ChemSusChem

Supporting Information

Ionogel-Based Electrodes for Non-Flammable High-Temperature Operating Electrochemical Double-Layer Capacitors

Agnese Gamberini, Tobias Burton, Alix Ladam, Ahmad Bagheri, Matteo Abruzzese, Hossein Beydaghi, Valentina Mastronardi, Elena Calcagno, Samaneh Vaez, Alberto Morenghi, Teresa Gatti, Anais Falgayrat, Francesco Bonaccorso,* Sebastien Fantini,* and Sebastiano Bellani*

Supporting Information

Ionogel-Based Electrodes for Non-Flammable High-Temperature Operating Electrochemical Double-Layer Capacitors

Agnese Gamberini^{al}, Tobias Burton^{bl}, Alix Ladam^b, Ahmad Bagheri^a, Matteo Abruzzese^a, Hossein Beydaghi^a, Valentina Mastronardi^a, Elena Calcagno^a, Samaneh Vaez^{a,c}, Alberto Morenghi^a, Teresa Gatti^c, Anais Falgayrat^b, Francesco Bonaccorso^{a,d*}, Sebastien Fantini^{b,*} and Sebastiano Bellani^{a,*}

^a BeDimensional S.p.A., via Lungotorrente Secca 30R, Genova, 16163 Italy.

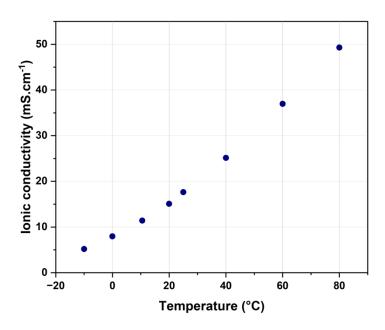
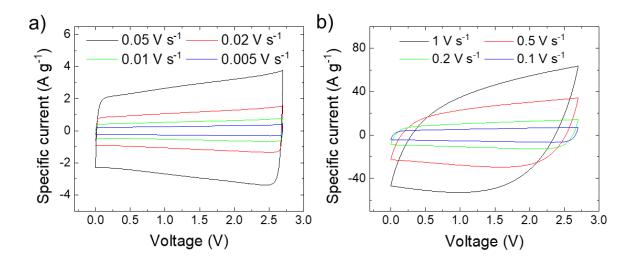
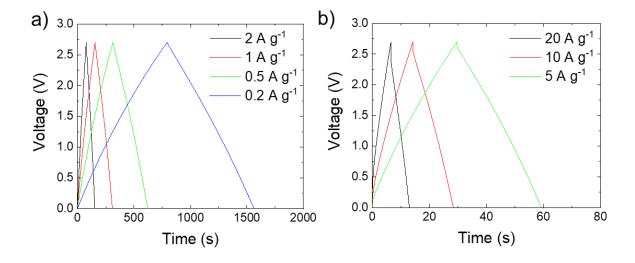
^b Solvionic, 11 Chemin des Silos, Toulouse, 31100 France.

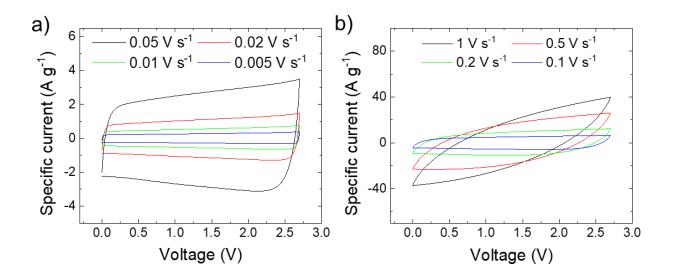
^c Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

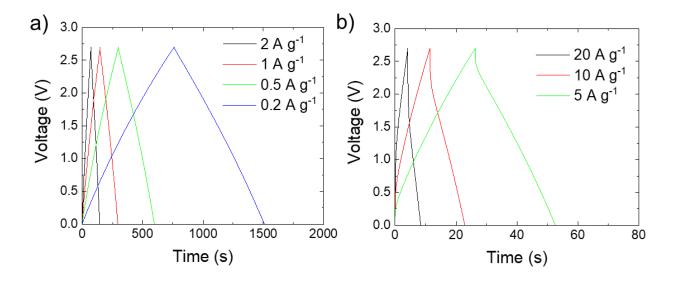
^d Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, Genova, 16163 Italy.

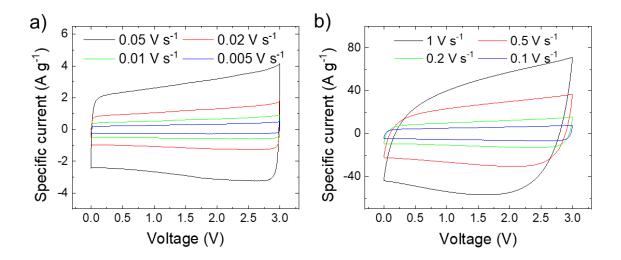
^t These authors equally contributed.

Corresponding Author: bellanisebastiano@gmail.com; f.bonaccorso@bedimensional.it; sfantini@solvionic.com;


Figure S1. EMIFSI conductivity as a function of the temperature.


Figure S2. CV curves measured for ionogel-type EDLCs at various voltage scan rates: a) from 0.005 to 0.05 V s⁻¹; b) from 0.1 to 1 V s⁻¹ ($V_r = 2.7 \text{ V}$; electrolyte: EMIFSI).


Figure S3. GCD profiles measured for ionogel-type EDLCs at various specific currents: a) from 0.2 to 2 A g⁻¹; b) from 5 to 10 A g⁻¹ ($V_r = 2.7 \text{ V}$; electrolyte: EMIFSI).

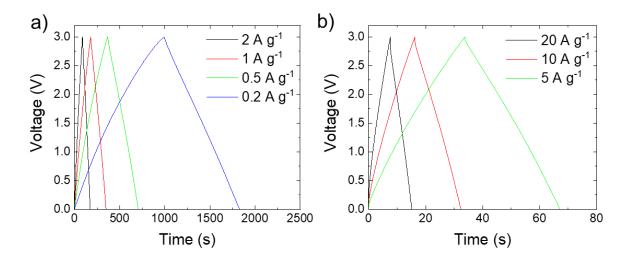

Figure S4. CV curves measured for conventional EDLCs at various voltage scan rates: a) from 0.005 to 0.05 V s⁻¹; b) from 0.1 to 1 V s⁻¹ ($V_r = 2.7 \text{ V}$; electrolyte: EMIFSI).

Figure S5. GCD profiles measured for ionogel-type EDLCs at various specific currents: a) from 0.2 to 2 A g⁻¹; b) from 5 to 10 A g⁻¹ ($V_r = 2.7 \text{ V}$; electrolyte: EMIFSI).

Figure S6. CV curves measured for ionogel-type EDLCs at various voltage scan rates: a) from 0.005 to 0.05 V s⁻¹; b) from 0.1 to 1 V s⁻¹ ($V_r = 3.0 \text{ V}$; electrolyte: EMIFSI).

Figure S7. GCD profiles measured for ionogel-type EDLCs at various specific currents: a) from 0.2 to 2 A g^{-1} ; b) from 5 to 10 A g^{-1} ($V_r = 3.0 \text{ V}$; electrolyte: EMIFSI).

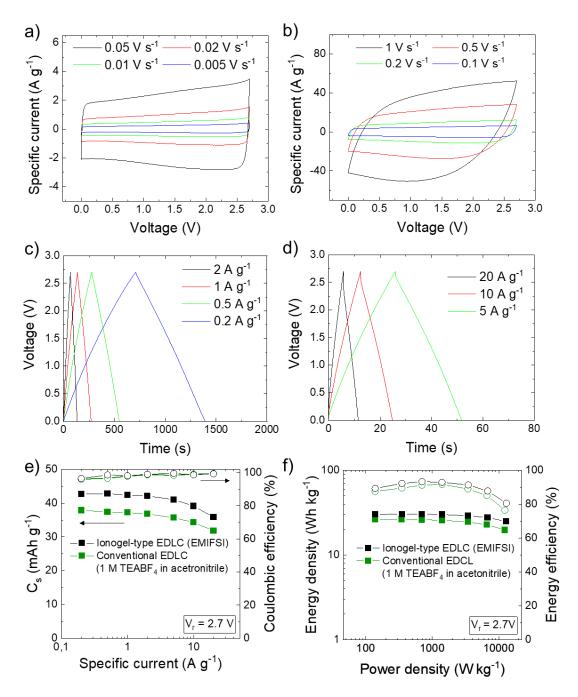
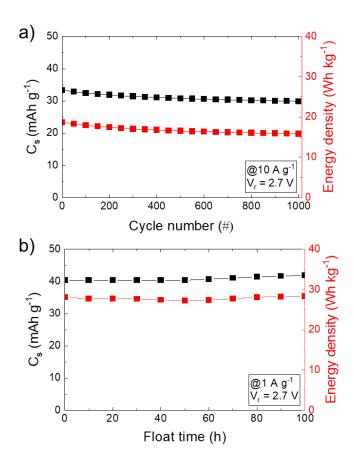
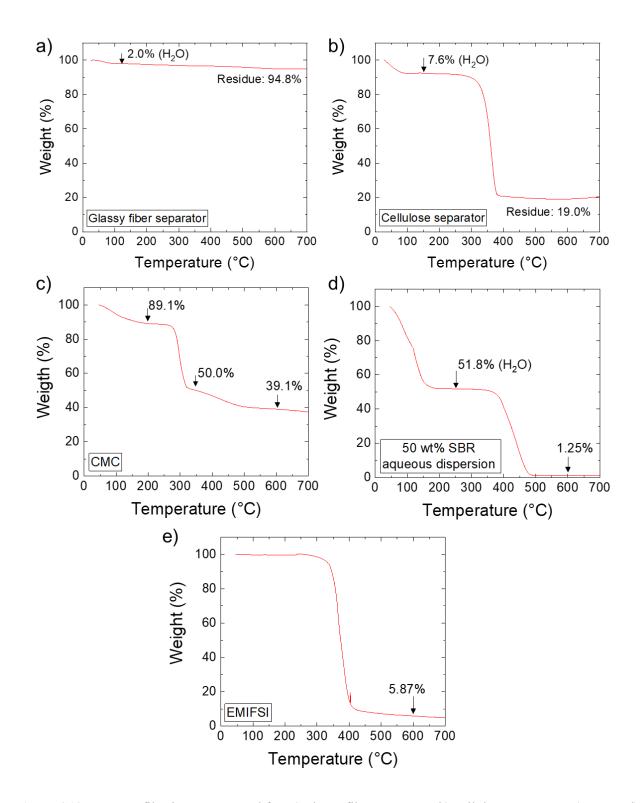




Figure S8. Electrochemical characterization of the conventional EDLC using a standard organic electrolyte (1 M TEABF₄ in acetonitrile) and operating with a V_r of 2.7 V. CV curves measured at various voltage scan rates: a) from 0.005 to 0.05 V s⁻¹; b) from 0.1 to 1 V s⁻¹. GCD profiles measured at various specific currents: c) from 0.2 to 2 A g⁻¹; d) from 5 to 10 A g⁻¹. e) C_s (left y-axis) and CE (right y-axis) vs. specific current plots measured for the ionogel-type EDLC using EMIFSI as the electrolyte and the conventional EDLC using 1 M TEABF₄ in acetonitrile as the electrolyte. d) Ragone plots (left y-axis) and EE vs. power density plots (right-axis) measured for the ionogel-type EDLC using EMIFSI as the electrolyte and the conventional EDLC using 1 M TEABF₄ in acetonitrile as the electrolyte.

Figure S9. a) Cyclic stability of the conventional EDLC: C_s (left y-axis) and energy density (right y-axis) vs. cycle number plots measured at 10 A g^{-1} and $V_r = 2.7$ V. b) Floating stability of the conventional EDLC: C_s (left y-axis) and energy density (right y-axis) vs. float time plots measured at 1 A g^{-1} and $V_r = 2.7$ V. Electrolyte: EMIFSI.

Figure S10. TGA profiles in N₂ measured for: a) glassy fiber separator; b) cellulose separator; c) CMC; d) 50 wt% SBR aqueous dispersion; and e) EMIFSI.

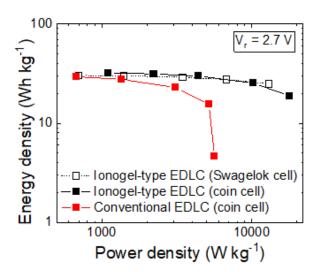


Figure S11. Ragone plots measured for ionogel-type and conventional EDLCs in coin cell formats ($V_r = 2.7$ V; electrolyte: EMIFSI). The Ragone plot measured for the ionogel-type EDLC in Swagelok cell configuration is also shown for comparison.

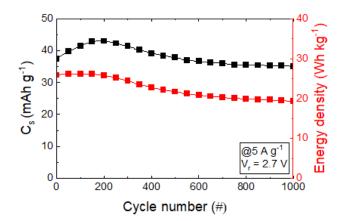
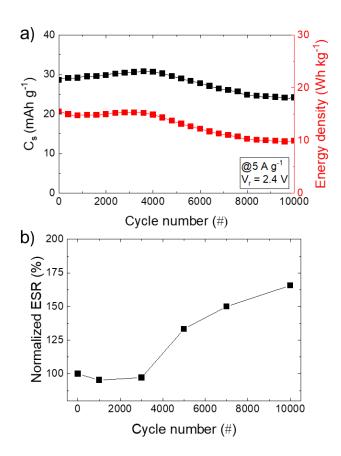
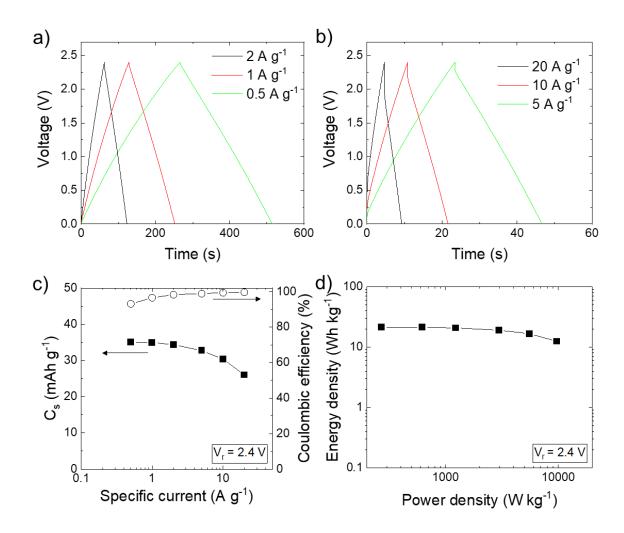
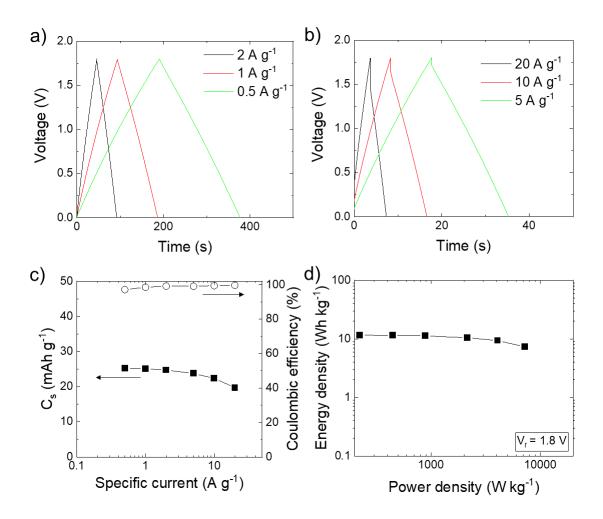
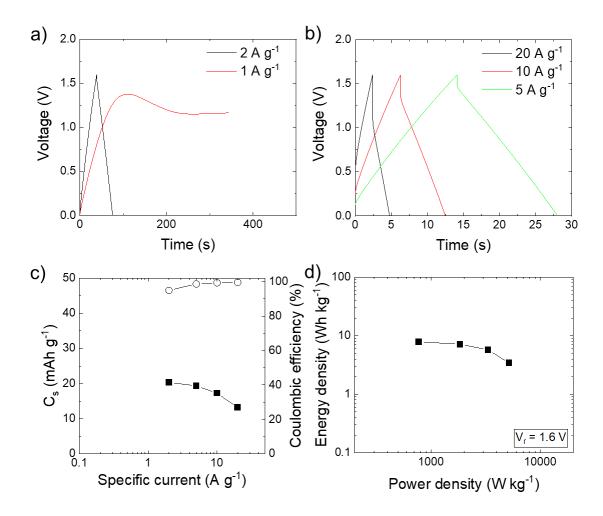


Figure S12. Cyclic stability of the ionogel-type EDLC in coin cell configuration and using a cellulose separator: C_s (left y-axis) and energy density (right y-axis) vs. cycle number plots measured at 5 A g⁻¹ and V_r = 2.7 V. Electrolyte: EMIFSI. Separator: cellulose.


Figure S13. a) Cyclic stability of the ionogel-type EDLC in coin cell configuration: C_s (left y-axis) and energy density (right y-axis) vs. cycle number plots measured at 5 A g⁻¹ and $V_r = 2.4$ V. b) Normalized ESR vs. cycle number plots. Electrolyte: EMIFSI.

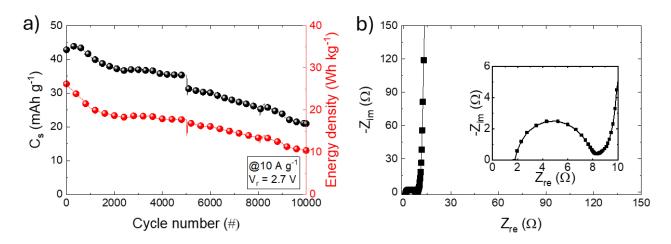

Figure S14. Electrochemical characterization of the ionogel-type EDLC in coin cell configuration operating at 100° C with a V_r of 2.4 V. GCD profiles measured at various specific currents: a) from 0.5 to 2 A g⁻¹; b) from 5 to 20 A g⁻¹. c) C_s (left y-axis) and CE (right y-axis) vs. specific current plots. d) Ragone plot.

Figure S15. Electrochemical characterization of the ionogel-type EDLC in coin cell configuration operating at 140°C with a V_r of 1.8 V. GCD profiles measured at various specific currents: a) from 0.5 to 2 A g^{-1} ; b) from 5 to 20 A g^{-1} . c) C_s (left y-axis) and CE (right y-axis) vs. specific current plots. d) Ragone plot.

Figure S16. Electrochemical characterization of the ionogel-type EDLC in coin cell configuration operating at 180°C with a V_r of 1.6 V. GCD profiles measured at various specific currents: a) from 1 to 2 A g⁻¹; b) from 5 to 20 A g⁻¹. At 1 A g⁻¹, the presence of parasitic reaction impeded the charging of the EDLC up to 1.6 V. c) C_s (left y-axis) and CE (right y-axis) vs. specific current plots. d) Ragone plot.

Figure S17. Electrochemical stability of a conventional EDLC in coin cell configuration operating at room temperature with a V_r of 2.7 V. a) Cyclic stability of the conventional EDLC: C_s (left y-axis) and energy density (right y-axis) vs. cycle number plots measured at 10 A g^{-1} . b) Nyquist plots of the as-fabricated conventional EDLC. The inset panels show the enlargement of the high-frequency region of the Nyquist plot.

Table S1. Comparison of the EDLC performance reported in this work with that of EDLCs various electrolytes, including ILs, from the literature. AC: activated carbon; FLG: few-layer graphene; CB: carbon black.

Electrodes	Electrolyte	$C_g(I_s)$	$E_{s}\left(P_{s}\right)$	Voltage window	Ref
Ionogel-type	EMIFSI	113.7 F g ⁻¹	36.5 Wh kg ⁻¹	3 V	This work
AC:FLG		(1 A g^{-1})	(1.4 kW kg^{-1})		
Ionogel-type	EMIFSI	113.1 F g ⁻¹	30 Wh kg ⁻¹	2.7 V	This work
AC:FLG		(1 A g^{-1})	(1.4 kW kg^{-1})		
Conventional	EMIFSI	108.6 F g ⁻¹	26.9 Wh kg ⁻¹	2.7 V	This work
AC:FLG		(1 A g^{-1})	(1.4 kW kg^{-1})		
Conventional	1 M TEABF ₄	99.2 F g ⁻¹	25.7 Wh kg ⁻¹	2.7 V	This work
AC:FLG	(ACN)	(1 A g^{-1})	(1.4 kW kg^{-1})		
Mesoporous carbon	EMITFSI	9 F g ⁻¹	19.4 Wh kg ⁻¹	3 V	[1]
		(0.5 A g^{-1})	(220 W kg ⁻¹)		
Mesoporous carbon	EMIBF ₄	14 F g ⁻¹	22.9 Wh kg ⁻¹	3 V	[1]
		(0.5 A g^{-1})	(0.24 kW kg ⁻¹)		
Asparagus waste-	7 M KOH	145 F g ⁻¹	6.5 Wh kg ⁻¹	1.2 V	[2]
derived AC	(aq)	(1 A g^{-1})	(185 W kg^{-1})		
Mangosteen shell-	EMIFSI	112.8 F g ⁻¹	28.2 Wh kg ⁻¹	2.8 V	[3]
derived AC:CB		(0.5 A g^{-1})	(0.51 kW kg ⁻¹)		
Mangosteen shell-	2.5 M KNO ₃ (aq)	114.1 F g ⁻¹	10.1 Wh kg ⁻¹	1.6 V	[3]
derived AC:CB		(1 A g^{-1})	(570 W kg ⁻¹)		
RGO	BMIPF ₆	45 F g ⁻¹	18.9 Wh kg ⁻¹	3 V	[4]
		(10 mV s^{-1})	(2.8 kW kg^{-1})		
Reed-derived AC:CB	EMIMBF ₄	147 F g ⁻¹	45 Wh kg ⁻¹	3 V	[5]
		(1 A g^{-1})	(750 W kg ⁻¹)		
Microporous AC	EMIFSI	115 F g ⁻¹	42 Wh kg ⁻¹	3 V	[6]
		(1 A g^{-1})	(780 W kg ⁻¹)		
Microporous AC	PMPFSI	92 F g ⁻¹	45 Wh kg ⁻¹	3.5 V	[6]
		(1 A g^{-1})	(900 W kg^{-1})		
P[DABA][H ₂ SO ₄]-	EMIBF ₄	183 F g ⁻¹	100 Wh kg ⁻¹	4 V	[7]
derived AC		(1 A g^{-1})	(1 kW kg^{-1})		
MWCNTs:AC	P ₄₄₄₄ FuA	10 F g ⁻¹	29 Wh kg ⁻¹	3 V	[8]
		(1 A g^{-1})	(13.3 kW kg ⁻¹)		

References

- [1] P. F. R. Ortega, G. A. D. Santos, J. P. C. Trigueiro, G. G. Silva, N. Quintanal, C. Blanco, R. L. Lavall, R. Santamaría, *Journal of Physical Chemistry C* **2020**, *124*, 15818–15830.
- [2] N. Ahmad, A. Rinaldi, M. Sidoli, G. Magnani, A. Morenghi, S. Scaravonati, V. Vezzoni, L. Pasetti, L. Fornasini, F. Ridi, C. Milanese, M. Riccò, D. Pontiroli, *Journal of Energy Storage* **2024**, *99*, 113267.
- [3] V. N. Kitenge, D. J. Tarimo, K. O. Oyedotun, G. Rutavi, N. Manyala, *Journal of Energy Storage* **2022**, *56*, 105876.
- [4] Y. Chen, X. Zhang, D. Zhang, Y. Ma, *Materials Letters* **2012**, *68*, 475–477.
- [5] D. Zhou, H. Wang, N. Mao, Y. Chen, Y. Zhou, T. Yin, H. Xie, W. Liu, S. Chen, X. Wang, *Microporous and Mesoporous Materials* **2017**, *241*, 202–209.
- [6] Q. D. Nguyen, J. Patra, C. Te Hsieh, J. Li, Q. F. Dong, J. K. Chang, *ChemSusChem* **2019**, *12*, 449–456.
- [7] L. Miao, H. Duan, Z. Wang, Y. Lv, W. Xiong, D. Zhu, L. Gan, L. Li, M. Liu, *Chemical Engineering Journal* **2020**, *382*, 122945.
- [8] I. A. Khan, F. U. Shah, ACS Sustainable Chemistry and Engineering 2020, 8, 10212–10221.
- [9] X. Wang, H. Zhou, E. Sheridan, J. C. Walmsley, D. Ren, D. Chen, *Energy and Environmental Science* **2016**, *9*, 232–239.
- [10] X. Xia, J. Zhan, Y. Zhong, X. Wang, J. Tu, H. J. Fan, Small 2017, 13, 2–9.