980.

Oh, M., and Zhang, L. 2020. Deepmicro: Deep representation learning for disease prediction based on microbiome data.

Sci. Rep. 10, 1–9.

Ondov, B.D., Starrett, G.J., Sappington, A., et al. 2019. Mash screen: High-throughput sequence containment esti-

mation for genome discovery. Genome Biol. 20, 1–13.

Ondov, B.D., Treangen, T.J., Melsted, P., et al. 2016. Mash: Fast genome and metagenome distance estimation using

minhash. Genome Biol. 17, 1–14.

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830.

Poore, G.D., Kopylova, E., Zhu, Q., et al. 2020. Microbiome analyses of blood and tissues suggest cancer diagnostic

approach. Nature. 579, 567–574.
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