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Abstract

Despite its critical importance in experimental and clinical neuroscience, at present there is

no systematic method to predict which neural elements will be activated by a given stimula-

tion regime. Here we develop a novel approach to model the effect of cortical stimulation on

spiking probability of neurons in a volume of tissue, by applying an analytical estimate of

stimulation-induced activation of different cell types across cortical layers. We utilize the

morphology and properties of axonal arborization profiles obtained from publicly available

anatomical reconstructions of the twelve main categories of neocortical neurons to derive

the dependence of activation probability on cell type, layer and distance from the source.

We then propagate this activity through the local network incorporating connectivity, synap-

tic and cellular properties. Our work predicts that (a) intracranial cortical stimulation induces

selective activation across cell types and layers; (b) superficial anodal stimulation is more

effective than cathodal at cell activation; (c) cortical surface stimulation focally activates

layer I axons, and (d) there is an optimal stimulation intensity capable of eliciting cell activa-

tion lasting beyond the end of stimulation. We conclude that selective effects of cortical elec-

trical stimulation across cell types and cortical layers are largely driven by their different

axonal arborization and myelination profiles.

Author summary

Brain stimulation is widely used to probe the neural system to learn about its properties,

to normalize dysfunction (e.g., deep brain stimulation for Parkinsonian patients), or to

manipulate brain activity, including enhancing memory and learning. Despite its critical

importance in experimental and clinical neuroscience, at present there are no systematic

methods to predict which neural elements of the brain will be activated by a given stimula-

tion regime. To address this question, we propose a novel theoretical framework that

models the effect of cortical stimulation on the spiking probability of a neuron based on

its location, type and morphology. Our study predicts that short-lived superficial electrical
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stimulation has the ability to trigger spiking in layer IV pyramidal cells, and to evoke net-

work activity that could persist for hundreds of milliseconds. It further predicts a much

higher spiking response to anodal stimulation compared to cathodal one, as the existence

of an optimal stimulation intensity, capable of inducing a maximal response in a popula-

tion of cortical cells. The results of our study can be directly taken into account in plan-

ning future electrical stimulation experiments.

Introduction

Brain stimulation is widely used to probe the properties of neural systems [1–4], to normalize

dysfunction (e.g., deep brain stimulation for Parkinsonian symptoms [5–7] and epileptic

patients [8], Direct-Current Stimulation for stroke patients [9]), or to manipulate brain activ-

ity, including enhancing memories and learning [10–13]. While the practice is widespread and

scalable, its application is limited by the difficulty of predicting which cells (if any) are going to

spike due to an input, and which specific synaptic mechanisms are going to be recruited and

modulated by a given stimulation protocol [14]. In addition, the secondary effects of the

directly activated neurons on other cells may be more distributed and prolonged than the

direct effects themselves [15]. Furthermore, depending on the goal of stimulation, the effect of

interest could be driving cells to spike or inducing sub-threshold changes. Stimulation can syn-

chronize [16], de-synchronize [17], excite and/or suppress [18–20] neuronal activity. However,

it has been difficult to infer these observations by applying the physics of current fields to corti-

cal anatomy and physiology.

Considerable work has attempted to define the specifics of current flow when the cortex is

directly stimulated [14, 21]. In particular, anatomical measures derived from brain scans, cell

reconstructions, and other measures have been used to populate finite element models, leading

to patient-specific suggestions regarding where current would flow for a given electrode place-

ment [22, 23]. Such models are often “passive”, meaning the active properties of neurons (e.g.,

spike generation, synaptic dynamics, intrinsic currents) are not taken into account.

The effects of stimulation have been examined using electrophysiological and/or optical

methods. However, the results have been ambiguous due to limitations in recording from an

entire cortical volume with high temporal and spatial resolution [24, 25]. This underscores the

need for careful modeling to predict plausible outcomes that can be verified separately in dif-

ferent layers and cell types. Furthermore, an empirically validated modeling approach could be

extended easily to a variety of contemplated electrode configurations and stimulation regimes.

In this work, we develop a method that estimates the effect of extracellular electrical stimu-

lation on the different classes of neocortical neurons. Our approach begins with calculation of

the activating function [26–28], which represents the stimulation-induced effective current

across neuronal membranes. Our approach is novel, in that it convolves the activating function

with axonal arborizations of different cell types, obtained from public databases of over five

hundred morphological reconstructions of twelve different classes of cortical neurons, while

also accounting for myelination properties, morphological variability within each cell class,

and the different orientations and positions of neurons. We apply this method to predict the

direct activation probabilities of cortical cell types across all layers for a short (~200 μs) current

pulse typical of clinical stimulation protocols. We then calculate the consequences of this direct

activation by propagating activation through a multi-layer neocortical network model with

realistic channel and synaptic elements, to predict the net effect of stimulation on network

activity. Our work predicts (a) that intracranial cortical stimulation induces selective activation

Selective recruitment of cortical neurons by electrical stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007277 August 26, 2019 2 / 32

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007277


across cell types and layers; (b) cathodal vs anodal stimulation have distinct effects on different

cell types; (c) cortical surface stimulation focally activates layer I axons, and (d) the existence

of an optimal stimulation intensity capable of eliciting cell activation lasting beyond the end of

stimulation.

Results

Distinct cell types show different profiles of activation probability

To develop an understanding of the effects of stimulation on spiking activity of cortical cells,

we focus on a specific case: an electrode on the cortical surface delivering a short-lived pulse of

current (Fig 1), similar to common experimental settings [29]. Since different neuron types are

distributed differently across cortical layers [30], it is legitimate to expect that their different

properties and placement in the cortex would affect if and how these neurons respond to sur-

face electrical stimulation. Hence, we resolved to study different cell types using publicly avail-

able reconstructions of cortical cells, building a collection of 561 cell anatomies, including:

pyramidal cells (PYs), excitatory spiny stellate cells (SCs) from layer IV, basket cells (BCs),

Martinotti cells (MCs) and bi-tufted interneurons. Our reconstruction dataset considers sub-

types of PYs in layer V (slender-tufted neurons from layer Va [31, 32] and thick-tufted cells

from layer Vb [33]) and BCs (large, nest and small basket cells, following a recently proposed

classification [34, 35]) (Fig 2A). Criteria for inclusion of a reconstruction in our database and

specific sources of each reconstructed cell are given in Materials and Methods and S1 Table.

For each cell type we calculated average axonal density (Fig 2B) (see Methods: Computing the

average axonal arborization for a given cell type). Averaged axonal density represents overall

morphological properties of a given type of neurons (among those in S1 Table) and gives the

general intuition on how the anatomy of a given cell type can influence how it is affected by

electrical stimulation.

To estimate the effect of stimulation on the tissue, we assumed a squared electrode (side

150 μm) placed on the cortical surface (S1 Fig) and we calculated the electrical field potential

of the current source within the tissue, based on the shape of the electrode and the total current

injected into the tissue (see S1 Text).

A growing body of evidence supports the idea that electrical stimulation directly drives a

response in a cell by triggering an action potential in nodes of Ranvier, or by activating the

axon initial segment (orthodromic spikes) [28, 36–43]. Thus, we concentrate our analysis on

estimating the effects of stimulation on cells’ axonal fibers and ignore their dendritic arboriza-

tions. We use the activating function [26–28] (computed piecewise across small portions of

each axonal branch, along reconstructed axons) to estimate the probability of axonal activa-

tion. This function quantifies how much effective current locally traverses the neuronal mem-

brane depending on its location and orientation in space (S1D Fig) upon external stimulation,

and it does not account for intrinsic and synaptic currents of the neuron itself. Instead, a

threshold value of the activating function can be used, such that if the activating function is

larger than threshold, the small portion of axonal branch can be considered “activated” by the

current field.

When estimating which threshold value we should use in our study, we aimed to introduce

a realistic representation of the probability of activating a small portion of axonal branch by

current, and hence we matched the experimentally measured current-distance relationship

leading to direct activation of cortical cells [36, 43]. The experimental evidence was set for

depth electrode stimulation, so we constructed a specific in-depth stimulation version of our

estimate to obtain our experimentally driven activating function threshold (see Materials and

Methods section “Estimating the activating function threshold” and S2 Fig). Once we estimated
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a threshold for each axonal segment, we considered the overall effect of stimulation on a cell

by taking into account its entire axonal arbor.

To estimate the probability of cell activation we first computed the activating function

along the entire axon arbor and, by comparing it to the threshold value, we identified which

axonal segments were potentially activated (Fig 3, red markers). All together they formed a

total “triggered” axonal portion, of which we knew the length (L). In case of unmyelinated

fibers, the entire membrane of axon is exposed to the extracellular space and, therefore, for cell

types with unmyelinated axons, we assumed a binary dependence: any L>0 (presence of

Fig 1. Representation of the experimental paradigm studied. An electrode on the cortical surface (squared, size 150 μm) delivers

current to cells embedded in the cortical tissue (shown is one example reconstruction of pyramidal cells in layer II/III). The current

pulse is monopolar, with amplitude ranging from 0 to 150 μA, and lasts 200 μs.

https://doi.org/10.1371/journal.pcbi.1007277.g001
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Fig 2. Anatomical reconstructions of the main types of cortical neurons. (a) Typical anatomical profiles for the main types of cortical neurons. Green denotes

axon, purple–apical dendrite, blue–basal dendrite, red dot shows soma position. Top row exhibits excitatory cells (PY—pyramidal neurons, SC—spiny stellate cell).
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Bottom row contains inhibitory interneurons (BC—basket cell). (b) Averaged axonal densities formed by the neurons of each specific type. Color denotes

logarithm of averaged axonal density (AD), computed over a set of available reconstructions of cortical cells. Logarithmic scale was used for better visualization of

axonal arborization. This provides a general intuition on the generic shape of the axonal arborization for distinct types of cortical cells, which is crucial for the

analysis.

https://doi.org/10.1371/journal.pcbi.1007277.g002

Fig 3. Estimation of the activation probability induced by surface stimulation. An example of typical layer IV pyramidal

cell is shown. For each cell, we assigned R, and Z (depth) parameters. Activating function identifies its trigger area (red

markers), where the effective current is above threshold. Action potentials can be initiated in these segments and propagate

along the axonal arborization. To populate a statistical set (to find the average probability of spiking), each cell reconstruction

was shuffled by rotating and shifting along the vertical axis (indicated by bold arrows), and multiple reconstructions were

considered for each cell type (up to a total of 561 cells, see S1 Table and Methods: Selecting cell reconstructions within

available databases).

https://doi.org/10.1371/journal.pcbi.1007277.g003
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trigged axon portion) produced activation, while absence of triggered portion (L = 0) meant

no activation.

For the case of myelinated axons, the triggered portion could only activate the full spiking

response if it included at least one node of Ranvier. Hence, we introduced a dependency of the

overall probability of spike on the probability of occurrence of nodes of Ranvier in relation to

the length of the triggered region. Intuitively, a larger length of the trigger area L and/or

smaller internodal distance [44] along the axon lead to a higher activation probability (see

Materials and Methods for details). However, it is important to note that since unmyelinated

axons are less excitable their threshold of activation is much higher compared to nodes of Ran-

vier and axonal hillock: in our computations we used a threshold 20-fold larger for unmyelin-

ated axons.

Since our goal was to estimate the average likelihood of activation for cells of each type, we

had to account for natural variability of cell locations with respect to the current source (Fig

3). For each anatomical reconstruction of a given cell type (up to a total of 561 cells, see S1

Table and Methods: Selecting cell reconstructions within available databases), we assigned a

position marking its planar distance from the center of the electrode plate (R in Fig 3), and a

depth where the soma was placed within its appropriate cortical layer. To find if a cell recon-

struction in that one specific placement would be activated by the electrical stimulation, we

calculated its triggered portion of axonal arborization. We then rotated the cell and shifted its

soma in the vertical direction (for a range of depth values that still kept the cell within its type-

defining layer, see Fig 3). As a result, we obtained numerous samples for a given neuron recon-

struction placed at a fixed distance from the electrode, and for each of them we evaluated if the

neuron would be activated. The probability of activation for a given cell reconstruction (across

all available rotations and vertical shifts) was given by the fraction of samples that were acti-

vated over the total number of samples. We repeated this procedure for each reconstructed cell

belonging to a given cell type (see S1 Table), obtaining a probability of activation for each of

them. We then considered the average of all these probabilities a faithful estimate of the proba-

bility of activation for a cell of a given type placed at distance R from the electrode.

The method we introduced defined an activation probability function, which depended on

the planar distance between a cell soma and the electrode (R in Fig 3), which could be different

for different cell types. In Fig 4 we summarize the results of our probability analysis applied

separately to many different cell types. Since general interpretation of experimental data [37]

and our analysis (S1 Fig) suggests that anodal stimulation is most effective at depolarizing ver-

tically oriented axonal arbors, we present the case of anodal stimulation. For clarity, we

describe the different cell types in distinct sub-sections.

Excitatory cells. Our study predicts that pyramidal cells in most cortical layers would be

only moderately activated by the superficial stimulation (Fig 4, left column, rows 2–4), with

the exception of excitatory cells (PYs and SCs) in layer IV, which have a fairly high probability

to spike (80% right below the electrode) in response to the current stimulation. Since layer IV

excitatory cells receive input from thalamus and other subcortical structures, and locally

amplify such input (by strong recurrent connectivity) before projecting it to layer II/III pyra-

midal cells, their higher probability of activation in response to input suggests that superficial

stimulation could compensate for lacking subcortical inputs (for example following injury).

Within layer V, slender-tufted PYs (Va) showed a moderate chance of direct activation (Fig

4, bottom row, left), compared to thick-tufted PYs, which did not seem to be directly recruited

by surface stimulation (Fig 4, bottom row, left). This difference is consistent with their average

axonal arborizations (Fig 2): slender-tufted PYs tend to project their axons to the superficial

layers [31, 32], while thick-tufted PYs axonal density is sitting away from the superficial layers.

Since thick-tufted PYs are the main output of a cortical column [33], their activation effectively
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controls whether external electrical stimulation can influence downstream signaling to other

brain regions. Hence, to activate the cortical output, external stimulation will need first to trig-

ger enough of a local circuit response, so that the thick-tufted pyramidal cells in layer V can be

recruited by the evoked neuronal activity of other cell types.

Basket cells. The central column of Fig 4 (rows 2–4) shows that activation of BCs is very

layer-specific; in particular, layer II/III BCs are easily activated, while deeper layer BCs are

much less likely to be recruited. This estimate accounts for myelination in their axonal fibers

(discussed in detail below) and is consistent with the localized organization of BCs average

axonal densities (Fig 2). Since BCs are the primary source of inhibition within each layer (they

are the largest fraction of interneuron found in any cortical column [35]), their activation pro-

file has the potential to shape the spiking within the cortical network. The fact that layer IV

Fig 4. Probability of stimulation-induced activation is different across layers and cell types. The top row shows direct

activation probability for 3 distinct types of layer I interneurons. Rows 2–4 (top to bottom) correspond to layers II—V. The left

column contains probability for excitatory cells (pyramidal and spiny stellate), middle column contains data on soma/proximal

dendrite-targeting interneurons (basket cells) and the right column contains probability for tuft/proximal dendrite-targeting

interneurons (Martinotti and bitufted cells). The data represent anodal stimulation (I = 275 μA).

https://doi.org/10.1371/journal.pcbi.1007277.g004
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BCs are not directly recruited by input current further enables layer IV excitatory cells to trig-

ger activity in the cortical column.

Other interneurons (Martinotti, Bitufted and layer I cells). The rightmost column and

top row of Fig 4 show the probability of activation for other non-parvalbumin interneuron

types [35], which have unmyelinated axons and are likely to contact pyramidal cells in their

distal dendrites. It is important to note that MCs from the infragranular layers (IV-VI) also tar-

get basal dendrites of the excitatory cells in layer IV [45]. Our analysis shows that MCs have

high activation probability in layers II/III and V, which is consistent with their specific axonal

density distribution (Fig 2). Extensive axonal arborization in layer I led to a high activation

probability even though their axons are unmyelinated. Note that in our dataset, layer IV MCs

show less activation than MCs in other layers, driven by the atypical shape of the axonal arbors

in the reconstructions available.

Bitufted cells have moderate probability of activation only in supragranular layers. Expect-

edly, layer I interneurons being the closest to the current source, also exhibit high activation

probability (Fig 4, top row). This predicts that a surface stimulation would recruit a fair

amount of spiking in cells that are responsible for diffused and cross-layer inhibitory signaling,

within and across cortical columns. It may further suggest that cortical stimulation by the sur-

face electrode, while capable of triggering spikes in excitatory cells in deep layers, is not likely

to evoke very strong excitatory events in the underlying tissue.

Role of myelination. The presence of myelin along an axonal fiber is considered an indica-

tion of high excitability, because the nodes of Ranvier in between myelinated segments are

known to contain a high density of sodium channels [46]. Furthermore, non-uniform distribu-

tion of myelin can affect overall response to stimulation. Recently, an experimental study [47] of

layer II/III pyramidal neurons revealed complex intermittent myelination patterns, where mye-

linated segments alternate with long unmyelinated paths. To reveal the possible impact of myeli-

nation on the activation probability of pyramidal neurons, we performed additional analysis.

The leftmost column in Fig 4 compares activation probabilities for myelinated and unmyelinated

pyramidal neurons. Layer II/III PYs showed no significant difference in activation probabilities

due to myelination. In contrast, PYs from layer IV showed a drastic difference: with 80% activa-

tion in the presence of myelin and almost null activation probability for unmyelinated fibers.

Hence, in general, we found that cells with somas (and axonal initial segment) close enough

to the superficial stimulation electrode and vertically oriented axonal arbors (like PYs in layer

II/III) are likely to not see a great loss of activation probability if they lack myelination. In fact,

our method shows that myelination plays a strong role in promoting cell excitability for cells

which have axonal initial segments in deeper layers, further away from the current source (like

PYs in layer IV), because they would rely more strongly on action potential in distal axonal

fibers in the superficial layers to be generated by the input. The principle that unmyelinated

fibers can be activated despite their lower excitability as long as they are placed closed enough

to the current source applies also to interneurons. In fact, Bitufted cells and layer I interneu-

rons (which are unmyelinated) show moderate activation probabilities in supragranular layers

but no activation for deeper layers. Martinotti cells, although unmyelinated, do not show

strong difference in their activation probability across cell layers. This is due to their specific

shape, characterized by extensive axonal arborization in the upper layers.

Type and magnitude of stimulation control cell activation probability

In our estimates, the probability of cell activation depended directly on the portion of axonal

arborization which showed activating function above threshold (length of the triggered por-

tion). In turn, this length depended on the amount of overall stimulation current delivered by
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the electrode. Intuitively, a larger current magnitude induced a longer triggered portion (Fig

3), and hence a higher spiking probability. However, it is less clear how changing the stimula-

tion polarity would affect the likelihood of cell activation (S1 Fig), since different types of stim-

ulation have completely different effect on axonal fibers: below the electrode, anodal current

depolarizes vertical fibers and hyperpolarizes horizontal fibers, while cathodal current has the

opposite effect (S1 Fig). Therefore, we asked how the probabilities of cell activation (Fig 4)

depended on the amplitude and polarity of the stimulating current I, and whether this depen-

dence was similar across different cell types with different anatomies (Fig 2B). We applied our

method to estimate activation probability when the electrode delivered different amounts of

total current I. We estimated this probability in a volume nearby the electrode and repeated

each estimate for the case of anodal and cathodal stimulation separately (Fig 5).

Fig 5A–5C shows how the overall activation probability changes as a function of the net

current of stimulation for different cell types. All cells can be divided into three main catego-

ries based on their response types to a range of currents: cells which respond more strongly to

anodal stimulation, cells with mild preference for responding to anodal stimulation, and cells

which respond more strongly to cathodal stimulation. In fact, a cell position across cortical lay-

ers and shape of its axonal arborization defines its preference to stimulation type.

Cells with strong preference for anodal stimulation. Pyramidal neurons (Fig 5A), basket

cells from layer II/III (Fig 5B, open circles) and bi-tufted cells (Fig 5C, squares) constitute the

first class, which is characterized by strong preference for anodal stimulation. The probability

dependence on the current was very asymmetric for this class of cells due to much higher

probabilities for positive current. Fig 5D shows examples of the triggered portions (red mark-

ers) for a pyramidal cell from layer II/III exposed to anodal (Fig 5D upper panel, d1) vs cath-

odal (lower panel, d2) stimulation. As can be seen in Fig 5D1, anodal stimulation activated

several vertically oriented branches close to the soma. In fact, in general anodal stimulation

depolarizes vertical fibers (S1 Fig). In contrast, the same magnitude of cathodal stimulation

was not able to produce any triggered axonal portion in this example (Fig 5D2), because cath-

odal stimulation is not effective at depolarizing vertical fibers.

Cells with weak preference for anodal stimulation. The second class includes cells

which showed a less asymmetric relation between probability and current (Fig 5A and 5B) and

hence did not show very strong preference for one type of stimulation. In this group we found

spiny stellate cells, PYs from layer IV and slender-tufted PYs from layer Va. As a representative

example of this case, we show in Fig 5E the triggered portion of a layer IV PY cell exposed to

anodal (upper panel, e1) vs cathodal (lower panel, e2) stimulation. This cell has an extensive

axonal arborization in layers I and II, containing a large number of variously oriented fibers.

This arborization with no dominant directions results in a response profile which cannot dif-

ferentiate between anodal and cathodal current input, because the lengths of the triggered por-

tions created by the different types of stimulation are similar (even if specific fibers which

cross the threshold are different). This is evident in Fig 5E where the red markers are different

in the two panels (top and bottom) but cover a similar amount of the axonal arbor. Similar

arborization profiles, with no specific dominant orientation among the axonal fibers, are typi-

cal of all cell types included in this category (Fig 2), and hence result in a similar lack of selec-

tivity of these cells for anodal or cathodal stimulation.

Cells with preference for cathodal stimulation. Our analysis indicates that Martinotti

cells (MCs, Fig 5V, red diamonds) are the only cell type in this group which shows a response

to both stimulation types for large current magnitudes but show a strong preference for cath-

odal stimulation at low magnitudes (below 75 μA). The strong response at low magnitudes for

cathodal current in MCs is driven by their peculiar arborization. These cells are characterized

by a large number of horizontally oriented fibers in layer I (Fig 2B, Fig 6F), which are likely to
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get activated in the presence of cathodal stimulation (S1 Fig). Hence, even small amounts of

cathodal current, not capable of reaching deep layers, still induced enough triggered portions

in MCs axonal arbor (note that since MCs are unmyelinated, they do not require a large trig-

gered portion for activation). In contrast, for stronger current magnitudes, a similar probabil-

ity of MCs activation is induced by anodal or cathodal stimulation because larger currents

reach deeper layers, where the overall axonal arborization of MCs also includes vertical fibers.

This results in a chance for anodal stimulation to trigger activation, and hence to have effects

comparable to cathodal stimulation of the same magnitude.

Fig 5. Different cell types have distinct preferences for stimulation type (anodal or cathodal). (a-c) Dependence of the activation

probability on the net electrode current I for excitatory cells (a), basket cells (b), Martinotti and bi-tufted cells (c). (d1,2) Anodal stimulation

(d1) activates pyramidal cells LII/III more effectively than cathodal stimulation (d2). (e1,2) Pyramidal LIV/V and spiny stellate cells have no

preference for any type of stimulation. Because of the rich axonal arborization in supragranular layers, both types of stimulation provide large

activation area. (f1,2) Cathodal current is more effective in activation of non-myelinated horizontal axons of Martinotti cells in supragranular

layers.

https://doi.org/10.1371/journal.pcbi.1007277.g005
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Fig 6. Numerical simulations predict that feedback inhibition controls response properties. (a): Schematic

representation of the network model structure, which consists of 3 types of cells, located in 3 different layers (canonical

circuit). PY stands for pyramidal neuron, SpS–spiny stellate cell, BC–basket cells, MC–Martinotti cells. Lines with circles

denote excitatory AMPA connections (solid–strong, dashed—weak), whereas bars denote inhibitory GABA connections.
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Interneurons from layer I do not clearly fit in one of the categories described above. In par-

ticular these cells have quite symmetric dependence of activation probability on current. This

is likely because layer I interneurons are located close to the surface and can be directly acti-

vated (through axonal hillock) by anodal stimulation; conversely, their horizontally oriented

axonal fibers facilitate their activation by cathodal current (similarly to MCs).

Network simulations predict optimal currents to trigger population

response and strong difference for anodal and cathodal stimulations

Our estimates of cell spiking probability driven by current input so far were all conducted for

cells in isolation, ignoring the possible network effects induced by synaptic activity. To under-

stand how considering synaptic activity could change our estimate of activation probability,

we built a computational model of a cortical column, and simulated the effects of superficial

current stimulation to cells in the model according to our predictions from the cells in isola-

tion (Figs 4 and 5).

Our spiking model of cortical column included four types of neurons organized within a

multi-layer connectivity structure: three distinct layers (layer II/III, layer IV and layer V)

where each layer included excitatory neurons (PYs and SCs) and inhibitory interneurons (BCs

and MCs). We omitted the other interneuron types because of their low density [35]. The neu-

rons in the model were represented with point-type Hodgkin-Huxley dynamics (see Materials

and Methods). Network connectivity was organized according to canonical microcircuit archi-

tecture [48–51] (Fig 6A): (a) all excitatory cells within each layer had recurrent excitatory con-

nections, (b) PYs and SCs from layers IV and Va had strong projections to PYs from layers II/

III, (c) BCs formed strong inhibitory connections to excitatory neurons within their own lay-

ers, and (d) MCs from layers IV and V made cross-layer inhibitory connections specifically

targeting excitatory cells in layer IV. Two electrophysiological classes of neurons were used in

the model: regular spiking neurons to represent PYs, SCs and MCs and fast spiking interneu-

rons to represent BCs (Fig 6B). All inhibitory interneurons had lower leak current, which

resulted in a higher responsiveness of these cells in comparison to excitatory neurons [52].

Parameters were chosen so that neurons would be silent if not receiving any input. (Equations,

parameters and details of the rationale followed in the design of our computational model are

reported in Materials and methods, Computational model of the canonical cortical circuit:
Rationale and parameters and S1 Text). To introduce the effect of superficial current stimula-

tion in the initial spiking probability of the neurons, we delivered a short-lived input pulse to

each neuron, chosen so that all cells were activated according to the probabilities estimated

from our analysis (Figs 4–6). This artificial spike-triggering input was limited to the first

200 μs of each simulation, and then turned off. This way, initial neuronal activity for each cell

of specific type was defined by the spiking probability upon stimulation (derived via our esti-

mates in Figs 4–6) but subsequently would be shaped by the synaptic interactions and intrinsic

cell properties.

(b): Two electrophysiological classes of neurons were used in our simulations: top voltage trace (green) corresponds to

regular spiking neurons (used for pyramidal, spiny stellate cells and Martinotti cells) and bottom voltage trace demonstrates

activity of fast spiking interneurons (used for basket cells). (c): Spike raster plots exhibit network activity for cathodal (left

panel) and anodal (two right panels) stimulations. The cells were activated during first 1 ms of simulation according to

activation probability (see text for details). Green dots–PY and SpS cell spikes, red dots–interneuron spikes. Left panel

shows weak response to cathodal stimulation (-100 μA). Middle panel shows response to moderate anodal stimulation

(75 μA), which induced a large population response. The right panel shows response to a strong positive current (300 μA),

which activated a large number of basket cells in layer II/III and Martinotti cells in all layers, which prevented the activation

of excitatory cells in layers II-IV. (d, e): Population responses as a function of net electrode current for layer II-IV excitatory

cells.

https://doi.org/10.1371/journal.pcbi.1007277.g006
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It is important to note that neuron models used in the network simulation were reduced

models that do not explicitly represent complex morphology as discussed in the other sections.

This simplification was done (1) because of the lack of information about ion channel density

distribution along the cell structures for different cell types and (2) to illustrate approach that

can be applied in large-scale network simulation where modeling detailed morphology is com-

putationally impossible. Thus, instead of explicit calculations of the spiking probability, in net-

work simulations we used the parameter Iiext in each neuron to match probability estimated

using activating function analysis of the isolated morphological neurons of the same type.

We tested the model for different types (anodal vs cathodal) and magnitudes of current

stimulation. When current magnitudes were low, the probability of initial direct activation was

low (Fig 5A–5C). In the network activity, this initial activation led to sparse spiking in few

pyramidal cells and inhibitory interneurons. However, no lasting population response was

evoked. Fig 6C shows representative examples of the network response to moderate and strong

magnitudes of initial pulse of surface current stimulation: the three panels compare the cath-

odal (left) and anodal (moderate and large, center and right panels) stimulation.

In our estimates, we found that cathodal stimulation (Fig 5A–5C) triggered spiking in a

small number of PY in layer II/III but activated a large number of MCs and layer I interneu-

rons in comparison to anodal stimulation. Hence, we hypothesize that cathodal stimulation

could recruit strong inhibition in the full network model and produce weaker overall network

response. When tested in simulations, this hypothesis held true. In fact, cathodal stimulation

evoked spikes in a large number of MCs in all layers, including layer IV and V (red dots)

where they constitute a large fraction of all interneurons [35]. Note that MCs from infragranu-

lar layers specifically target excitatory cells in layer IV [45]. Hence, the effective recruitment of

inhibition and relatively small activation probability of layer II/III PYs resulted in a weak and

sparse response of excitatory cells in our model column (left panel in Fig 6C).

The middle panel of Fig 6C shows that moderate anodal stimulation could trigger network

activity across the layers for a considerable period after stimulus offset. In fact, stimulation trig-

gered abundant initial spiking in mutually excitatory PYs and SCs in layer IV, and some spikes

in PYs in layer II/III. In turn, the connectivity within layer IV created reverberating excitatory

activity that promoted a strong local network response, which projected onto layer II/III PYs,

eliciting a strong population response within layer II/III. While activity of PYs in layers IV and

II/III did outlast the current input, it also recruited feedback inhibition from BCs and MCs,

leading to termination of the response activity. Our simulations show that anodal currents of

moderate magnitudes can induce a functional response beyond the stimulation duration and

location. In fact, firing of layer II/III PYs had the potential to reach other columns and deep

layers PYs, which could then transmit to other areas the activity elicited in the network by the

brief surface stimulus.

In case of strong anodal stimulation, our estimates showed a high probability of activation

for most cell types (Fig 5A–5C). In the full network, our simulations showed a response domi-

nated by inhibitory activity (Fig 6C, rightmost panel). In fact, current stimulation initially acti-

vated both interneurons and excitatory cells, but the larger input resistance and higher

responsiveness of interneurons compared to PYs and SCs resulted in the activation of these

inhibitory neurons before the spikes in excitatory cells. Because of the large number of inter-

neuron spikes evoked, synaptic inhibition on PYs and SCs could overcome the excitatory

drive due to stimulation, and effectively stopped them from firing. Because of the lack of

directly recruited inhibition in layer Va, slender-tufted PYs were activated by stimulation, but

their relatively low density meant that they could only deliver a small amount of excitation to

the highly inhibited upper layers.
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While Fig 6C shows few characteristic examples, panels Fig 6D and 6E summarize the find-

ings across simulations with many current magnitudes. These plots show the average popula-

tion response (computed as a number of spikes divided by the total population number) for

excitatory cells as a function of applied stimulation current I (cathodal in panel 6d and anodal

in panel 6e). For low current, probability of direct activation was low in both anodal and cath-

odal stimulations, whereas for large current, inhibitory activity suppressed spiking in PYs and

SCs. Importantly, for excitatory cells and anodal stimulation there was an optimal range of

stimulation current magnitudes where population response was highest (consistent with our

description of network dynamics in Fig 6C, middle panel). In fact, the input evoked moderate

amount of excitatory spiking amplified by recurrent excitation, which led to the high overall

response in the cortical column.

Discussion

In this study we estimated the probability of activation for different cell types and in different

cortical layers when exposed to external electrical stimulation. We present the case of a finite

size electrode placed on the cortical surface. The approach consists of 4 main steps: first, esti-

mate the electric field potential in the tissue; second, define the ‘axonal-electrical receptive

field’ based on reconstructions of different cell types across layers; third, estimate cells’ spiking

probability based on the activating function in axonal elements; finally, predict the network

response to stimulation in a model of a cortical column based on the spiking probability

estimates. Our study predicts that short-lived superficial stimulation with a single electrode

source has ability to trigger spiking in layer IV pyramidal cells, and to evoke network activity

that could persist for hundreds of milliseconds. It further predicts a much higher spiking

response to anodal stimulation compared to cathodal one, as well as existence of the

optimal stimulation intensity, capable to induce a maximal response in a population of

cortical cells.

Relevance of our findings to existing stimulation protocols

Recent advances in techniques of multisite cortical stimulation [53], aimed to restoring dam-

aged brain operations like movement, sensation, perception, memory storage and retrieval,

underscore the need for better understanding the effects of such stimulation on individual

neurons and synaptic connections. Our study predicts that local electrical stimulation may

elicit activity under a superficial electrode sufficient to enable signal transmission without

trumping the physiology of the network. Indeed, in our study, stimulation within an interme-

diate range of positive input currents triggered network response that survived the end of the

stimulus, and thus can potentially be similar to the physiological processing. The last is impor-

tant if the stimulation targets to induce physiologically relevant persistent changes in brain tis-

sue. For example, inducing synaptic plasticity is necessary for stimulation to be successful as

an intervention to restore memories [54, 55], promote the recovery of a cortical area lost func-

tions [56, 57], or repress hyper-excitability of a portion of tissue [58]. However, blanket plastic-

ity evoked by the cell spiking that is directly triggered by external current is not likely to match

existing synaptic patterns and will not have any meaningful constructive impact on a system of

careful counterbalances like the brain. In contrast, stimulating in the range of currents that

elicit network-driven activity that continues when the stimulus is removed provides a better

chance for the stimulation to be changing only a selected and physiologically meaningful sub-

set of synapses. In other words, there is a range of current values in which stimulation can be

used as a sophisticated and detailed intervention rather than a blunt hammer, and such range
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can be found using approaches combining theoretical estimates of the current density and

reconstructed anatomy.

Our work focuses on the effects of a single brief isolated pulse, in contrast to repetitive

trains or longer-lasting modulation, which are typically used in the clinical setting (such as in

cortical stimulation mapping, neurorehabilitation with tDCS, etc.). Also, clinical stimulation is

often bipolar (between two electrodes) and biphasic, with anodal and cathodal current bal-

anced in order to prevent irreversible Faradic currents [59, 60]. Furthermore, our charge den-

sity is ~0.06μC/cm2, far below levels commonly used in clinical stimulation. Of course,

activation thresholds are probably higher in humans due to thicker pia and cortex, but detailed

neuronal reconstructions are not available to model the effects of these anatomical species dif-

ferences. Thus, our results, as presented, cannot be applied directly to the usual clinical con-

text, and future studies are necessary to connect our findings to the clinical realm. Specifically,

in the case of weak and long-time scale current waveforms (like tDCS) the stimulation is capa-

ble of modulating cell properties, and our method would need to incorporate estimates of the

dendritic dynamics in the presence of extracellular electric fields (for example using the equiv-

alent cylinder models [61, 62]. Also, trains of stimulation pulses (such as in cortical mapping)

will have effects beyond the simple summation of the effects of single pulses, due to intrinsic

cell dynamics and synaptic interactions, and both dendritic and axonal dynamics will need to

be included in the spiking probability estimates (using for example multi-compartmental

models [63]. However, as demonstrated experimentally [43], the threshold for evoking action

potentials by stimulation of the type we consider is by far the lowest at the nodes of Ranvier,

and next lowest at the axon hillock. While transmembrane currents can be conducted intracel-

lularly from the dendritic tree to the axon hillock, they are greatly delayed and attenuated, and

their effects are minor compared to the direct stimulation of these elements.

Our results suggest that superficial anodal stimulation is more effective than cathodal at cell

activation. Clinically, with respect to cathodal vs anodal stimulation effects, the evidence is

somewhat mixed. Previous work by [64], among others found that surface-anodal stimulation

had lower threshold for activation of corticofugal fibers in the Baboon’s motor cortex. In Pol-

len’s classic studies [65] recording units in cat visual cortex in response to stimulation of the

overlying surface, he noted that different cells had lower threshold to either cathodal or anodal

currents. A possible explanation can be found in the modeling study [66] which found that

although surface-anodal current would preferentially activate vertically oriented elements

directly beneath the electrode (as in our study), elements in the sulci would activated by cath-

odal current, and these effects interacted with the precise location of the electrodes with

respect to gyral crowns and whether bipolar stimulation was used.

Limitations of the approach

Experimental studies over past decades found that electrical microstimulation directly acti-

vates axon initial segments and nodes of Ranvier [28, 38–42], which are the most excitable ele-

ments due to the high concentration of sodium channels [67]. Thus, the estimation of direct

activation of cortical cells in our study was based on calculation of the activating function

along the axonal segments. This approach takes into account orientation and thickness of

axons, and also considers their myelination properties. A previous study reported that this

approach may overestimate the activation of threshold currents at distances >250 μm [68],

however myelinated fibers were excluded from the analyses, so it is unclear if and how this

consideration would apply to the current study.

An alternative to the activating function approach could have been to use the mirror esti-

mate, which has been shown to be a better predictor of the steady-state intracellular potential
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given an extracellular potential field under most commonly used experimental conditions and

preparations [69]. However, given the short duration (20 μs) of the electrical pulse we studied,

both approaches have been found to give comparable estimates [69]. Moreover, we were inter-

ested in the transient effects of electrical stimulation, rather than the resulting steady-state, and

it has been shown that the activating function is better suited to estimating these types of

effects than the mirror estimate [69]. We chose to concern ourselves with the transient, initial

response to electrical stimulation due to both the short duration of our simulated electrical

pulse, and the fact that we used passive cable theory to model our dendritic and axonal arbors,

and thus could not account for much of the dynamic phenomena which would result as the

steady-state was approached. In future research, if longer pulse durations are studied and the

steady-state response is the phenomenon under consideration, the mirror estimate would be

the more appropriate approach.

There are other methods that could be applied to directly estimate the activation threshold

based on detailed computational models of the dynamics of each neuron type. These methods

must incorporate linear and non-linear conductances using to specifically account for lateral

spread of currents across neuronal compartments. This level of detail is not achieved in the

electrostatic models that we used in this new study, which are focused on establishing how

neuronal morphologies influence the differential level of response of different cell types to the

same incoming stimulus. One advantage of our approach, however, is that it can be applied to

a broad range of different types of neurons where neuronal morphology has been character-

ized (i.e., almost all main classes of vertebrate neurons), versus the very limited range of neu-

ron types where there are sufficient data on the distribution of ion channels across neuronal

membranes to model the relevant conductances.

We defined a threshold for the effective stimulation current in an axonal segment (given by

the activating function) by direct comparison to the experimental data: in turn, this threshold

enabled the calculation of cell activation probability. We should note that it applies limitations

on what kind of network dynamics can be modeled using this approach. It would be valid

when the neurons have enough time between stimuli to relax to the baseline state but would

not be accurate if stimulation is applied during strong ongoing activity when the state of the

neuron (including ion channel activation, etc.) changes rapidly over time.

In our analysis, we applied the same method to excitatory and inhibitory populations,

which implies that all parameters of our estimation scheme (such as threshold for activating

function) are the same for all cells. Since BCs have higher input resistance compared to PYs, it

is possible that their experimental threshold could be lower than our estimate, which should

not, however, affect our conclusions: in fact, the suppression of excitatory firing at high input

current values would still hold, since it hinges on BCs spiking before PYs (which would only

be enhanced by lowering the threshold).

Another potential limitation of our approach is that in our estimates we considered a

homogeneous tissue. Inhomogeneity in the tissue would affect the trigger area along axons

and could change activation properties in each particular cell. Since the main source of such

inhomogeneity is other neurons or glia, its effect is expected to be stronger on the deep layer

neurons. While the exact effects of inhomogeneity still need to be explored, we believe that the

specifics of our approach can mitigate such effects. Indeed, our estimate averages across cell

rotations, shifts and multiple different reconstructions to compute a probability of spiking.

This implies that the effect of local changes in the tissue (driven by inhomogeneity) would

likely affect the final average probability only marginally. Hence, we do not expect dramatically

different estimates for cell activations to emerge from finer estimates of tissue properties.

In addition, our calculation of the electric field assumes both an infinite volume conductor

and an electrical ground at infinity (see Methods). A hemi-homogenous estimate for the
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volume conductor (that extends infinitely away from the stimulating electrode) could techni-

cally reflect stimulation of the unirrigated exposed cortical surface more precisely, although in

practice, stimulation can also be performed when the cortical surface is covered by CSF. Fur-

thermore, the non-homogeneity and anisotropy of the conductor is ignored both in our

approach and in a hemi-conductor approach. Importantly, switching our approach to hemi-

homogenous would result in a uniform re-scaling of all our activation estimates [70], hence

leaving unchanged our qualitative conclusion in comparing which cell types in which cortical

layers are likely to activate first in response to an incoming stimulus. Moreover, although in

practice an electrical ground is never actually placed at infinity, an extracranial plate on an

arm or leg is a common clinical placement for a reference electrode. This results in an electrical

ground at infinity for all practical purposes.

The connectivity within our network model was based on the canonical model, which cap-

tures the main picture of the information flow across cortical layers [48–51], yet overlooks

finer properties like the descending projections from excitatory to inhibitory neurons [48], the

activity of less frequently observed interneurons (bi-tufted, neuroglia form, etc.), the fine vari-

ability of pyramidal cells within layer II/III PYs and their projections [31, 71]. Also, the net-

work model predictions can be extended toward multi-compartment neuronal models [72],

which can take into account finer structure of inhibitory targeting (e.g. tuft vs soma-targeting

interneurons) [35] and explicitly model propagation of orthodromic and antidromic spikes.

The exact and detailed aspects of inter-layer connections, which update the canonical model

[73] are beyond the scope of our work, which focuses on calculating the probability of direct

activation of cortical cells as a result of external electrical stimulation.

Our estimates are based on activating function and do not consider the voltage dynamics

within axonal trees. While it would be ideal to use biophysical neuronal models with active

conductances to estimate the probability of activation, the lack of experimental data on the dis-

tribution of passive and active ion channels along the membrane surface of the different cell

types considered in the study prohibits such an analysis. However, theoretical work addressing

axonal dynamics through multi-compartmental modeling [28] has shown that for moderate

currents the activating function correlates with voltage dynamics, and predicts the activation

sites within axonal elements. For very strong currents, areas along axonal arborization could

be inactivated, blocking propagation of action potential along the axon [27]. In this case, our

estimate could not apply. However, the blocking phenomenon arises only for relatively strong

stimulation currents and typically affects elements that are very close to the electrode [26, 27].

Hence, we expect that for small stimulation currents (considered in our study) and superficial

electrode configuration, the blocking phenomenon does not qualitatively change the results of

our study. Overall, the details of axonal propagation dynamics are not essential to our method,

since it focuses on average estimates of response for a cell type, rather than an account of stim-

ulation-induced dynamics in a specific cell.

While our approach can be used to provide an estimate of the probability electrical stimula-

tion directly inducing an action potential along the axon, there are many aspects of stimulation

which can indirectly affect action potential induction which we did not consider in our esti-

mates. For instance, depolarization of axon terminals can lead to calcium release and subse-

quent neurotransmitter release, even in the absence of action potentials [74], and bipolar cells

even require strong depolarization at the terminals to spike in response to anodic stimulation

[75]. Moreover, as distance to the stimulating electrode increases past the fiber’s length con-

stant, the optimal stimulation site shifts from the axon hillock to the end of the nerve fiber. The

activating function we used partially accounted for these phenomena as it is proportional to the

first derivative of the extracellular potential at nerve endings rather than the second derivative.

However, as we did not model neuronal dynamics or interactions in the morphological neuron
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models, we could not account for all aspects of stimulation. To overcome some of the pitfalls of

the electrostatic models, we chose to use an empirically determined threshold for neuronal

activation.

Generalization of the method

While we applied our analysis to the microstimulation protocol by a single superficial electrode

[29], our strategy can be directly generalized to a number of more complex settings by using

linear summation and adjusting the calculations for the current density: multiple electrodes

(as in ENIAC [29]), in-depth stimulation (as in epilepsy [8]), non-circular electrode plates

(as in DCS [9]) and bi-polar electrodes (as in DBS [5–7]) can all be accounted for. Also, we

assumed a generic cortical tissue volume, but the same idea can be applied to the tissue differ-

ent from a canonical cortical column (e.g., hippocampus, geniculate nuclei, brain tissue dam-

aged after traumatic brain injury or stroke) as long as enough data on reconstructed cells are

available.

Since different stimulation protocols use different current waveforms, it is important to

note that this approach can be generalized to the other stimulation protocols as long as an acti-

vation threshold has been experimentally measured. The type of activity elicited by stimulation

can also be expanded. Our method is presented in the context of evaluating activation medi-

ated by axonal spikes, an effect relevant for fast and strong stimulation protocols (ENIAC,

DBS), but other types of stimulation could be focused on triggering subthreshold effects, such

as voltage polarization at somas compared to dendrites (tDCS) [76]. To adapt the method to

account for these sub-threshold effects, one would have to embed the reconstructed cells in the

electric field and consider a probability of depolarization/hyperpolarization [77], taking into

account the specific orientation of each element of the reconstructed cell compared to the

direction of the current field.

Finally, before the insights of this study can be applied to human studies, the method must

be extended to account for the charge-balanced biphasic stimulation protocols; the typical clin-

ical standard. If the time between pulses is greater than the relative refractory period, especially

at the node of Ranvier, then application of the model to this regime is relatively straightfor-

ward. This extension is one we are currently pursuing and hope to elaborate on in the future

work.

Conclusions

We introduced a generic approach to estimate probabilities of cell activation in response to

external stimulation and applied it to make testable predictions regarding effects of superficial

electrical microstimulation of a canonical cortical circuit. The ongoing rapid increase in pub-

licly-available neuron reconstructions will enable increasing the precision of our analysis and

its application to other brain regions and species. Our study provides an example of the utility

of basic anatomical knowledge for designing models that further our understanding of how

devices can affect brain function.

Materials and methods

Selecting cells reconstructions within available databases

In order to obtain cell reconstructions, we use publicly available resources for neuronal mor-

phologies [77]. S1 Table in Supporting Information summarizes the datasets used in our analy-

sis. All cell reconstructions were corrected for tissue shrinkage and aligned when necessary.

The overall dataset is not homogenous, since cells were obtained from distinct experiments,
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which used rats of different age (ranges from P13-P36). However, for every cell type the

parameters of the probability calculations were adjusted in order to account for possible differ-

ences in thickness of the cortex and cell size. Using data provided in the references (see S1

Table), we estimated approximate boundaries for each layer, and used those values in our sta-

tistical analysis to predict activation probability. The variations introduced turned out to be

small or negligible (see also comparative analysis in [33]), and would not affect our main

results.

Computing the average axonal arborization for a given cell type

Averaged axonal density (Fig 2B) represents overall morphological properties of a given type

of neurons (among those in S1 Table) and gives the general intuition on how a given cell type

can be affected by electrical stimulation. Since different anatomical reconstructions of the neu-

rons of the same type have slightly different axonal arborizations, we calculated on average

which locations (in 3D space) an axonal arborization of each cell type tends to occupy. The

axonal density was hence computed for each cell type. This was done as following. First, for a

given cell type, we fixed one point within the cortical layer where we assumed the soma of this

cell type was located and we used this point as the origin (center) of a 3D volume, where axis

coordinates (x, y, z) correspond to width, height and depth of a cortical slice, respectively. We

binned this volume with a grid, found by uniformly spacing 100 points in the x direction, by

100 points in the y direction, by 50 points in the z direction. Each specific reconstruction of a

cell was placed within this 3D grid with soma centered at the origin. If a particular 3D grid

unit was “occupied” by the axonal reconstruction, we would count +1 in the density calcula-

tions and if it was not, we would add 0. This was repeated for each reconstruction of the neu-

rons of the same type. The resulting values would be very high for locations (3D grid units) in

the 3D volume where many reconstructions had axons and very low for locations where only

few cells showed axons. To be able to compare the estimates across cell types, and not be biased

by the exact number of reconstructions which we had in each cell type, we normalized the val-

ues we obtained and had a 3D volume axonal density. To plot the results (but not in our calcu-

lations of spiking probability), we chose to average each obtained 3D density along the z-axis

(the depth of the slice). The results are all shown in Fig 2B on a logarithmic scale, where the

different 2D averaged volumes for different cell types have been immersed in the biological

cortical layers that each cell type would be naturally found on. This representation, while not

specifically used in any calculation that follows, is useful to interpret our results on the activa-

tion probability and illustrates why different cell types are differentially affected by current

stimulation.

To answer this question, we need to study how, on average, the axonal arbors of different

cell types are laid out in the cortical tissue. Reconstructing with any precision a specific and

complete 3D volume of cortical tissue is yet impossible and would introduce a strong limita-

tion in our estimates by being too sensitive to the specifics of the very tissue reconstructed.

Still, multiple databases containing the detailed reconstructions of different cell types from dif-

ferent preparations are available[77]. Thus, we propose a new method to build for each cell

type an approximation of a volume distribution of its axonal arborization, by taking advantage

of the large datasets available on the specific anatomy of different cortical cell types.

Fig 2A shows an example of the reconstructions for the different cell types we considered in

this study: pyramidal cells (PYs), excitatory spiny stellate cells (SCs) from layer IV, basket cells

(BCs), Martinotti cells (MCs) and bi-tufted interneurons. There are two types of PYs in layer

V: slender-tufted neurons from layer Va [31, 32] and thick-tufted cells from layer Vb [33]. BCs

include three subtypes according to the classification proposed in recent experimental works
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[34, 35]: large, nest and small basket cells. According to the canonical cortical microcircuit

model[48–51], PYs and SCs from layers IV and Va receive input from thalamus and then

innervate superficial layers, providing an incoming flow of information into cortical column

[31, 32]. In turn, thick-tufted PYs (Vb) integrate the overall activity within and across columns,

both neighboring and distant [32, 78], and project their output to subcortical regions [33].

Interneurons in cortex are very diverse in their morphology and functionality [35]. BCs

constitute about 50% of all inhibitory cells in cortex and form the primary source of lateral

inhibition within layers, targeting somas and/or proximal dendrites of PYs [34]. MCs comprise

another significant fraction of interneurons, which can form cross-layer as well as cross-

columnar inhibitory connections. These cells have a specific structure, with dense axonal

arborization in layer I where they inhibit tuft and proximal dendrites of PYs from all layers

[45]. MCs are numerous especially in infragranular layers [35], where they are also known to

specifically target basal dendrites of excitatory neurons from layer IV [45]. In cortex, there are

several other classes of interneurons which are found in fewer numbers: layer I interneurons,

bipolar, double bouquet and bi-tufted cells [35, 79]. Our analysis includes bi-tufted and layer I

interneurons, as representative examples (in the context of our study) of this dendrite-target-

ing class of interneurons. Our population of reconstructed layer I interneurons contains 3 dis-

tinct subclasses (classification from [79]): small, horizontal and descending interneurons.

Looking across multiple single-cell reconstructions for the same cell type, we can now

design an average profile of the probability that a cell axonal arborization would occupy a

given volume across layers (details on the procedure are introduced Methods). These averages

are shown in Fig 2B, in logarithmic scale to emphasize the details of the differences across

shapes. All types of excitatory cells, except thick-tufted PYs from layer Vb, have relatively

dense axonal arborization in the top layer, which is reached by the strongest current density

during surface-placed electrode stimulation (Fig 1). As for the interneurons, BCs axonal arbor-

izations are largely contained within the layer occupied by their soma, while Martinotti and bi-

tufted cells show axons with a wider vertical span and a large footprint in the top layer (Fig

2B). The axonal density of layer I cells is mainly confined in the top layer with small traces

towards layer II, due to so-called descending interneurons [79].

Estimating electric potential: A single electrode

Our problem setup is a squared electrode (side 150 μm) placed on the cortical surface (S1 Fig).

The current range is 0–150 μA and duration is 200μs. Overall, these parameters match com-

mon experimental settings [29]. Note that for stimulation protocols that place the current

source further from cortical surface, the current would have to pass through other tissues, such

as skull, dura, arachnoid or pia maters before reaching the cortical layers. In such cases, our

analysis would have to take into account potential capacitive properties, which effectively act

as frequency filters, and current diffusion [80]. To estimate the effect of stimulation on the tis-

sue, we found the electrical field potential of our current source, based on the shape of the elec-

trode and the total current injected into the tissue. Assuming that the current is uniform

across the electrode surface, our source represents a homogeneous square electrode, and the

resulting electric field potential can be calculated using the following expression (see S1 Text,

Estimating electric potential: a single electrode)

F X;Y;Zð Þ ¼
reI

4pA2

RRA=2

� A=2

dxdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � xÞ2 þ ðY � yÞ2 þ Z2

q ð1Þ

Here I denotes net current, ρe is extracellular resistivity and A is the length of the square
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electrode edge (Fig 1A). In our analysis, we use A = 150 μm and net current I is in the range [0,

150] μA.

It should be emphasized that throughout this study we assume an infinite homogenous

medium as a boundary condition when calculating the effects of electrical stimulation. Our

infinite-medium approximation ignores a number of real-world components that influence

the current field, such as a brain-to-air boundary condition and intermediate material between

the electrode plate and the brain (dura mater, pia mater, etc.). However, we estimate all these

factors to contribute to scaling the exact value of the field, without changing the overall very

fast trend of current field decay with depth in cortical tissue. Since our work aims to estimate

the relative probability of activation across the different cell populations and the different lay-

ers, re-scaling factors would only affect the exactness of our quantitative predictions, which

might need rescaling when compared to empirical measurements, but would not affect the

overall qualitative predictions that we find with our analysis. Since we are concerned with the

relative proportion of activation among cell types which results from electrical stimulation,

this simplification is justified, because considering the case of a hemi-homogenous medium,

for instance, would only introduce a scaling factor of 2 [81] on the current field estimate, and

would not change the overall trend (e.g. scaling with depth) of the current field in which cells

are immersed.

Estimating the activating function

According to one-dimensional cable theory the dynamics of transmembrane voltage of axonal

segments can be computed as follows:

cmdVi

dt
¼

d
4ri

Vi� 1 � 2Vi þ Viþ1

Dx2
þ
Fi� 1 � 2Fi þ Fiþ1

Dx2

� �

�
X

Iionn

� �

ð2Þ

here Vi−1,Vi,Vi+1 denote transmembrane voltages of the neighboring axonal compartments

(sub index denotes number of the compartment), cm = 1μF/cm2 is a capacitance of membrane

per square unit area, d stands for diameter of the axon (typically between 10μm and 1 μm), ρi =

300O�cm is a resistivity of axoplasm, and Δx is a discretization parameter that defines length of

the compartment. The term
P

Iionn describes the sum of intrinsic ionic currents such as fast

potassium and sodium currents for spike generation, leak currents and others. As one can see,

the effective transmembrane current, which arises due to extracellular electrical stimulation is

described by the term

f ¼
d

4ri

Fi� 1 � 2Fi þ Fiþ1

Dx2
ð3Þ

where Fi,Fi−1,Fi+1 stand for extracellular potentials in the vicinity of axonal compartments. In

fact, f represents activating function [26, 28] and in the limit Δx!0 can be written as f ¼ d
4ri

@2F

@x2

(here x axis represents the direction of axonal fiber) where d is the diameter of the axon, and ρi
is the resistivity of the axoplasm. We use the activating function (computed piecewise along

reconstructed axons) to estimate the probability of axonal activation. Since we compute the

activating function in each small compartment composing an entire axonal arborization, jitter

in the edges of the anatomical reconstruction could introduce numeric noise in our calcula-

tion. To minimize this issue, we estimate the direction of each axonal component (the mini

segment forming a compartment in the reconstruction) using the position in space of neigh-

boring compartments up to 10 microns away. The estimated direction is then crucial to com-

pute the activating function, which, by definition, is calculated along the axonal element

direction.
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As shown by Rattay [28], the activating function is a powerful tool for analyzing the effect

of electrical stimulation on neuronal fibers, since it provides putative activation and suppres-

sion zones along the fibers. In case of a horizontal axon receiving anodal stimulation, the acti-

vating function along the axon shows that stimulation has a hyperpolarizing effect in the area

right below the electrode (S1D Fig, blue area) and slightly depolarizing on portions of the fiber

further to the sides (red areas). The distance of the axonal fiber from the electrode also influ-

ences the effect of stimulation, as shown in S1E Fig. The interplay of fiber orientation and

placement in space is also shown in S1F Fig, which presents the activating function f(X,Y,Z)

for vertically (f) oriented axons. In S1E and S1F Fig, the color code emphasizes that the area

below the electrode has a hyperpolarizing effect on horizontal fibers but a depolarizing effect

on vertical ones. The spatial/orientation selectivity of the hyperpolarization/depolarization

effect is still present when considering cathodal rather than anodal stimulation, with the caveat

that, since the activating function would be reversed, the areas of depolarization/hyperpolari-

zation would switch roles compared to S1E and S1F Fig.

Estimating the activating function threshold

To integrate the anatomical data and the estimated activating functions, we need to identify

when the activating function is capable to trigger a response in the neuron. To compute such

threshold, we matched the experimentally measured current-distance relationship leading to

direct activation of cortical cells by the depth electrode [36, 43] (see S2 Fig). Specifically, the

experimental data we aim to match define a value of the threshold injected current I, which

one has to apply to induce a threshold effective current f at the initial segment (located at dis-

tance d from the electrode). We used a 200 μs duration stimulus pulse, typical of empirical in
vivo microstimulation experiments [36, 43]. In S2A Fig, we show a representation of the in
vivo experiment, which we mirrored in our model. Depth electrode (modeled as a point source

of current) was placed near a cell body of a reconstructed pyramidal neuron from layer II/III.

Using Eqs 2 and 3, we computed the activation current f at the axon initial segment (since the

experimental data was focused on orthodromic activation), for different values of stimulation

current I and distances d.

We found that for all fixed values f = Const the resulting relation I(d) had a characteristic

quadratic form, which qualitatively resembled experimental dependences of the threshold acti-

vation current on distance [36, 43]. By choosing f = fth = 3 pA/μm2, we perfectly recovered the

experimentally observed current-distance relation (S2B Fig, compare with Fig 8B in [36]).

Consistent with experimental data [36, 37, 43], we found that when the electrode was placed at

a depth close to the soma (vertical coordinate in S2A Fig) we were able to find fth only for cath-

odal current, while anodal current could not induce any depolarizing effect on the axonal ini-

tial segment. We will use this threshold value fth to define the activation probability of axonal

segments.

Computing the average probability of activation

Our computations of the averaged probability of activation are based on the calculation of the

activating function and the trigger area. The trigger area comprises axonal segments with suffi-

ciently high (above 3 pA/μm2) values of activating function, which can initiate axonal action

potential in unmyelinated segments of axons (e.g. nodes of Ranvier). The threshold was

defined based on comparison to experimentally recorded current-distance relation for pyrami-

dal cells (see section Results for details). Note that this threshold was computed for axon initial

segment, but we used the same value for nodes of Ranvier. For unmyelinated fibers we

assumed 20-fold larger threshold, since their excitability is lower due smaller concentration of
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sodium channels. To compute the averaged probability for a certain class of cells (S1 Table)

located at distance R0 from the electrode we applied the following steps:

a. We took one of the anatomical reconstructions and placed it at a distance R0 from the elec-

trode at a certain depth Z within the layer that the cell belongs to.

b. We computed activating function f for axonal segments of the reconstructed cell. Next, the

function was evaluated against the threshold (3 pA/μm2 for myelinated and 60 pA/μm2 for

unmyelinated fibers). The segments, which possess large (above threshold) activating func-

tion were marked as a trigger area, whose elements may initiate axonal response.

c. We then transformed length of the trigger area L into probability of spiking. For myelinated

fibers, the trigger area should contain at least one node of Ranvier to initiate axonal

response. To find an activation probability, we discretize the trigger area into small seg-

ments of length k = 1 μm which is a typical length of a node of Ranvier. Note that the proba-

bility that a given segment is a node of Ranvier can be approximated as a ratio pn = k/D
where D denotes mean internodal distance (we used 100 μm in all estimations). Next, the

probability that axonal fiber of length L does not contain any nodes of Ranvier can be

approximated as (1−pn)N. Here N = L /k denotes the number of segments of length k that

can fit into a fiber of total length L. Hence, the overall probability p of response for myelin-

ated axon can be estimated as p ¼ 1 � ð1 � pnÞ
N
¼ 1 � ðD� kD Þ

L=k
. For unmyelinated fibers,

whose entire membrane is exposed to extracellular space, we assumed binary dependence

of probability on L: any L>0 (presence of trigger area) produced activation, while absence

of trigger area (L = 0) meant no activation.

d. Steps (a-c) were repeated for various locations (different Z) and for various orientations of

the cell. Note that cells tend to grow towards the surface and occupy a significant area in

layer I [33]. Therefore, in our calculations the depth coordinate Z varied in the range [Zmin,

Zmin + cLs], where Zmin is a minimal possible depth of the soma, Ls is a layer size, and c is a

coefficient (0.1 for all cells except basket cell, for which c = 0.4). The minimal depth for a

cell soma Zmin is given by the upper boundary of the cell’s layer for cell types that are com-

pact (e.g. basket cells in infragranular layers, whose arborization does not reach the sur-

face). For large cells, which show arborizations that can reach the cortical surface (e.g. all

pyramidal cells), the Zmin value is taken as the length from the soma to the highest point in

ascending arbor, whether such branch is axonal or dendritic.

e. Combining the results from the above step we have an overall probability that a given cell

reconstruction would be activated.

f. Steps (a) to (d) were repeated for every cell reconstruction from the pool of available neu-

rons. The probability was calculated averaging across all cells, to represent the overall likeli-

hood of axonal activation for a given cell class at distance R0 from the electrode.

Computational model of the cortical circuit: Rationale, equations and

parameters

Rationale. The network model represents a cortical column, which contains pyramidal

(PY), spiny stellate (SC), basket (BC) and Martinotti (MC) cells from layers II-V. Note that

there is a large diversity of different types of interneurons in the cortex [35], but we restrict

ourselves to the most common [35] and the most important types in the context of our study.

BCs constitute about 50% of all interneurons in the cortex and form a major source of lateral

inhibition within the layers [35]. MCs are likely to be activated in all layers due to their specific
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form of axonal arborization. Moreover, MCs comprise a significant part of all interneurons in

infragranular layers [35, 45] where they specifically target excitatory cells in layer IV [45].

Excitatory neurons (PYs and SCs) [82] and inhibitory MCs [35] were modeled as regular

spiking cells with spike rate adaptation, whereas inhibitory BCs were modeled as fast spiking

cells. All interneurons had lower leak current, which resulted in a higher responsiveness in

comparison to the excitatory cells [52]. Cell dynamics was governed by Hodgkin-Huxley-type

kinetics, which includes fast Na+-K+ spike generating mechanism (for all types of cells), high-

threshold activated Ca2+ current (for PY and SCs) and slow calcium-dependent potassium

(AHP) current (for regular spiking cells).

Equations. The membrane potential is governed by the following equation [83]:

Cm
dVi

dt
¼ Iion Við Þ þ Isyni þ Iexti þ Zxi; ð4Þ

The ionic currents Iion(Vi), which are responsible for intrinsic cells dynamics, read:

Iion Við Þ ¼ gNam
3

i hi VNa � Við Þ þ gKn
4

i VK � Við Þ þ gL VL � Við Þ

þ gCa
VCa � Vi

1þ expð� ðVi � VthÞ=VshpÞ
þ gahp

ci
ci þ kd

VK � Við Þ ð5Þ

The gating variables mi, ni, hi evolve according to:

dxi
dt
¼ ax Við Þ 1 � xið Þ � bx Við Þxi; ð6Þ

where xi is one of gating variables. The functions αx(V) and βx(V) are:

am Vð Þ ¼
0:32ð54þ VÞ

1 � expð� 0:25ðV þ 54ÞÞ
; ð7Þ

bm Vð Þ ¼
0:28ðV þ 27Þ

expð0:2ðV þ 27ÞÞ � 1
; ð8Þ

ah ¼ 0:128 exp �
50þ V

18

� �

; ð9Þ

bh ¼
4

1þ expð� 0:2ðV þ 27ÞÞ
; ð10Þ

an ¼
0:032ðV þ 52Þ

1 � expð� 0:2ðV þ 52ÞÞ
; ð11Þ

bn ¼ 0:5 exp �
57þ V

40

� �

: ð12Þ

Calcium concentration ci obeys the following equation:

dci
dt
¼ � aCagCa

Vi � VCa

1þ exp � Vi � Vth
Vshp

� � �
ci
tCa

ð13Þ
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and governs calcium-dependent hyperpolarizing potassium current

IAHP ¼ gahp
ci

ci þ kd
VK � Við Þ; ð14Þ

which is responsible for spike-frequency adaptation. The synaptic input was modeled accord-

ing to:

Isyni ¼
P

jG
exc
ij s

exc
j ðV

exc
syn � ViÞ þ

P
jG

inh
ij sinhj ðV

inh
syn � ViÞ ð15Þ

where synaptic variables sexc;inhj are governed by the following equation:

dsj
dt
¼ aexc;inhs S Vj

� �
1 � sexc;inhj

� �
� b

exc;inh
s Vj ð16Þ

The function S(V) reads:

S Vð Þ ¼
1

1þ expð� 100ðV � 20ÞÞ
: ð17Þ

The term Iiext is introduced in the model simulations as the means to induce spiking in our

reduced neuron models in proportion to the probabilities predicted using the activating func-

tion. Thus, our network model assumes that cells are led to spike by the incoming current

delivered by the electrode with probabilities found using their axonal reconstructions. How-

ever, to effectively cause that spiking in the network we needed to trigger spikes in each cell.

Iiext has a different value for each cell and is tuned so that members of a given cell type show a

probability of spiking at the onset of the simulation as found by our estimates based on the

activating function. It is important to note that Iiext is not equal to the current magnitude given

by the electrode but is instead a parameter tuned so that the population of cells is activated in

proportion to our estimated probabilities of spiking. The term ηξi(t) corresponds to the fluctu-

ations in the afferent input (representing spontaneous background activity) which are given by

a white noise process (ξ) with standard deviation η. All the model parameters are listed in S2

Table (unless specified in the description of simulations), and the network structure and con-

nectivity are described in S3 Table and S4 Table respectively.

Cells were synaptically coupled by excitatory (AMPA) and inhibitory (GABAA) connec-

tions. The structure of synaptic connections represented a random graph. The strength and

probability of connections depended on the layer and the cell type, resembling structure of a

canonical cortical circuit [48]. Each layer contained relatively strong recurrent excitatory (PY-

to-PY and PY-to-BC) and lateral inhibitory (BC-to-PY) connections. According to canonical

architecture, PYs within layers II/III were driven by strong connections from layers IV and Va

[31, 48, 71]. Excitatory cells from layers IV and Va (slender-tufted PY) were strongly coupled

through recurrent excitatory connections within the layers [32, 82, 84]. In addition, PYs within

layer Va received moderate excitatory input from layer IV [32]. Inhibitory lateral connections

from interneurons to PY were more intense and strong than excitatory ones[85]. BCs formed

local connections that project to excitatory cells within their own layers [35]. In accordance

with experimental studies [45], MCs from layer IV projected to excitatory cells from layer IV

and II/III, whereas layer V MCs contacted excitatory cells from layer IV.

Supporting information

S1 Text. Description of the method used to estimate electric potential for a single elec-

trode. This text contains a more, detailed and technical description of the computational

methods used to estimate the electric potential for a single electrode and describes how the
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data presented in S1 Fig were generated.

(PDF)

S1 Fig. Electric potential under electrode plate and its effect on axonal fibers (the case of

anodal stimulation is shown). (a) Schematic representation of the electrode in the coordinate

system (X,Y,Z). Electrode is located on the surface (gray), center of the coordinate system cor-

responds to the center of the electrode. (b) Electric potential F(X,Y,Z) on the plane Y = 0

(marked by red in panel (a)). (c) Comparison of the electric potential induced by point source

(Eq (4), dashed curve) and finite-size square plate (Eq (3), solid curve) at varying depth Z and

fixed X = Y = 0. (d) Top panel shows schematic representation of the electrode (red) and hori-

zontally oriented axon (green) on (X,Z) plane (Y = 0). Bottom panels show potential F(x) and

activating function @2F(x)/@x2 along axonal fiber (anodal stimulation). (e,f) Activating func-

tion for horizontally (e) and vertically (f) oriented fibers as a function of coordinates X,Z on

the plane Y = 0. Black solid curves separate areas of depolarization (red) and hyperpolarization

(blue). Note that for cathodal stimulation the activating function is exactly opposite (area of

depolarization and hyperpolarization are interchanged).

(TIFF)

S2 Fig. Theoretical method faithfully reproduces current-distance relation observed in

experiments [36] (direct activation of cell by depth electrode). (a) Schematic representation

of depth electrode (point source of current) and pyramidal cell. Green color denotes axons,

purple and blue colors show apical and basal dendrites correspondingly. (b) Current-distance

relation for direct activation of pyramidal cells (initial segment) by depth electrode. Blue curve

represents average dependence across array of different reconstructions and rotations of pyra-

midal cells, gray area denotes mean plus/minus standard deviation. An ensemble of 15 cells

was used.

(TIFF)

S1 Table. Summary of datasets with reconstructed cells.

(PDF)

S2 Table. Model parameters for network simulations. PY–pyramidal cell, SC–spiny stellate

cell, MC–Martinotti cell, BC–basket cell.

(PDF)

S3 Table. Structure of the network. PY–pyramidal neurons, BC–basket cells, SC–excitatory

spiny stellate cells, MC–Martinotti cells.

(PDF)

S4 Table. Connectivity within the network. PY–pyramidal neurons, BC–basket cells, SC–

excitatory spiny stellate cells, MC–Martinotti cells.

(PDF)
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