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A B S T R A C T

Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive
impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on
one population can predict MCI/AD diagnosis of other populations. This study aimed to employ a spectral graph
convolutional neural network (graph-CNN), that incorporated cortical thickness and geometry, to identify MCI
and AD based on 3089 T1-weighted MRI data of the ADNI-2 cohort, and to evaluate its feasibility to predict AD in
the ADNI-1 cohort (n= 3602) and an Asian cohort (n=347). For the ADNI-2 cohort, the graph-CNN showed
classification accuracy of controls (CN) vs. AD at 85.8% and early MCI (EMCI) vs. AD at 79.2%, followed by CN
vs. late MCI (LMCI) (69.3%), LMCI vs. AD (65.2%), EMCI vs. LMCI (60.9%), and CN vs. EMCI (51.8%). We
demonstrated the robustness of the graph-CNN among the existing deep learning approaches, such as Euclidean-
domain-based multilayer network and 1D CNN on cortical thickness, and 2D and 3D CNNs on T1-weighted MR
images of the ADNI-2 cohort. The graph-CNN also achieved the prediction on the conversion of EMCI to AD at
75% and that of LMCI to AD at 92%. The find-tuned graph-CNN further provided a promising CN vs. AD
classification accuracy of 89.4% on the ADNI-1 cohort and>90% on the Asian cohort. Our study demonstrated
the feasibility to transfer AD/MCI classifiers learned from one population to the other. Notably, incorporating
cortical geometry in CNN has the potential to improve classification performance.

1. Introduction

Alzheimers disease (AD) is clinically characterized by the appear-
ance of a progressive decline in memory and cognition (Alzheimer's
Association, 2015). It is the most common form of neurodegenerative
dementia and has an astounding impact at individual and societal levels
(Prince et al., 2015; Rizzi et al., 2014; Wimo et al., 2017). Despite a
concerted effort to establish treatments for moderate and severe AD,
clinical trial for alleviating such a degenerative process has yielded
meager success (Lawlor et al., 2018; Yiannopoulou and Papageorgiou,
2013). Symptomatic treatments for AD could be efficacious only if the
diagnostic and treatment envelop fall back to the early prodromal stage,
such as mild cognitive impairment (MCI) (Karakaya et al., 2013;
Robinson et al., 2015). Such conceptual appeal of early diagnosis and

prognosis of MCI and AD in mitigating disease impact has been tested
recently, providing promising results and evidences that prodromal
stages of AD are windows of opportunity in reducing the incidence and
symptoms of AD (Ewers et al., 2011; Pellegrini et al., 2018b; Rathore
et al., 2017).

Neuroimaging has provided relevant information on the diagnostic
status and disease progression of AD and MCI. In quantifying patterns of
structural change during early stages of AD, several neuroimaging in-
itiatives2 have discovered biological markers associated with AD and
MCI based on multi-modal brain images and machine learning. In
general, multi-modal neuroimaging data performs better than unimodal
data in terms of the diagnostic accuracy of AD/MCI (e.g., (Dyrba et al.,
2015; Dyrba et al., 2013; Liu et al., 2015; Liu et al., 2013; Möller et al.,
2016; Nir et al., 2015; Pellegrini et al., 2018a; Yu et al., 2016; Zhu et al.,
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2014)). To our knowledge, the AD classification accuracies from ex-
isting literature ranged between 86 and 93% using the volumetric
morphology of a subset of the T1-weighted images from the Alzheimer's
Disease Neuroimaging Initiative3 (ADNI) (n=100–420) (Cuingnet
et al., 2011; Liu et al., 2015; Liu et al., 2014; Liu et al., 2013; Zhang
et al., 2011). In contrast, AD classification using regional cortical
thickness features performed slightly worse (≈85%) as compared to the
regional volumetric features (n= 220–400) (Liu et al., 2013; Pellegrini
et al., 2018a; Wee et al., 2012). Multi-modal features that include re-
gional gray matter (GM) volumes, regional mean intensity of Positron
Emission Tomography (PET) and amyloid decomposition, and cere-
brospinal fluid (CSF) showed further improvement in diagnostic accu-
racy for AD to 93–96% and for MCI 80–82% (Yu et al., 2016; Zhu et al.,
2014). However, despite the high classification accuracy, multi-modal
imaging studies were often constrained by a small sample size as
compared to unimodal imaging studies due to difficulties in acquiring
multi-modal neuroimaging data from the same subject. This thus lim-
ited their generalizability to large datasets and other populations.

The accuracy of MCI and AD prediction has been further improved
with the recent advent of deep learning. Most of the existing deep
learning based implementation is performed on a coarse patch or brain
region of T1-weighted images (Gupta et al., 2013; Payan and Montana,
2015; Suk et al., 2017). The classification accuracies reached to 94%
and 83% for AD and MCI classifications respectively when a sparse
auto-encoder based on patches of T1-weighted images and a convolu-
tional neural network (CNN) based on 2D T1-weighted images were
employed (Gupta et al., 2013). Moreover, when a CNN was im-
plemented on 3D T1-weighted images, the analysis further improved
classification accuracies to 95% and 92% for AD and MCI respectively
(Payan and Montana, 2015). Despite high classification accuracies,
there are several caveats of these neural network based methods that
are worth further investigation. For example, the model architecture
was limited to CNN with only 1 convolutional layer (Gupta et al.,
2013). The sample in a majority of these existing studies was limited to
the subsample of ADNI-1 (e.g., 755 MRI scans for each clinical class)
(Gupta et al., 2013; Payan and Montana, 2015). Hence, a couple of
questions remain unclear: 1) whether the accuracy of these classifiers
on a large sample can achieve the same level as that using a small
sample; 2) whether the classifiers trained on a specific dataset or po-
pulation are generalizable or transferable to other datasets/popula-
tions. In this realm, whether an AD/MCI classifier built on a Caucasian
population could predict well the diagnosis of an Asian population has
yet been explored. The generalization of these classifiers to other da-
tasets or populations, particularly those with a small sample size, is also
crucial to mitigate the burden of building a reliable population-specific
classifier from scratch.

In this study, we aimed to answer these questions using the cortical
thickness data extracted from T1-weighted MR scans, deep neural net-
work classifier, and transfer learning. Cortical thinning has been re-
ported in AD/MCI patients (Du et al., 2007; Lerch et al., 2008; Lerch
et al., 2005; Singh et al., 2006), and has been identified as imaging
biomarkers for the identification of AD/MCI, as well as the progression
from MCI to AD (Querbes et al., 2009; Racine et al., 2018; Schaerer
et al., 2016). However, a substantial body of existing studies (Eskildsen
et al., 2013; Wee et al., 2012) employed regional features, e.g., the
mean cortical thickness within a region-of-interest (ROI), for classifi-
cation, but did not incorporate the cortical geometry. Two brain regions
are close in terms of Euclidean distance but are far along the cortical
surface, which influences the convolution operation in CNN. In addi-
tion, cortical sulci become wider as thickness decreases in MCI/AD
patients. Hence, it is crucial to take into account of cortical geometry in
CNN. In this study, we employed a spectral graph-CNN (Defferrard
et al., 2016) to incorporate the cortical geometry that can be

represented as a graph. Unlike the traditional CNN in which the con-
volution and pooling operate on a regular Euclidean grid, the con-
volution and pooling operations in a graph-CNN were designed on an
irregular grid. In our case, the convolution filters and pooling were
applied along the cortical ribbon. We trained a spectral graph-CNN on
cortical thickness of the ADNI-2 dataset, which consisted mainly of a
Caucasian population, and then transferred this model to predict AD
and MCI diagnosis of the ADNI-1 cohort and an Asian cohort. Unlike
existing studies that used a subset of the ADNI dataset (e.g., (Korolev
et al., 2017)), we used all available MRI scans from the ADNI-2 cohort
(n= 3089) to train a robust spectral graph-CNN for dementia classifi-
cation. We then used transfer learning to evaluate the generalizability
of the spectral graph-CNN based AD/MCI classifier trained on a sizable
Caucasian dataset to both the full dataset of the ADNI-1 cohort and a
small Asian dataset. In the context of neural networks, transfer learning
employs features/knowledge learned by a base network on a base da-
taset/task to a target network via fine-tuning on a target dataset/task
(Yosinski et al., 2014). The target network tends to perform better than
the same network that trained from scratch if the learned features share
specific structures of both the base and target datasets/tasks. We thus
expected that the classifiers obtained from the ADNI-2 dataset could
achieve similar classification accuracy for the ADNI-1 and Asian po-
pulations.

2. Materials and methods

2.1. Datasets

2.1.1. ADNI cohorts4

This study included 1083 and 1012 subjects from the ADNI-2 and
ADNI-1 cohorts, respectively. Subjects were primarily Caucasian and
aged between 55 and 90 years old. The ADNI-1 cohort had 242 cogni-
tive normal (CN), 415 MCI, and 355 AD. The ADNI-2 cohort had 300
CN, 314 early MCI (EMCI), 208 late MCI (LMCI) and 261 AD at the first
visit, while the number of visits of each subject varied from 1 to 7 (i.e.,
baseline, 3-, 6-, 12-, 24-, 36-, and 48-month). At each visit, the subjects
in the ADNI-1 cohort were diagnosed with one of the three clinical
statuses and those in the ADNI-2 cohort were diagnosed with one of the
four clinical statuses. The general diagnostic criteria for early and late
MCI were the same except LMCI subjects had a lower cut-off point for
logical memory II subscale from Wechsler Memory Scale. Table 1 pro-
vides demographic and clinical information of subjects from the ADNI-1
and ADNI-2 cohorts.

As each subject may have multiple MRI scans due to multiple visits,
we included all available T1-weighted images with good quality after
processing. We used the clinical status at the time of the MRI acquisi-
tion as the classification ground truth, i.e., a subject with multiple scans
may have different clinical labels if he/she converted from one clinical
status to another at the following visits. Out of 3703 downloaded scans
in the ADNI-1 cohort, we discarded 101 scans with no clinical label,
thus leaving 3602 scans for further analyses. Out of 3234 downloaded
scans in the ADNI-2 cohort, we discarded 47 scans with no clinical label
thus leaving 3187 scans for further analysis.

2.1.2. Asian cohort
This study included 347 subjects (176 CN, 128 Moderate MCI and

43 AD) from an ongoing Asian aging study. The diagnosis of MCI and
AD followed the same criteria as given in the ADNI (see details in Thong
et al., 2014; Thong et al., 2013). The moderate MCI category in the
Asian cohort is equivalent to the LMCI in the ADNI-2 cohort due to its
more severe cognitive impairment (i.e., impairment in at least three

3 adni.loni.usc.edu

4 The number of subjects for each group was based on the clinical status
during the MRI acquisition visit. Some subjects falled into 2 or more groups due
to conversion from one clinical status to another.
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cognitive domains of a formal neuropsychological test battery). Note
that the Mini-Mental State Exam (MMSE) cutoff used for this Asian
cohort was relatively lower than that used in the ADNI-2 but was va-
lidated well in the Asian population (Chin, 2002). Table 2 lists demo-
graphic and clinical information of subjects from the Asian cohort.

2.2. MRI data acquisition and analysis

2.2.1. ADNI-1 and ADNI-2 cohorts
Structural T1-weighted MRI scans were acquired using either 1.5 T

or 3 T scanners. The typical 1.5 T acquisition parameters were repeti-
tion time (TR)= 2400ms, minimum full echo time (TE), inversion time
(TI)= 1000ms, flip angle= 8°, field-of-view (FOV)=240×240mm2,
acquisition matrix= 256×256×170 in the x-, y-, and z-dimensions,
yielding a voxel size of 1.25×1.25×1.2mm3. For 3 T scans, the ac-
quisition parameters were a TR=2300ms, minimum full TE,
TI= 900ms, flip angle= 8°, FOV=260×260mm2, acquisition ma-
trix= 256×256×170, yielding a voxel size of 1.0× 1.0× 1.2mm3.

2.2.2. Asian cohort
All MRI scans were acquired on a 3 T Siemens Magnetom Trio Tim

scanner using a 32-channel head coil at the Clinical Imaging Research
Centre of the National University of Singapore. The T1-weighted MR
images were acquired using magnetization prepared rapid gradient

recalled echo with 192 slices, 1 mm thickness, in-plane resolution
1mm, no inter-slice gap, sagittal acquisition, FOV=256×256mm2,
acquisition matrix= 256×256, TR=2300ms, TE=1.9ms,
TI= 900ms and flip angle= 9°.

2.2.3. MRI data analysis
All T1-weighted images from the ADNI-1, ADNI-2, and Asian data-

sets were segmented using FreeSurfer (Fischl et al., 2002). The white
and pial cortical surfaces were generated at the boundary between
white and gray matter and the boundary of gray matter and CSF, re-
spectively. Cortical thickness was computed as the distance between the
white and pial cortical surfaces. We represented cortical thickness on
the mean surface, the average between the white and pial cortical
surfaces. We employed a large deformation diffeomorphic metric
mapping (LDDMM) algorithm (Du et al., 2011; Tan and Qiu, 2016,
2018; Zhong et al., 2010) to align individual cortical surfaces to the
atlas and transferred the thickness of each subject to the atlas. This
study included 3602, 3089, and 347 scans in the ADNI-1, ADNI-2, and
Asian cohorts. Any processed imaging data that included any of the
errors listed on https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
TroubleshootingData was discarded.

2.3. Cortical graph neural network

Mathematically, cortical thickness is a function defined on the
cortical surface, where the cortical surface is a triangular mesh, re-
presented as a graph, Mh={Vh,Eh}. Vh={vih| i=1,⋯,nh} and
Eij

h={eijh=(vih,vjh)|1≤ i≤ nh,1≤ j≤ nh, i≠ j} are the vertex and
edge sets, respectively, and nh is the number of vertices on the graph
(brain cortical surface) of hemisphere h. The cortical thickness of one
hemisphere can be represented as ch={cih| i=1,⋯,nh}, with cih is the
cortical thickness value at vertex i of hemisphere h. Thus, the cortical
surface graph Mh and the corresponding cortical thickness vector (c) of
an individual in the atlas space can be represented respectively as
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where Ml and Mr denote the cortical graphs for the left and right
hemispheres, respectively, and cl and cr denote the cortical thickness
vectors of the left and right hemispheres, respectively. Note that M was
the same for all subjects and was used with the individual cortical
thickness vectors c as the input to train a graph-CNN model for disease
classification as described below. In our case, the numbers of vertices
on Ml and Mr were 152,461 and 152,671 respectively.

Fig. 1A shows the architecture of the spectral graph-CNN used in
this study, which was based on the formulation in (Defferrard et al.,
2016). This graph-CNN concatenates an input layer, followed by three
graph convolutional layers, a fully connected layer, and an output
layer. The input layer took individual cortical thickness (c) and its
underlying graph (M) as the input and then fed them to the first graph
convolutional layer. The convolution on the graph is defined as

∑=
=

−

y θ T L x( )
k

K

k k
0

1

(3)

where y is the output of the convolution, x is the input signal (e.g.,
cortical thickness or output of the previous convolutional layer). The
vector θ=(θ1,θ2,…,θK−1)T is a vector of Chebyshev coefficients, and
Tk(L) is the Chebyshev polynomials of order k evaluated at the Lapla-
cian of M, L=D−1/2WD1/2, where D∈ℝn×n is a diagonal matrix with
Dii= ∑j≠iWij such that its eigenvalues lie within [−1, 1]. With recur-
rence relation of Chebyshev polynomials and let

= = −− −x T L x Lx x( ) 2k k k k1 2 with =x x0 and =x Lx1 , the convolutional

Table 1
Demographic and clinical information of the ADNI-1 and ADNI-2 cohorts at the
time of MRI acquisition.

ADNI-1 cohort

CN MCI AD

Number of subjectsa 242 415 355
Number of scans 1071 1515 1016
Female/male 493/578 525/990 443/573
Age (mean ± SD) 76.9 ± 5.3 75.9 ± 7.3 76.3 ± 7.2
MMSE (mean ± SD) 29.1 ± 1.1 27.0 ± 2.4 22.0 ± 4.2
CDR-SB (mean ± SD) 0.1 ± 0.4 1.8 ± 1.1 5.2 ± 2.5

ADNI-2 cohort

CN EMCI LMCI AD

Number of subjectsa 300 314 208 261
Number of scans 960 899 638 592
Female/Male 512/448 408/491 283/355 256/336
Age (Mean ± SD) 75.6 ± 6.9 72.9 ± 7.6 73.7 ± 8.0 75.3 ± 7.7
MMSE (Mean ± SD) 29.0 ± 1.3 28.1 ± 1.8 27.3 ± 2.2 21.8 ± 4.4
CDR-SB (Mean ± SD) 0.1 ± 0.3 1.3 ± 0.9 1.8 ± 1.2 5.7 ± 2.8

Abbreviations. CN: Control normal; AD: Alzheimer's disease; MCI: Mild cogni-
tive impairment; EMCI: Early MCI; LMCI: Late MCI; MMSE: Mini-Mental State
Exam; CDR-SB: Clinical Dementia Rating Scale-Sum of Boxes.

a The number of subjects for each group was based on the clinical status
during the MRI acquisition visit. There are subjects who fall into 2 or more
groups due to conversion from one clinical status to another.

Table 2
Demographic and clinical information of the Asian cohort.

CN Moderate MCI AD

Number of subjects 176 128 43
Female/male 79/97 84/44 29/14
Age (mean ± SD) 67.4 ± 5.1 74.1 ± 6.4 76.5 ± 7.7
MMSE (mean ± SD) 26.5 ± 2.1 21.0 ± 3.9 15.3 ± 4.7
CDR-SB (mean ± SD) 0.1 ± 0.2 0.9 ± 1.4 6.7 ± 3.7

Abbreviations. CN: Control normal; MCI: Mild Cognitive Impairment; AD:
Alzheimer's disease; MMSE: Mini-Mental State Exam; CDR-SB: Clinical
Dementia Rating Scale-Sum of Boxes.
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operation can be simplified as = = ⋯ −y g L x x x θ( ) [ , , ]θ K0 1 with
= ∑ =

−g L θ T L( ) ( )θ k
K

k k0
1 are the learnable filters (Defferrard et al., 2016).

The polynomial order K ensures that the filters are strictly localized in a
ball of radius K, i.e., K hops from the central node. In the graph con-
volutional layer, the input was convolved with learnable filters and
went through a nonlinear activation function called Rectified Linear
Unit (ReLU), defined as f(x)= max (0,x) (Nair and Hinton, 2010), to
form the output of the current layer, i.e., feature map.

After the convolution, an average-pooling process with stride> 1
was interspersed to reduce dimensionality and to produce a more
compact hierarchical representation of the input data. The pooling
process was performed by applying a simple regular 1D pooling op-
erator on the rearranged meaningful neighboring nodes as shown in
Fig. 1B. The meaningful neighboring nodes were determined via a two-
step approach: 1) coarsening the graph by a factor of two at each level,
and 2) creating a balanced binary tree such that each node in the
coarser graph has either one or two child nodes. In the coarsening step,
two neighboring nodes that with maximum local normalized cut (Shi
and Malik, 2000) were merged until the number of nodes at the coarser
level was approximately half of the previous level. The coarsening
process was repeated until the coarsest level was achieved. At the
coarsest level, the merged nodes were arbitrarily arranged and this or-
dering was propagated stepwise to the finest level (i.e., the input

graph). Finally, a simple regular 1D average-pooling was performed on
the rearranged nodes. The average-pooled feature maps were then fed
as the input to the next graph convolutional layer. In the last graph
convolutional layer, the filtered data were flattened and fed to the fully
connected layer. The fully connected layer, which was the same as the
conventional multilayer neural network, integrated all information
from the last convolutional layer to make a clinical decision at the
output (logits) layer via a softmax function.

The choice of the number of layers, the number of filters in each
layer and the order of Chebyshev polynomials are highly application-
specific. In this study, the graph-CNN was constructed with three graph
convolutional layers, one fully connected layer and one output layer as
shown in Fig. 1A. The number of filters in each graph convolutional
layer was set as [8, 16, 32] respectively, the order of Chebyshev poly-
nomial as 3 in every graph convolutional layer, and the number of the
hidden nodes in the fully connected layer as 128 (Please see Figs. S1,
S2, S3 and S4 in Supplementary Materials for the effects of network
parameters). The network parameters were trained using a back pro-
pagation algorithm with a mini-batch size of 32, an initial learning rate
of 1e−3, a learning rate decay of 0.05 for every 20 epochs, and a mo-
mentum of 0.9 (Cotter et al., 2011). The model was implemented using
the TensorFlow5 library. During the training process, an l2-norm reg-
ularization function of 5e−4 was applied on all trainable filter weights

Fig. 1. Graph-CNN Architecture. (A) The graph-CNN model used in this study. (B) The coarsening and pooling operations for an input graph in a convolutional layer.
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to prevent over-fitting to the training data.
In our experiments, we evaluated the performance of the spectral

graph-CNN based on 10-fold across-validation. We randomly selected a
predefined percentage (10%) of subjects from each class as the testing
subjects, and the remaining subjects were used as the training subjects
for each cohort data. This ensures that the ratio of the number of
subjects in each class in the testing dataset was similar to that in the
training dataset. All MRI scans of the testing subjects were used to form
the testing set, and the remaining MRI scans were used to form the
training set. The model that performed the best on the validation subset
according to adjusted geometric mean was used to predict the clinical
status of the testing set. We opted to employ an adjusted geometric
mean ( = × − −AGMean SEN SPE (SEN SPE)1

2
2, see the definitions

of sensitivity (SEN) and specificity (SPE) below) as the optimization
criterion to identify the most effective and balanced graph-CNN model
during training. It not only maximizes the accuracy on each of the two
classes but also minimizes the difference between the sensitivity and
specificity, i.e., balanced performance for both the positive and nega-
tive classes. The experiment was repeated for five times, and the
average performance was reported in the result section. We performed
the same training and evaluation procedures for six classifiers, in-
cluding CN vs. AD, CN vs. LMCI, CN vs. EMCI, EMCI vs. LMCI, EMCI vs.
AD, and LMCI vs. AD.

2.4. Generalization from ADNI-2 to ADNI-1 cohort

To evaluate the generalizability of the graph-CNN models to other
datasets of similar Caucasian populations, we fine-tuned the models
that were pre-trained based on the ADNI-2 cohort using the training set
of the ADNI-1 cohort, and then evaluated their performance on the
testing set of the ADNI-1 cohort. We hypothesized that a robust de-
mentia classifier should be able to perform well on the MR scans that
were acquired using different scanners with different field strengths and
scanning protocols; i.e., generalizability across datasets. As the samples in
the ADNI-1 cohort were diagnosed with 3 clinical statuses (i.e., CN, MCI
and AD), we fine-tuned the CN vs. AD, CN vs. LMCI, and LMCI vs. AD
models that performed the best on the testing set of the ADNI-2 cohort
to the ADNI-1 cohort for CN vs. AD, CN vs. MCI, and MCI vs. AD
classifications. As some of the samples in the ADNI-1 cohort were fol-
lowed up in the following ADNI-2 study, we excluded those subjects (as
well as their scans) that were used for training the spectral graph-CNN
models based on the ADNI-2 cohort to avoid performance bias.
Specifically, we utilized 654 CN scans and 965 AD scans of the ADNI-1
cohort for CN vs. AD classification, 661 CN scans and 1210 MCI scans of
the ADNI-1 cohort for CN vs. MCI classification, and 1071 MCI scans
and 944 AD scans of the ADNI-1 cohort for MCI vs. AD classification.6

For the models that were learned directly based on the ADNI-1
training set, all the parameters of the spectral graph-CNN models were
initialized with a truncated normal distribution of zero mean and
standard deviation of 0.1. For fine-tuning the trained models, we froze
the convolutional layers, and updated only the parameters in the fully
connected and the logits layers. We believed that the graph convolu-
tional layers in the trained model are capable of capturing some basic
yet essential dementia-associated patterns from the ADNI-2 cohort, and
these patterns should also are essential to the ADNI-1 cohort, as both
cohort were acquired from the similar populations. It is important to
note that, for a fair comparison, the trained models were fine-tuned
using the same experimental settings as the ‘learn-from-scratch models’,
except with a smaller initial learning rate (1e−4 vs. 1e−3).

2.5. Transfer learning from the ADNI-2 to the Asian cohort

We transferred the spectral graph-CNN models that were trained on
the ADNI-2 dataset to the Asian dataset. Precisely, the models that
performed the best on the testing set of the ADNI-2 cohort were fine-
tuned on the training set of the Asian population. The performance of
the fine-tuned model was then evaluated on the testing set of the Asian
cohort. We hypothesized that the trained model should perform either
better than or, at least, comparable to the learn-from-scratch model but
with less training effort. We tested our hypothesis by comparing the
performance of the trained models with the same models that learned
from scratch for CN vs. Moderate MCI task. For our purpose, the model
that performed the best for CN vs. LMCI task on the ADNI-2 cohort was
fine-tuned for CN vs. Moderate MCI task on the Asian cohort.

To evaluate the transfer performance from the ADNI-2 to the Asian
cohorts, we used the same experimental settings as for the transfer
learning from the ADNI-2 to the ADNI-1 cohorts, as described in the
previous section.

It is well-known that learning or fine-tuning a deep neural network
requires datasets with a relatively large sample size. With a limited
number of AD subjects (n=43) in the Asian cohort, direct training a
spectral graph-CNN or fine-tuning a trained model on the Asian cohort
for AD prediction is unreliable. We thus directly used the previously
fine-tuned CN vs. LMCI model to predict the labels of all 43 AD subjects
in the Asian cohort. We anticipated that the trained model fine-tuned
on the less severe condition (i.e., Moderate MCI) of the Asian cohort
might be able to identify the more severe condition (i.e., AD) from the
same cohort.

2.6. Evaluation measures

Classification accuracy (ACC), sensitivity (SEN), and specificity
(SPE) are often used to quantify the classification performance. They
are defined as follows,

= +
+ + +

ACC TP TN
TP TN FN FP (4)

=
+

SEN TP
TP FN (5)

=
+

SPE TN
TN FP (6)

where TP, TN, FN, and FP denote the true positive, true negative, false
negative and false positive, respectively. The sensitivity and specificity
provide the proportion of correctly identified samples for positive and
negative classes, respectively. However, these measures, including the
predictive accuracy, are sensitive to the ratio of the number of subjects
in the positive and negative classes, and hence may provide inaccurate
and misleading information on the performance of a classifier on an
imbalanced dataset (López et al., 2013). To overcome this issue and to
take into consideration the ratio of the number of subjects in the po-
sitive and negative classes, we used the geometric mean (GMean) and
F1 score (F1), defined as

= × =
+

×
+

GMean SEN SPE TP
TP FN

TN
TN FP (7)

=
+ +

F1 2TP
2TP FP FN (8)

Both metrics attempt to maximize the accuracy of each of the two
classes when the number of subjects in the positive and negative classes
is imbalanced (Barandela et al., 2003).

2.7. Most discriminating brain regions based on cortical thickness

Identifying the most discriminating brain regions based on cortical

5 https://www.tensorflow.org/
6 Different numbers of CN, MCI and AD scans of the ADNI-1 cohort were used

in the classification tasks since subjects were randomly selected from the ADNI-
2 cohort for training the graph-CNN models from scratch.
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thickness could potentially provide insight into anomalies of the brain
morphological geometry in individuals with dementia. To accomplish
this goal, we first grouped vertices on the cortical surface based on their
shortest distance to one of the 76 cortical regions defined in the well-
known Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). We then utilized a “leave-one-region-out” strategy to
evaluate the contribution of cortical thickness within a brain region to
dementia classification. In this strategy, cortical thickness of vertices
within a brain region was first set to zero to remove its morphological
information but preserving the topology of the cortical thickness graph.
This “trimmed” cortical thickness graph was then fed to the spectral
graph-CNN fine-tuned on the ADNI-2 cohort to predict its clinical label.
The same process was repeated for all 76 brain regions to quantify the
contribution of every brain region to dementia classification. The dis-
criminative power or the contribution of a brain region is proportional
to the drop of classification accuracy when cortical thickness of vertices
within that region was excluded during classification. A brain region is
considered the most discriminative if its removal causes the most sig-
nificant drop in classification accuracy. We provided the top ten brain
regions that with the most significant discriminative power (i.e., the
most significant drop of classification accuracy) for the CN vs. AD and
CN vs. LMCI classification tasks based on all available CN, AD, and
LMCI scans from the ADNI-2 cohort.

3. Results

We validated the effectiveness of the proposed framework for the
dementia classification based on the cortical thickness data. To prevent
potential leak of information in 10-fold across-validation, we con-
structed non-overlapping training and testing sets. Specifically, we
randomly selected 10% of subjects from each class as the testing sub-
jects, and the remaining subjects were used as the training subjects. We
then used all MRI scans of the testing subjects to form our testing set
and all MRI scans of the training subjects to form our training set. This
ensured no overlapping in subjects and scans in the training and testing
sets and thus guaranteed unbiased evaluation performance.

In this section, we first provided the classification performance of
the spectral graph-CNN on the ADNI-2 cohort and compared its per-
formance with that of neural networks in Euclidian domain, including a
conventional multilayer network (MLN) and a conventional 1D CNN on
the cortical thickness data and a conventional 2D CNN on T1-weighted
MRI images. We then provided the prediction accuracy for the con-
version of MCI to AD. Then, we provided the transfer classification
performance of the spectral graph-CNN that trained on the ADNI-2
cohort, but fine-tuned and tested on the ADNI-1 and Asian cohorts.

3.1. Classification performance on the ADNI-2 cohort

Table 3 lists the mean classification performance of the spectral
graph-CNN on the ADNI-2 cohort over five repetitions. The classifica-
tion accuracies for CN vs. AD (85.8%) and EMCI vs. AD (79.2%) were
high, given the large sample size, followed with CN vs. LMCI (69.3%),
LMCI vs. AD (65.2%), and EMCI vs. LMCI (60.9%). The classification
accuracy for CN vs. EMCI (51.8%) was the lowest among the six clas-
sifiers and had the largest variability of all measures, suggesting similar
brain morphology between the normal controls and early MCI subjects.
The same pattern was observed when F1 and GMean were employed.

3.1.1. Comparison with multilayer network (MLN)
To assess the potential benefits of incorporating cortical geometry

into the spectral graph-CNN, we compared the spectral graph-CNN with
a conventional multilayer network (MLN) defined in Euclidean domain
that took the cortical thickness vector as input but discarded the un-
derlying geometric information of the cortical graph. We designed the
MLN with four hidden fully connected layers that respectively had
[1024, 512, 256, 128] hidden nodes and a bias node for each layer. The

network parameters were trained using a stochastic gradient descent
approach with a mini-batch size of 32, an initial learning rate of 1e−3, a
learning rate decay of 0.05 after every 20 epochs, and a momentum of
0.9, the same as those used in training the graph-CNN. However, a
larger maximum training epoch of 128 was used to obtain a good va-
lidation performance.

The pair-wise t-test revealed that the spectral graph-CNN out-
performed the MLN in three classifiers, including CN vs. AD, CN vs.
LMCI, and EMCI vs. LMCI, in terms of classification accuracy and
GMean (Table 3; all p-values < 0.05). The spectral graph-CNN sig-
nificantly improved the classification accuracies by 4.0% (CN vs. AD),
4.7% (CN vs. LMCI), and 6.1% (EMCI vs. LMCI). The spectral graph-
CNN also performed marginally better than the MLN for EMCI vs. AD
(p-value < 0.06 for classification accuracy and p-value≈0.08 for F1
and GMean). Comparable results were shown for CN vs. EMCI and LMCI
vs. AD. Due to bias to the ratio of the number of subjects in each class,
the sensitivity and specificity showed complementary findings to each
other.

3.1.2. Comparison with 1D CNN
To illustrate the importance of pooling meaningful neighboring

nodes on the cortical graph in pooling operation, we compared the
spectral graph-CNN with a conventional 1D CNN that took the cortical
thickness vector as input and discarded the spatial correlation of nodes
in the cortical graph. The architecture of the 1D CNN was the same as
the spectral graph-CNN and with the same number of network para-
meters except replacing the graph-based pooling process that considers
the node-node spatial correlation with a simple grid-based pooling
process. The 1D CNN was trained using the same setting as that used for
training the spectral graph-CNN but with a larger maximum training
epoch of 128.

Similar to the MLN, the spectral graph-CNN outperformed the 1D
CNN in three classifiers, including CN vs. AD, CN vs. LMCI, and EMCI
vs. LMCI, in terms of classification accuracy and GMean (Table 3; all p-
values < 0.05). The spectral graph-CNN significantly improved the
classification accuracies by 4.1% (CN vs. AD), 6.2% (CN vs. LMCI), and
1.8% (EMCI vs. LMCI). The spectral graph-CNN also performed mar-
ginally better than the 1D CNN for EMCI vs. AD (p-values ≈0.08 for
classification accuracy, F1 and GMean). The 1D CNN achieved com-
parable results compared to the spectral graph-CNN for CN vs. EMCI
and LMCI vs. AD.

3.1.3. Comparison with 2D CNN
To compare the performance of the spectral graph-CNN with the

popular 2D CNN defined in Euclidean domain, we implemented an
architecture widely used in computer vision, i.e., the ResNet (He et al.,
2016) of 50 layers pre-trained7 using ImageNet dataset.8 It took the
average intensity values across all 2D slides in the axial, coronal, and
sagittal views and fed them to the three channels of the ResNet-50
model. We replaced the output layer of the ResNet-50 model, which
initially contained 1000 nodes, with a layer of 2 nodes for binary
classification (e.g., CN vs. AD). We fine-tuned all layers with a relatively
small initial learning rate of 1e−4 and a mini-batch size of 64 for 100
epochs because the representation of the ResNet-50 model learned
using natural image dataset might not characterize well the morpho-
logical patterns of the brain.

The spectral graph-CNN outperformed the 2D CNN in four classi-
fiers, including CN vs. AD, CN vs. LMCI, EMCI vs. AD and LMCI vs. AD,
in terms of classification accuracy and GMean (Table 3; all p-va-
lues< .05). The spectral graph-CNN significantly improved the classi-
fication accuracies by 7.4% (CN vs. AD), 9.9% (CN vs. LMCI), 12.8%
(EMCI vs. AD) and 2.7% (LMCI vs. AD). The classification accuracy of

7 https://github.com/tensorflow/models
8 http://www.image-net.org/
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the 2D CNN for CN vs. EMCI was slightly greater than the spectral
graph-CNN but not statistically significant. Due to bias to the ratio of
the number of subjects in each class, the sensitivity and specificity
showed complementary findings to each other. Moreover, the spectral
graph-CNN showed a balanced performance for the classifiers with
imbalanced datasets, i.e., CN vs. AD and CN vs. LMCI, according to
sensitivity and specificity.

3.1.4. Prediction of MCI to AD Conversion
To assess its potential application for predicting the conversion of

MCI to AD, we employed the spectral graph-CNN to predict the con-
version of MCI subjects to AD based on their cortical thickness graphs at
least several months prior to the conversion. Specifically, prediction of
MCI to AD conversion was performed only on the cortical thickness
graphs of the converted MCI subjects when they were still at EMCI or
LMCI conditions. In the ADNI-2 cohort, 24 EMCI and 50 LMCI subjects
converted to AD at the followed-up visits. We used their baseline scans
and predicted the MCI conversation to AD. The spectral graph-CNN,
trained for CN vs. AD task, corrected predicted the conversion of 18/24
EMCI (75%) and 46/50 (92%) LMCI to AD.

3.2. Transfer learning of the graph-CNN to the ADNI-1 cohort

Figs. 2, 3 and 4 provided the transfer classification performance of
the spectral graph-CNN models for CN vs. AD, CN vs. MCI and MCI vs.
AD tasks, respectively. These models were trained on the ADNI-2 cohort
but tested on the ADNI-1 cohort. The fine-tuning trained models were
robustly generalized to the ADNI-1 cohort by achieving good transfer
performance for CN vs. AD and MCI vs. AD tasks. For these two tasks,
the fine-tuning trained models, in general, achieved higher and more
consistent performance than the ‘learn-from-scratch’ model in terms of
sensitivity, F1 score and geometric mean with respect to the number of
fine-tuning epoch. Specifically, the CN vs. AD accuracy by the fine-
tuning trained graph-CNN model on the ADNI-1 cohort was consistently
above 88.0%, since 40 epochs with the best performance (Fig. 2,
ACC=89.4%, SEN=91.4%, SPE=86.5%, F1= 91.1%,
GMean= 88.9%) was achieved at 100 epochs. The fine-tuning trained

models for MCI vs. AD performed better than the ‘learn-from-scratch’
models in all four evaluation measures for fine-tuning epoch smaller
than 80. The best MCI vs. AD performance (Fig. 4, ACC=65.2%,
SEN=70.6%, SPE=60.8%, F1=64.8%, GMean=65.5%) by the
fine-tuning trained graph-CNN model on the ADNI-1 cohort was
achieved at 20 epochs and was compatible to the LMCI vs. AD perfor-
mance on the ADNI-2 cohort (Table 4, ACC=65.2%, SEN=62.6%,
SPE=68.0%, F1= 64.1%, GMean=65.3%). On the other hand, the
CN vs. MCI performance by the fine-tuning trained models were better
than the learn-from-scratch models in specificity, F1 score and geo-
metric mean only for fine-tuning epoch smaller than 60. The best CN vs.
MCI performance (Fig. 3, ACC=65.0%, SEN=61.9%, SPE=70.1%,
F1= 68.8%, GMean= 65.9%) by the fine-tuning trained spectral
graph-CNN model was achieved at 40 epochs, but the performance
gradually deteriorated when the fine-tuning epoch was increased.

3.3. Transfer learning of the graph-CNN to the Asian cohort

Fig. 5 shows the classification performance of the graph-CNN model
that was directly trained based on the Asian cohort (learn-from-scratch
model) and was trained based on the ADNI-2 cohort (trained CN vs.
LMCI model) but tested on the Asian cohort for CN vs. Moderate MCI
task. The trained model consistently achieved higher and more con-
sistent performance than the learn-from-scratch model in terms of
sensitivity, F1 score and geometric mean with respect to the number of
fine-tuning epoch. Moreover, the best CN vs. Moderate MCI perfor-
mance (Fig. 5, ACC=71.1%, SEN=73.7%, SPE=69.2%,
F1= 68.3%, GMean=71.4%) by this trained graph-CNN model on the
Asian cohort was achieved at 60 epochs, and such performance was
consistently preserved with more epochs. This transfer classification
performance is comparable to the performance of the graph-CNN on the
ADNI-2 cohort (Table 3; CN vs. LMCI: 69.3%). We then directly applied
this trained model (fine-tuned with 60 epochs) to predict the labels of
43 AD subjects of the Asian cohort and achieved a very promising
prediction accuracy of 88.4% (38/43 AD subjects). The AD prediction
accuracy was consistently higher than 90% when the trained model was
fine-tuned with more epochs.

Table 3
Classification performance of the graph CNN, multilayer network (MLN), 1D and 2D convolutional neural networks (CNN) on the ADNI-2 dataset.

Model Task Sample ACC (%) SEN (%) SPE (%) F1 (%) GMean (%)

CN vs. AD 960/592 85.8 ± 0.8 83.5 ± 3.2 87.5 ± 2.8 82.9 ± 0.9 85.4 ± 0.8
Graph CN vs. LMCI 960/638 69.3 ± 2.2 65.6 ± 7.6 72.0 ± 5.4 64.2 ± 4.3 68.5 ± 3.0
CNN CN vs. EMCI 960/899 51.8 ± 1.2 55.3 ± 5.1 48.6 ± 6.4 52.6 ± 2.1 53.5 ± 4.2

EMCI vs. LMCI 899/638 60.9 ± 2.2 52.5 ± 8.8 67.8 ± 9.8 53.5 ± 3.5 59.1 ± 1.4
EMCI vs. AD 899/592 79.2 ± 2.6 70.4 ± 4.7 85.8 ± 4.7 74.4 ± 3.3 77.6 ± 2.7
LMCI vs. AD 638/592 65.2 ± 1.6 62.6 ± 5.2 68.0 ± 6.6 64.1 ± 2.2 65.3 ± 1.4
CN vs. AD 960/592 81.8 ± 1.0a 78.7 ± 4.0a 84.0 ± 3.8 78.3 ± 1.1a 81.6 ± 1.6a

CN vs. LMCI 960/638 64.6 ± 3.2a 55.7 ± 3.2a 71.0 ± 5.6 56.9 ± 3.0a 62.7 ± 2.7a

MLN CN vs. EMCI 960/899 55.3 ± 3.1 58.7 ± 5.9 52.2 ± 7.0 56.2 ± 3.3 55.0 ± 3.2
EMCI vs. LMCI 899/638 54.8 ± 6.9a 54.5 ± 10.9 55.0 ± 5.8a 50.7 ± 8.5 54.6 ± 7.3a

EMCI vs. AD 899/592 76.4 ± 1.2 68.9 ± 3.5 82.2 ± 0.9 71.3 ± 2.0 75.1 ± 1.6
LMCI vs. AD 638/592 61.4 ± 5.6 63.1 ± 4.7 59.8 ± 8.2 61.9 ± 4.7 61.3 ± 5.7
CN vs. AD 960/592 81.7 ± 1.6a 80.0 ± 5.3 83.0 ± 3.5 78.3 ± 2.3a 81.4 ± 1.9a

CN vs. LMCI 960/638 63.1 ± 4.3a 53.6 ± 7.8a 69.9 ± 4.8 54.6 ± 6.4a 61.0 ± 5.1a

1D CN vs. EMCI 960/899 51.4 ± 2.5 52.6 ± 6.3 50.3 ± 5.7 51.3 ± 3.6 51.3 ± 2.2
CNN EMCI vs. LMCI 899/638 59.1 ± 4.0a 55.0 ± 6.4 62.2 ± 8.9 53.8 ± 3.3 58.2 ± 3.2a

EMCI vs. AD 899/592 74.1 ± 3.5 64.9 ± 7.3 81.3 ± 6.1 68.0 ± 4.6 72.1 ± 3.6
LMCI vs. AD 638/592 63.9 ± 3.6 56.7 ± 9.9a 72.5 ± 7.7 59.5 ± 4.5 63.7 ± 4.2
CN vs. AD 960/592 78.4 ± 2.8a 57.4 ± 7.3a 86.9 ± 3.0 60.4 ± 5.5a 70.5 ± 4.5a

CN vs. LMCI 960/638 59.4 ± 2.5a 51.8 ± 4.4a 64.9 ± 2.5a 51.6 ± 3.6a 57.9 ± 2.9a

2D CN vs. EMCI 960/899 52.3 ± 3.1 49.4 ± 5.4 54.6 ± 7.9 50.2 ± 3.2 51.9 ± 3.1
CNN EMCI vs. LMCI 899/638 60.5 ± 2.8 45.9 ± 6.2a 71.7 ± 3.6 50.0 ± 4.8a 57.2 ± 3.7

EMCI vs. AD 899/592 66.4 ± 4.2a 59.4 ± 4.7a 71.6 ± 7.5a 60.3 ± 3.9a 65.1 ± 3.8a

LMCI vs. AD 638/592 62.5 ± 3.3a 69.3 ± 7.5 55.9 ± 4.6a 64.6 ± 4.2 62.1 ± 3.0a

Abbreviations. CN: Control normal; AD: Alzheimer's disease; MCI: Mild cognitive impairment; EMCI: Early MCI; LMCI: Late MCI; ACC: Accuracy; SEN: Sensitivity;
SPE: Specificity; F1: F1 score; GMean: Geometric mean. Bold indicates a significant improvement of graph-CNN in prediction accuracy.

a
indicates the graph CNN model statistically outperformed MLN, 1D or 2D CNN at p < 0.05.
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Fig. 2. Classification performance of the graph-CNN model directly trained based on the ADNI-1 cohort (Scratch) and trained based on the ADNI-2 cohort (Pre-
trained) with respect to the number of training epoch for the CN vs. AD classification.

Fig. 3. Classification performance of the graph-CNN model directly trained based on the ADNI-1 cohort (Scratch) and trained based on the ADNI-2 cohort (Pre-
trained) with respect to the number of training epoch for the CN vs. MCI classification.
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3.4. The most discriminating brain regions

Fig. 6 graphically illustrates the top ten most discriminating brain
regions for the AD and LMCI classifications. The most discriminating
regions for AD included the left parahippocampus, the left anterior and
middle cingulate gyri, the right superior temporal gyrus, the right
Heschl's gyrus, left precuneus, the right postcentral gyrus, the left Ro-
landic operculum, the right paracentral lobule, and the left lingual
gyrus (Fig. 6A). The AD classification accuracies of these regions were
between 60–66% (Table S2 in the Supplementary), implying significant
drops of performance from that used all brain regions (86%). On the
other hand, the most discriminating regions for LMCI were similar to
those for AD, mainly including the bilateral parahippocampus, the
middle cingulate gyri, the left middle temporal gyrus, the bilateral su-
perior temporal gyri, the bilateral Heschl's gyri, and the left olfactory
(Fig. 6B). The LMCI classification accuracies of these regions were be-
tween 50–52% (Table S2 in the Supplementary), implying significant
drops of performance from that used all brain regions (69%). Consistent
with existing literature (Chan et al., 2001; Dickerson et al., 2009;
Eskildsen et al., 2015; Fjell et al., 2014; Jack et al., 1998; Lerch et al.,

2008; Singh et al., 2006; Visser et al., 2002), the spectral graph-CNN
identified the parahippocampus as one of the major cortical regions
distinguishing AD and LMCI from CN.

4. Discussion

In this present study, we endeavored to examine whether classifiers
trained on a specific population are transferable to other populations
for the AD/MCI diagnosis. Our experimental results demonstrated that
the proposed spectral graph-CNN based framework in general per-
formed significantly better than the Euclidean-domain based MLN and
1D CNN for the MCI and AD classification. Moreover, our framework
also achieved a promising MCI to AD conversion prediction perfor-
mance, which is vital for the early diagnosis of AD at its prodromal
stage. More importantly, our results demonstrated the feasibility of
applying the classifiers built on the ADNI-2 dataset to the Asian dataset.
Such finding is crucial to mitigate the burden of building a reliable
population-specific classifier from scratch.

We demonstrated that the proposed framework generally out-
performed those Euclidean-domain based neural network classifiers,
including MLN and 1D CNN with cortical thickness as the input and the
2D CNN with T1-weighted MR image as the input (Table 3). The im-
provement in the performance of the spectral graph-CNN over the MLN
could be attributed to its preservation of the underlying cortical geo-
metry (as illustrated in Fig. 1). Moreover, compared to the fully con-
nected MLN, the spectral graph-CNN has fewer learnable parameters
(i.e., filter weights). A small number of filters (i.e., 8, 16 and 32 filters
in the first, second and third convolutional layers, respectively, and
each filter has only 3 parameters) that shared over all locations on the
cortical graph were used in the study, which makes it more suitable
when the training sample size is small.

On the other hand, the classification improvement of the spectral

Fig. 4. Classification performance of the graph-CNN model directly trained based on the ADNI-1 cohort (Scratch) and trained based on the ADNI-2 cohort (Pre-
trained) with respect to the number of training epoch for the MCI vs. AD classification.

Table 4
Classification performance of the spectral graph-CNN models for the ADNI-1
cohort.

Task Samples ACC (%) SEN (%) SPE (%) F1 (%) GMean (%)

CN vs. AD 654/965 81.0 85.5 74.5 84.3 79.8
CN vs. MCI 661/1210 67.6 71.3 60.7 74.0 65.8
MCI vs. AD 1071/944 65.4 77.5 54.6 67.7 65.1

Abbreviations. CN: Control normal; AD: Alzheimer's disease; MCI: Mild cogni-
tive impairment; ACC: Accuracy; SEN: Sensitivity; SPE: Specificity; F1: F1 score;
GMean: Geometric mean.

C.-Y. Wee, et al. NeuroImage: Clinical 23 (2019) 101929

9



graph-CNN over the conventional 1D CNN could be attributed to
meaningful convolution and pooling operations among the “locally-
connected” vertices on the cortical graph (see illustration in Fig. 1).
This result demonstrated the importance of identifying locally-con-
nected neighboring vertices on a graph for convolution and pooling
operations that are analogous to those on a grid-based image in com-
puter vision (Niepert et al., 2016). Also, our finding of better classifi-
cation performance by the spectral graph-CNN over the 2D CNN might
due to the finer morphological information provided by the cortical
thickness on the cortical graph compared to the coarser pixel-based
image intensity. Nevertheless, this experiment was limited to the CNN
where the 2D images of the three principal axes were used in order to
employ the trained ResNet-50 model that was specified with three
channels of 2D images as inputs. The performance of the 2D CNN model
may be improved when incorporating more 2D MRI slices may contain
specific statistical property of the sample (Xu et al., 2013).

Our proposed framework further achieved a promising MCI to AD
conversion prediction performance (75% and 92% for EMCI and LMCI,
respectively), which is critical for early diagnosis of AD at its prodromal
stage. These high prediction accuracies could be attributed to the
spectral graph-CNN's ability to extract dementia-associated subtle
changes of brain morphology from the cortical graph. The conversion
accuracy for EMCI scans was much lower than that for LMCI scans
possibly due to less obvious brain morphological changes at the be-
ginning stage (i.e., EMCI) compared to at the later stage (i.e., LMCI) of
the disease (Klöppel et al., 2012; Ledig et al., 2018). Identifying MCI
subjects with a high risk of developing AD is crucial as intervention or
treatment could be applied at the earliest stage to slow down the pro-
gression of disease (Eshkoor et al., 2015).

In the past few years, researchers employed deep learning ap-
proaches for predicting MCI and AD, which was mainly based on the
ADNI-1 dataset (see review in (Basaia et al., 2019)). There was one

recent study that performed CNN on the ADNI-2 dataset (Korolev et al.,
2017). This study incorporated two regular CNN models, denoted as
VoxCNN and VoxRes, and evaluated their performance on a small
subset of 61 CN, 50 AD, 43 LMCI and 77 EMCI subjects from the ADNI-2
dataset (Korolev et al., 2017). The VoxCNN was a 17-layers regular 3D
CNN built upon the VGG architecture (Simonyan and Zisserman, 2014),
while the VoxRes was a 21-layers regular 3D CNN built upon the ResNet
architecture (He et al., 2016). Both VoxCNN and VoxRes were directly
applied on the downsampled unprocessed MRI scans, i.e., no intensity
normalization, no skull-stripping, no segmentation, etc. Our spectral
graph-CNN on the cortical thickness outperformed these two voxel-
based 3D CNN models in all classifiers in terms of classification accu-
racy, except for CN vs. EMCI where all compared classifiers achieved
just above chance performance (see (Korolev et al., 2017)). Our spectral
graph-CNN model showed at least 4.9% improvement on classification
accuracy for classifiers of CN vs. AD, CN vs. LMCI, EMCI vs. LMCI, and
EMCI vs. AD. The robustness of our spectral graph-CNN could be at-
tributed to the utilization of: (1) finer cortical morphological features
compared to downsampled coarser pixel-based image intensity, (2) pre-
processed good quality noise-reduced MRI scans compared to un-
processed noisy original scans, and (3) significantly larger sample size
(3089 vs. 231) to learn compact latent patterns from high dimensional
neuroimaging data. Furthermore, our spectral graph-CNN achieved
more consistent performances over multiple repetitions for all six
classifiers as shown by much smaller standard deviations in classifica-
tion accuracy. Our results shed new light on the importance of cortical
geometry in deep neural network for improving classification accuracy.

The spectral graph-CNN models that were trained based on the
ADNI-2 cohort demonstrated better classification performance on the
ADNI-1 cohort after fine-tuning as compared to the models that were
learned directly based on the ADNI-1 cohort (‘learn-from-scratch’
models) when a small number of training/fine-tuning epochs were

Fig. 5. Classification performance of the graph-CNN model directly trained based on the Asian cohort (Scratch) and trained based on the ADNI-2 cohort (Pre-trained)
with respect to the number of training epoch for the CN vs. Moderate MCI classification.
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Fig. 6. Top 10 cortical regions for most discriminating (A) AD and (B) LMCI from CN.
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used. This performance gain via fine-tuning may suggest that our pro-
posed framework is capable of capturing morphological changes of the
brain that are essential to AD/MCI regardless the populations. Our re-
sults further demonstrated the applicability of the proposed framework
to a small dataset of another population. In neural network, transferring
knowledge or features learned from one task/dataset to another is often
achieved by updating only the last few layers of a pre-trained network
(Yosinski et al., 2014). As the base and target tasks (e.g., MCI and AD
classifications) were the same, we ensured that the dementia-associated
knowledge learned from the Caucasian population (i.e., ADNI-2 da-
taset) could be directly transferred to the Asian population by freezing
the convolutional layers during the fine-tuning process. The graph
convolutional layers play a feature detector role to learn dementia-as-
sociated knowledge of the whole brain morphology from the Caucasian
population, while the fully connected and logit layers form a reasoning
module for making an inference of clinical diagnosis based on the
learned knowledge for the Asian population. Our findings showed that
the trained model consistently achieved better or comparable perfor-
mance than the learn-from-scratch model (Fig. 5), suggesting that both
the Caucasian and Asian populations shared neural morphological
patterns for AD/MCI. Of note, the pre-trained model fine-tuned using
Moderate MCI subjects of the Asian population could accurately iden-
tify the AD subjects of the same population, implying that relevant
knowledge of the target population, even with the less severe condition,
is able to efficiently improve the AD prediction. Taking together, our
results demonstrated the feasibility of applying the spectral graph-CNN
trained based on the ADNI-2 cohort to other population. Such finding is
crucial evidence for the generalization of existing knowledge across
populations for early diagnosis and prognosis of AD. This sheds light on
learning of cross-datasets and cross-populations for image-based brain
disease diagnosis. This is in line with the conclusion drawn from pre-
vious medical image-based computer-aided detection studies that
transfer learning could be a useful technique to mitigate the issue due to
a small well-annotated dataset in the medical imaging domain (Li et al.,
2014; Shin et al., 2016).

Our spectral graph CNN-based framework achieved decent and
comparable performance when compared to state-of-the-art methods
for the CN vs. AD classification based on the ADNI-1 or ADNI-2 dataset
(Table 5). Our spectral graph-CNN achieved accuracies of 89.4% and
85.8% for the ADNI-1 and ADNI-2 cohort respectively, which are better
than the methods with ROI-based cortical thickness as features
(< 85%) (Eskildsen et al., 2013; Wee et al., 2012). Compared to the
other methods listed in Table 5, the spectral graph-CNN had compar-
able performance. However, it performed slightly lower than that in
(Aderghal et al., 2017; Liu et al., 2012; Suk et al., 2017), perhaps

because of differences in the sample size. Nevertheless, the published
results (Table 5) were based on the relatively balanced samples be-
tween CN and AD, while our study incorporated the full sample of the
ADNI-1 and ADNI-2 cohorts and the imbalanced samples. It has been
indicated that classification performance decreases when the sample
size increases (Mendelson et al., 2017). However, a classifier built based
on a large sample is relatively robust. Our study showed the robustness
of the spectral graph-CNN-based framework on the imbalanced samples
in AD and CN as both sensitivity and specificity rates were relatively
similar.

In the classification of AD and LMCI, the majority of the most dis-
criminating regions were located at the temporal lobe (the temporal
and Heschl's gyri), the parahippocampus, and the cingulate gyri. Our
findings are in accordance with previous studies on both AD and MCI
populations that reported significant atrophy within these brain regions
(Chan et al., 2001; Dickerson et al., 2009; Eskildsen et al., 2015; Fjell
et al., 2014; Jack et al., 1998; Lerch et al., 2008; Singh et al., 2006;
Visser et al., 2002). The medial temporal lobe (MTL), associated with
memory loss (Gold and Budson, 2008; Jahn, 2013; Petersen et al., 1994;
Squire et al., 2007), was affected during the course of the disease. The
parahippocampal atrophy, identified as a biomarker at the early phase
of AD (Echávarri et al., 2011), supports our finding on the most dis-
criminating power of the bilateral parahippocampal gyrus for LMCI.
Moreover, cortical thicknesses of the superior temporal gyrus and the
parahippocampus was also found effective in predicting the conversion
of MCI to AD (Eskildsen et al., 2015). In addition to significant cortical
thinning in the parahippocampus and the temporal gyri, AD patients
also showed thinning in the anterior and posterior cingulate gyri (Lerch
et al., 2005). An existing longitudinal study suggested a significant
correlation between cortical thinning in the parahippocampus and the
anterior cingulate gyrus with the progression of AD based on their
thinning rate from the mild to severe stages of the disease (Lerch et al.,
2005). In a volumetric analysis, smaller cortical volumes were observed
in the anterior and posterior cingulate gyri in AD compared to healthy
controls (Jones et al., 2006).

The present study posed several limitations. First, the ADNI project
is a continuous longitudinal study with most of the individuals have
been followed up for years and scanned for multiple times. In this study,
we, however, treated each scan as an individual sample to increase the
number of training sample. Longitudinal brain morphological changes
have been proven as a useful neuroimaging biomarker not only for AD/
MCI identification (Li et al., 2012) but also potentially for predicting
conversion and time-to-conversion of an individual to other clinical
conditions (Li et al., 2012; Thung et al., 2018). We believe that in-
corporating the longitudinal morphological pattern would be beneficial

Table 5
Classification accuracy between Alzheimer's disease (AD) patients and normal controls from the ADNI cohorts.

Study Feature type Classifier Samples (AD/CN) ACC (%) SEN (%) SPE (%)

(Coupé et al., 2012) HP/EC volume QDA 60/60 90.0 88.0 92.0
(Schmitter et al., 2015) 10 volumes SVM 221/276 – 86.0 91.0
(Zhang and Shen, 2012) GM volume SVM 45/50 84.8 – –
(Suk et al., 2015) GM volume SAE+ SVM 51/52 88.2 – –
(Suk et al., 2017) GM volume JLLR + DeepESM 186/226 91.0 92.7 89.9
(Luo et al., 2017) Whole brain (patch-based) 2D CNN 49/30 – 69.0 98.0
(Liu et al., 2012) GM voxels Ensemble SRC 198/229 90.8 86.3 94.8
(Casanova et al., 2013) GM voxels RLR 171/188 87.1 84.3 88.9
(Aderghal et al., 2017) Bilateral HP 2D CNN 188/228 91.4 93.8 89.1
(Wee et al., 2012) ROI-based CT SVM 200/198 84.7 82.8 86.5
(Eskildsen et al., 2013) ROI-based CT LDA 194/226 84.5 79.4 88.9
(Cho et al., 2012) Vertex-based CT PCA+LDA 128/160 – 82.0 93.0
Proposed CT graph Graph-CNN 592/960 85.8 83.5 87.5

Abbreviations. GM: Gray Matter; SVM: Support Vector Machine; CT: Cortical Thickness; ROI: Region-Of-Interest; PCA: Principal Component Analysis; LDA: Linear
Discriminant Analysis; ROI: Region-Of-Interest; QDA: Quadratic Discriminant Analysis; SRC: Sparse Regression Classifier; RLR: Regularized Linear Regression; JLLR:
Joint Linear and Logistic Regression; SAE: Stacked Auto-Encoder: DeepESM: Deep Ensemble Sparse Model; HP: Hippocampus; EC: Entorhinal Cortex; ACC: Accuracy;
SEN: Sensitivity; SPE: Specificity.
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to the proposed cortical graph based CNN model to improve the AD/
MCI diagnosis and prognosis accuracy. Second, the most discriminating
regions for AD and LMCI in this study were determined based on a
leave-one-ROI approach, in which only the contribution of a brain re-
gion was quantified at each time. Although the most discriminating
regions have been consistently reported to be associated with the AD
pathology, the leave-one-ROI approach may be less comprehensive in
reflecting the contribution of a group of the brain regions as the nature
of deep neural network is to characterize multivariate features and their
interactions (Du et al., 2018; Vieira et al., 2017). In addition, we
identified discriminating brain regions of the spectral graph-CNN
classifiers based on the AAL atlas. Other atlases can also be used.
However, our approach may not work to identify discriminating regions
at a vertex level. This could be due to a limited contribution of each
vertex to the discriminating power of the disease classes. Furthermore,
we noted that the classification accuracy of MCI/AD in existing litera-
ture based on multi-modal imaging data (e.g., (Yu et al., 2016; Zhang
and Shen, 2012; Zhang et al., 2011; Zhu et al., 2014; Zhu et al., 2017))
may be higher than that provided by this study based only on cortical
thickness. Our study could not incorporate multi-modal imaging data
partly because other imaging modalities, such as PET, DTI, and fMRI,
were collected in a subset of the subjects in ADNI. This restricts the
robustness of the training of the spectral graph-CNN. Nevertheless, our
framework can be extended to a multi-channel spectral graph-CNN to
incorporate multi-modal imaging data represented on the cortical sur-
face.

5. Conclusions

In this paper, we employed the spectral graph-CNN based frame-
work that utilized cortical thickness and its underlying geometric in-
formation for AD and MCI diagnosis and MCI-to-AD conversion. We
evaluated the effectiveness of our framework using 3089 MRI scans
from the publicly available ADNI-2 cohort and demonstrated state-of-
the-art dementia classification performance. The spectral graph-CNN on
cortical thickness outperformed the voxel-based CNN models.
Furthermore, our spectral graph-CNN was able to achieve a relatively
balanced prediction for the two classes with the imbalanced sample
sizes. We achieved this via training mini-batch with balanced samples
in two classes and oversampling of the class with a small sample size,
and determining the optimal network parameters based on the adjusted
geometric mean that emphasizes balanced performance for both the
majority and minority classes. The spectral graph-CNN also achieved
high prediction accuracy for the conversion of MCI to AD. When
transferring the spectral graph-CNN model trained on the ADNI-2 co-
hort to the Asian cohort, the spectral graph-CNN consistently achieved
better classification performance compared to the same model that
trained directly on the Asian cohort. Furthermore, the trained spectral
graph-CNN model that fine-tuned on MCI subjects was able to accu-
rately identify AD subjects from the Asia cohort, suggesting the feasi-
bility of applying the existing robust classifiers for early diagnosis and
prognosis of MCI and AD of new populations. The spectral graph-CNN
model proposed in this study is relatively general and can be applied to
other brain imaging data for the early diagnosis of brain disorders.
Further improvement can be obtained when integrating the spectral
graph-CNN on cortical thickness with other classification approaches on
multi-modal brain image data.
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