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In brief

Using multi-omics data from monocyte-

derived macrophages before and after

influenza infection, Chen et al.

characterize transcriptional and

epigenetic changes in transposable

elements (TEs). They identify

epigenetically variable TE families with

binding sites for novel host factors. Their

findings suggest a role for TEs and KRAB-

ZNFs in inter-individual variation in

immunity.
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SUMMARY
Influenza A virus (IAV) infections are frequent every year and result in a range of disease severity. Here, we
wanted to explore the potential contribution of transposable elements (TEs) to the variable human immune
response. Transcriptome profiling inmonocyte-derivedmacrophages from 39 individuals following IAV infec-
tion revealed significant inter-individual variation in viral load post-infection. Using transposase-accessible
chromatin using sequencing (ATAC-seq), we identified a set of TE families with either enhanced or reduced
accessibility upon infection. Of the enhanced families, 15 showed high variability between individuals and
had distinct epigenetic profiles. Motif analysis showed an association with known immune regulators (e.g.,
BATFs, FOSs/JUNs, IRFs, STATs, NFkBs, NFYs, and RELs) in stably enriched families and with other
factors in variable families, including KRAB-ZNFs. We showed that TEs and host factors regulating TEs
were predictive of viral load post-infection. Our findings shed light on the role TEs and KRAB-ZNFs may
play in inter-individual variation in immunity.
INTRODUCTION

Influenza A virus (IAV) infection causes seasonal epidemics

worldwide and results in a wide range of disease severity be-

tween individuals. The underlying reasons for this variability

remain largely elusive1,2 but are determined by viral and host fac-

tors.3 Indeed, viral determinants alone cannot account for the

varied responses observed in individuals challenged by the

same virus.1,3,4 The human innate immune system, which in-

volves the modulation of several cellular pathways, is a critical

component of the response to infection.5 Upon sensing of a virus

such as IAV by recognition receptors, including RIG-I and TLR3,

several signal transduction pathways are triggered that further

modulate various transcription factors.6–8 These regulators,

including NF-kB/RELs, IRFs, and STATs, will engage the im-

mune transcriptional network through the alteration of chromatin

state, and in turn mediate the differential expression of hundreds

of genes involved in the pro-inflammatory and antimicrobial

programs to restrict virus replication and transmission.9,10 Host

factors involved in this cascade likely contribute to the variable
This is an open access article under the CC BY-N
response to IAV infection. Other factors also associated with

influenza pathogenesis and that influence the response include

pre-existing immunity, age, sex, obesity, and the micro-

biome.3,11 Yet whether there exist other host factors that are

important in determining the response to infection remains

unknown.

Transposable elements (TEs), which occupy half of the human

genome, play critical roles as cis-regulatory elements in various

human biological processes.12–14 Notably, a particular subclass

of TEs, endogenous retroviruses (ERVs), are derived from

ancient retroviruses and retain virus-like features that could stim-

ulate the innate immunity, suggesting a potential association

with infection and immunity.15–17 Confirming this, an ERV family,

MER41, contains regulatory sequences that are repurposed by

the host to regulate host genes in the primate innate immune

response.18,19 TEs are also drastically upregulated in human

immune cells upon extracellular stimuli, including viral infec-

tion.20–24 Meanwhile, loss of SETDB1 or SUMO-modified

TRIM28, which are associated with histone methylation and

Kruppel-associated box domain (KRAB) zinc finger proteins
Cell Genomics 3, 100292, May 10, 2023 ª 2023 The Authors. 1
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Figure 1. TEs are upregulated post-infection, but most expression changes are not correlated with viral load

(A) PCA plots of genes (left) and TE families (right) expression of individuals before and after infection. Individuals with African (AF) and European (EU) ancestry are

indicated.

(B) Bar plots show viral load (percentage viral reads) across individuals post-infection.

(C) TE upregulation at the family level in humanmacrophages in response to IAV infection. Up-/downregulated families were detected as families withR1 log2 fold

change (log2FC) in expression and adjusted p% 0.001 upon infection (top). The highest 20 upregulated families on the basis of fold change are highlighted. The

total number of examined families per TE subclass is indicated in parentheses. The vertical line separates the upregulated (left) and downregulated (right) families.

(legend continued on next page)
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(ZNFs), leads to the de-repression of TEs.23,25 Several studies

have also suggested that upregulated TE transcripts may play

a role in human innate immunity.26,27 Moreover, given that

many TE families have integrated after the divergence of pri-

mates from other mammals and are polymorphic in humans,13

they could represent host factors contributing to the variable

response to infection. Indeed, TE transcription is linked with

aging28–30 and microbiota,31 which are associated with the

response to infection.3,11

To test whether TEs and associated regulators are important

host factors in the variable response to infection, we used data

from amulti-omics study that profiled the transcriptome and epi-

genome before and after IAV infection in monocyte-derived

macrophages derived from 39 individuals.32 During the course

of IAV infection, the amount of viral transcripts produced is var-

iable and has been associated with disease severity.1,33–35

Moreover, the number of viral reads observed in the macro-

phages post-infection can be used as a surrogate for viral

load.36 Indeed, in a similar experimental system this metric

was shown to be stable and reproducible across individuals.37

Notably, by studying the infectedmacrophages from these 39 in-

dividuals, we observed extensive variation in the levels of viral

reads and discovered a set of TEs displaying high inter-individual

variability in chromatin accessibility following infection. By look-

ing for bindingmotifs in these variable regionswe identified novel

transcription factors likely contributing to the response to infec-

tion. Last, using TEs and these new host factors, we were able to

build models that were predictive of the response to infection as

measured by the number of viral transcripts.

RESULTS

Many TE families are upregulated following IAV
infection, but few are correlated with viral load post-
infection
To characterize individual differences in the response to IAV

infection, we used RNA sequencing (RNA-seq) data obtained

from monocyte-derived macrophages of 39 individuals before

and after exposure to IAV for 24 h (Table S1; see STAR Methods

and Aracena et al.32). As expected, we observed extensive gene

expression changes upon infection (Figure 1A). Even though all

samples engaged a strong transcriptional response to infection,

we noticed extensive variation in the levels of viral reads (from

3.77% to 65.7%; Figure 1B), suggesting varying capacity for

infection and/or to limit viral replication across individuals.

Consistent with this hypothesis, viral load was inversely

correlatedwith the expression fold change (FC) of several master

regulators of the innate immune response, including transcrip-

tion factors (TFs; e.g., IRF3, STAT2), adaptor molecules (e.g.,

MYD88, TICAM1) and interferon-inducible molecules (e.g.,

IFNAR1, IFNAR2) (Figure S1A). More globally, genes for which

the transcriptional response to IAV infection was found to be
(D) Dot plots of correlation coefficients between TE FC and viral load post-infectio

axis represents the correlation coefficients (R2, computed by linear regression mo

upregulated families (Figure 1C) are highlighted here. A positively and negatively

(E) Example of positive correlation between PABL_A-int FCs and viral load.

(F) Example of negative correlation between MER61F FCs and viral load.
correlated with viral load (R2 R 0.3, p % 0.05; Figure S1B)

were significantly enriched for pathways involved in the viral

response. Like protein-coding genes, TE transcription levels

were also significantly changed upon infection (Figure 1A). We

inspected TE regulation at the level of families and identified

204 upregulated and seven downregulated families (|log2FC| R

1, adjusted p % 0.001), respectively (Figure 1C; Table S2). In

line with prior studies, we observed that ERVs (also known as

LTRs) were the most commonly upregulated families (179 of

204 [85.5%]) and had the strongest FC (Figure 1C, bottom).

Next, we looked at the correlation between TE expression FCs

and viral load post-infection. Among the 902 examined families,

we only identified 17 and 77 families that were positively and

negatively correlated with viral load (R2R 0.3, p% 0.05), respec-

tively (Figure 1D; Table S3). For example, PABL_A-int was posi-

tively correlated with viral load (Figure 1E), while MER61F was

negatively correlated with viral load (Figure 1F). Families from

the LTR subclass, and ERV1 in particular, were slightly enriched

for being positively correlated with viral load (Figure S1C). In

contrast, families from the DNA subclass were prone to nega-

tively correlate with viral load. Taken together, we observed

significant upregulation of ERVs following IAV infection but the

upregulation across individuals was correlated with viral load

for only a small number of repeat families.

TEs contribute to dynamic chromatin regions in
response to influenza infection
Beyond transcriptional changes, viral infection also induces signif-

icant epigenetic changes in immune cells.10Wewanted to explore

whether epigenetic profiles at TEs could help explain the inter-in-

dividual variability in the response to IAV infection. We used data

profiling 35 of the 39 samples before and after infection using

transposase-accessible chromatin using sequencing (ATAC-seq)

and chromatin immunoprecipitation followed by sequencing

(ChIP-seq) technologies characterizing various histone marks

(Table S1; see STAR Methods).32 Across these samples, we ob-

tained an average of 137,478 peaks for ATAC-seq, 73,190 for

H3K27ac, 230,292 for H3K4me1, 33,700H3K4me3, and 209,119

for H3K27me3 (Figure 2A; Table S4). The number of peaks across

all marks was slightly higher in infected compared with non-in-

fected (NI) samples. We observed that on average, 19.5%–

47.6% of peaks were in TEs across marks (Figure 2B; Table S4).

These proportions were found to be slightly but significantly

increased post-infection for H3K4me3 and H3K27me3 (p %

0.05, Student’s t test). To determinewhich regionswere epigenet-

ically variable between individuals, we measured the coefficients

of variation (cv) in consensus peak regions32 and identified similar

proportions of variable regions in TE and non-TE regions for most

marks (0.4%–6.4%, cv R 0.5; Figure 2C; see STAR Methods).

Compared with non-TE regions, we observed higher variability of

H3K4me3 (anaverageof7.3%forTEand3.6%fornon-TEregions)

and lower variability of H3K27me3mark (0.3% for TE and 1.3% for
n. The x axis represents the log2FC of each family computed by DESeq2. The y

del) between expression FCs and viral load among 39 individuals. The same 20

correlated family (green) is shown as examples in (E) and (F), respectively.
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non-TE regions) in TEs, respectively. Given that H3K4me3 is typi-

cally associatedwith transcription, these results suggest variability

of TE transcription before and after infection.

To explore the TE families with accessibility changes upon IAV

infection, we compared the normalized number of accessible in-

stances per family as measured by ATAC-seq in infected versus

non-infected samples (Figure S2A). We identified 37 families with

enhanced accessibility exhibiting 1.5-fold (adjusted p % 0.05) or

greater abundance of peak-associated instances in infected rela-

tive to non-infected samples (Figure S2B; Table S5). For instance,

we observed on average 584.2 peaks overlapping the THE1B

repeat family in the flu samples, while only 79.5 were observed in

theuninfectedsamples.Theenrichmentobserved in these families

can also be visualized relative to a random genomic background

(Figure 2D) and include MER41B that was previously reported in

K562, He-La, and CD14+ cell lines.19 Notably, some families dis-

played a high degree of variation between samples post-infection

(e.g., LTR12C, highlighted in blue). A similar analysis revealed that

enhanced families were also frequently enriched for histone

modifications, especially H3K27ac and H3K4me3 (Figure 2E).

For instance, many H3K27ac peaks overlapped with THE1B and

MER41B in infected samples (Figure S2C).

One of the advantages of comparing two conditions is that we

could also look for TE families showing reduced accessibility

upon infection. We identified 39 such ‘‘reduced families’’

(Figures 2F and S2D; Table S5). For instance, although on

average 54.3 peaks overlapped L1M4c in non-infected samples,

this number dropped to 26.0 in infected samples. Notably, 24 of

the 39 (61.5%) reduced accessibility families were LINEs. This

contrasts with the fact that only two out of 37 (1.7%) enhanced

families were LINEs. Although some families with enhanced

accessibility showed high variability between individuals, fam-

ilies with reduced accessibility displayed a uniform profile across

most individuals (Figure 2F). Last, by inspecting the enrichments

of other histone modifications, we identified seven families with

reduced H3K27ac (Figure 2G; Table S5). Taken together, these

results highlight many epigenetically changing regions of the

human genome upon IAV infection are in TEs.

Several TE families display high inter-individual
variability upon infection
Metaplots and heatmaps of chromatin accessibility further

supported the high variability observed in some of the
Figure 2. TEs contribute to dynamic chromatin regions in human mac
(A) Number of peak regions detected in infected and non-infected samples for A

(B) Proportion of ATAC-seq and histone marks peaks that overlap repeat region

infected samples for each mark.

(C) Number and proportion of variable peak regions overlap TE and non-TE region

(cv)R 0.5 (see STARMethods). Bars represent the proportions of peak regions th

Infected (flu) and non-infected (NI) samples are shown separately.

(D and F) Distribution of log2 enrichment levels of families with enhanced (D) an

families were identified using the optimized methodology as we described in Figur

the corresponding random distribution (see STAR Methods). Families with a high

value, cv R 0.5) are highlighted in blue color (Table S5). The dotted line at ‘‘0’’

infected samples separately.

(E andG) Heatmap of log2 fold enrichments (flu/NI) of families with enhanced (E) an

H3K4me1, H3K4me3, and H3K27me3). The fold enrichment was computed by div

by non-infected samples. Two-tailed paired Student’s t test was used to compu
enhanced families post-infection. For instance, upon infection,

THE1B (Figures 3A and S3A) showed less variation in

chromatin accessibility across individuals than LTR12C

(Figures 3B and S3A). To better understand why, we performed

semi-supervised clustering analysis of the chromatin accessi-

bility of the 37 enhanced families among the 35 infected sam-

ples (Figure 3C). This analysis revealed three groups of individ-

uals post-infection. One outlier sample (EU37), was observed to

consistently have the lowest fraction of reads in peaks (FRiP)

scores among both infected and non-infected samples, sug-

gesting a technical artifact rather than a biologically distinctive

response to flu. Using this approach, a total of 15 enhanced

families had the highest variability (Figure 3C, bottom), which

we defined as ‘‘high variable families,’’ especially between

group 1 and group 3 individuals. In contrast, 22 enhanced

families showed consistent enrichment patterns between three

individual groups and were defined as ‘‘low variable families.’’ A

similar analysis in the non-infected samples did not reveal

any groupings, suggesting an association specific to IAV infec-

tion (Figure S3B). Group 3 individuals tended to be slightly older

and present higher viral loads compared with other groups, but

the differences were not statistically significant (Figures S3C

and S3D).

Next, we asked what fraction of repeat loci (instances) from

the high variable families were contributing to the variability

observed between individuals. Unsupervised clustering anal-

ysis of these loci revealed that many displayed high variability

post-infection (Figure S3E). Among more commonly (R25% in-

dividuals of one group) and rarely (<25%) accessible instances

from high variable families, we observed that they were often

from group 3 individuals (Figure S4A; STAR Methods). To

further identify features that were associated with variability in

accessibility in TEs, we performed a comparative analysis

between high and low variable families. We focused on flu-spe-

cific instances (ATAC-seq peak present in R1 infected but not

in non-infected samples) and found that high variable families

had a significantly higher proportion compared with low vari-

able (p = 2.4 3 10�6, Student’s t test) (Figures 3D and S4B).

In contrast, we did not observe significant differences in the

estimated evolutionary age (Figures 3E and S4C). Overall,

compared with low variable families, we did find that high var-

iable families had a significantly higher proportion of instances

that overlap ATAC-seq peaks, that their repeat consensus
rophages in response to influenza infection
TAC-seq and histone marks.

s. Two-tailed paired Student’s t test was used to compare infected and non-

s. Variable regions were determinedwith the threshold of coefficient of variation

at are variable, while the dotted line represents the corresponding peak counts.

d reduced (F) accessibility in infected and non-infected samples. Candidate

e S2A. The enrichment level refers to the fold enrichment per sample relative to

variability of enrichment levels between individuals (SD divided by the mean

represents the random distribution. SDs were computed in non-infected and

d reduced (G) accessibility for ATAC-seq and each histonemark (i.e., H3K27ac,

iding the average normalized number of peak-associated instances in infected

te the p values (*p % 0.05, **p % 0.01, and ***p % 0.001).
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Figure 3. Uncovering a set of TE families that display high individual variability in chromatin accessibility post-infection

(A and B) Peak count frequency of ATAC-seq peaks overlapped with THE1B (A) and LTR12C (B). Red and gray lines represent the infected or non-infected

samples. Compared with THE1B, LTR12C shows a higher SD between infected samples. Peaks overlapping each TE instance are centered at the median

position of peak summits across samples. Upstream and downstream regions (2.5 kb) are shown.

(C) Heatmap of log2 enrichment levels of 37 families with enhanced accessibility in 35 infected samples. Semi-supervised clustering analysis was performed.

Three individual groups are shown with an outlier sample. High variable families are highlighted in blue color and have higher enrichment levels in group 3 in-

dividuals than group 1 individuals. Enrichment level refers to the abundance of accessible instances in infected samples relative to the background.

(D–H) Comparative analysis of the proportion of flu-specific instances among all accessible instances (D), evolutionary ages (E), proportion of accessible in-

stances among all instances (F), lengths (G), and GC contents (H) of accessible instances between high variable and low variable families. p values, computed

using two-tailed Student’s t test, are shown above the dot plots.
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length was longer and that they had a higher GC content

(Figures 3F–3H and S4D). Taken together, we identified 15 TE

families with increased accessibility upon infection and high

epigenetic variability between individuals and unique sequence

features.
6 Cell Genomics 3, 100292, May 10, 2023
Enhanced and reduced TE families act as cis-regulatory
elements in the response to influenza infection
Next, we asked if TE families with enhanced and reduced

accessibility acted as cis-regulatory elements regulating nearby

genes in response to IAV infection. We found that compared with
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random genomic regions, upregulated genes were more likely to

be located near instances from both low variable and high vari-

able families that become accessible upon infection (flu-specific

instances) (Figure 4A). Lower enrichments were observed for

high variable compared with low variable families, indicating

their weaker association to gene expression. In contrast, we

observed a depletion of upregulated genes near non-infected-

specific instances (accessible in R1 non-infected but not in

infected samples) from TE families with reduced accessibility

(Figure 4A). Notably, the opposite was observed for downregu-

lated genes (Figure S5A). These effects were stronger for flu-/

NI-specific instances compared with instances associated

with shared peaks (Figure S5B). Splitting the enrichment at

the TE family level, we observed consistent overrepresentation

of accessible instances post-infection near upregulated genes

within a 100 kb window for most enhanced families (Figure 4B,

red color).

Next, we investigated the properties of chromatin post-infec-

tion more broadly by examining DNA methylation (Figure 4B,

blue color) and sets of histone modifications (Figure 4B, green

color). Instances from high variable families were highly DNA

methylated (an average of 83.8%) and prone to overlap with

H3K27me3 (47.3%), meanwhile they had a relatively small frac-

tion of accessible instances overlapped with active marks (e.g.,

15.1% for H3K27ac and 31.4% for H3K4me1). In contrast, low

variable families were highly enriched for active histone marks

(33.2% for H3K27ac and 60.7% for H3K4me1). Overall, low var-

iable and high variable showed distinct chromatin patterns

following infection suggesting different activation patterns and

potential regulatory impact.

Finally, to further investigate which genes were potentially

regulated by these TE-embedded sequences upon infection,

we analyzed the list of nearby differentially expressed genes (%

50 kb) and observed an enrichment in various immune-related

pathways (Figure S5C). Next, we selected the repeat loci from

the enhanced and reduced TE families with significant changes

in accessibility and active histone modifications (H3K4me1

and/or H3K27ac). A total of 420 upregulated genes were found

in proximity (%50 kb) to repeat loci from enhanced families and
Figure 4. TE families with accessibility changes may play critical regu

(A) Fractions of upregulated genes near accessible TEs relative to the random

genomic intervals relative to nearby accessible TEs. Flu-specific instances from

families are considered. The total number of instances are indicated in the figur

accessible instances 1,000 times (shaded area, 95%confidence intervals), sugges

proportions of upregulated genes are compared with corresponding expected d

(B)Propertiesof highvariableand lowvariable familiesoverlappedwithhistonemark

nearest significantly upregulated genes within 100 kb (log2FC R 0.5, adjusted p v

averageDNAmethylation levels are shown in bluecolor (secondcolumn). Thenumb

in green color (third to seventh columns). The color ranges (proportion of accessib

(C) Correlation between the accessibility of TE-loci with significant changes of bo

H3K27ac) and adjacent gene expression (within 50 kb) post-infection (see STAR

families and downregulated genes are shown for reduced families. Strongly corr

(D) Example genomic view of an accessible LTR12C instance and MER1B insta

LTR12C and MER1B are highlighted as the shaded area with the increased acc

shaded area denotes the distribution of the average reads per million (RPM) values

are shown in blue color for non-infected samples and red color for infected samp

color separately for non-infected samples, while forward and reverse transcripts

(E) Positive correlation between the accessibility of LTR12C andMER1B instances

the linear regression model.
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168 downregulated genes from reduced families (Table S6). Of

these, we found 17, 64, and 11 immune-related genes near in-

stances from high variable, low variable, and reduced families,

respectively. The correlation between the accessibility of many

of these loci and their adjacent genes further supports coordi-

nated regulation (Figure 4C). For example,GBP5 gene is an inter-

feron-induced gene and exhibits antiviral activity against viral

infection.38 An LTR12C instance and a MER1B instance with

enhanced chromatin accessibility accompanied by an augmen-

tation of H3K27ac and H3K4me1 upon infection can be found

near this gene (Figure 4D). The accessibility of the two instances

was positively correlated withGBP5 expression level post-infec-

tion (Figure 4E). Furthermore, this specific LTR12C instance was

previously validated to regulateGBP5expression in cell lines.39 In

a different LTR12C instance near the upregulated immune-

related gene IL10RA, transcription was initiated at the open

chromatin regionwithin the repeat itself andwas flu-specific (Fig-

ure S5D). We also confirmed the chromatin change at the

LTR12C instance that was shown to be a promoter regulating

GBP239 and a MER41 instance that was shown to be an

enhancer regulating AIM2 (Figures S5E and S5F).19 Last, we

identified several immune-related genes that were potentially

regulated by adjacent instances from enhanced families, such

as the TE gene pairs of MER52A-GBP1/3, LTR12C-TRIM22,

THE1C-IFI44, THE1B-PSMA5, MLT2B3-CLEC4E, and tigger3a-

ADAM19 (Figures S5G and S5L). Thus, some of the instances

from the enhanced and reduced TE families behave like cis-reg-

ulatory elements regulating nearby immune genes.

High variable families contribute transcription factor
binding sites for potentially novel host factors in the
response to infection
To look for regulatory proteins associated with enhanced and

reduced families, we aggregated the reads in open chromatin re-

gions across samples to fine-map the actual peak summit on

each TE instance, which was termed a ‘‘centroid.’’ After the

removal of instances with inaccurate or inconsistent annotations

(Figure S6A), we re-mapped the reads from each TE instance to

its TE family consensus sequence. For example, we can visualize
latory roles in the response to influenza infection

distributions. Proportions of upregulated genes are shown within each of the

high variable and low variable families and NI-specific instances from reduced

e legend. Expected distributions were computed by randomizing each set of

ting a statistical significance of p < 0.05 for values outside the distributions. The

istributions.

s andDNAmethylation. Thenumberandproportionof accessible instanceswith

alue % 0.05) are shown in red color (first column). The number of CG sites and

er andproportionof accessible instances overlappedwitheachmark are shown

le instances) are scaled by the minimum and maximum values for each mark.

th accessibility (ATAC-seq) and active histone modifications (H3K4me1 and/or

Methods). Positively correlated upregulated genes are shown for enhanced

elated immune genes (R2 R 0.3, p % 0.05) are highlighted.

nce potentially upregulating adjacent GBP5 gene expression post-infection.

essibility, expression, H3K27ac, H3K4me1, and H3K4me3 activity. The dark

and the light shaded area denotes the SD. Signals of various epigenetic marks

les. For RNA-seq, forward and reverse transcripts are shown in blue and green

are shown in red and brown color separately for infected samples.

withGBP5 expression level post-infection.R2 and p values were computed by
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the peak centroids identified along the consensus sequences for

THE1B, a low variable family (Figure 5A), and LTR12C, a high var-

iable family (Figure 5B).Weobserved a higher complexity of open

chromatin regions for LTR12C compared with THE1B. Centroids

were mainly detected at about 180 bp for THE1B and were scat-

tered between 150 and 600 bp for LTR12C. Next, we defined a

‘‘TE peak region’’ as a location on the consensus sequence con-

taining peak centroids from five or more instances, starting with

the region with the largest number of instances, named region

1, and so on. For most families, more than 80% of instances

were accessible in one of the top 5 TE peak regions (Figure 5C,

inset). The location of these TE peak regions can be shown on

their consensus sequence and reveals that they are quite

dispersed (Figure 5C). For example, 52% MER41B instances

were accessible in region 1 located about 380 bp, while another

18%and 11%of themwere accessible in region 2 (about 170 bp)

and region 3 (about 570 bp) separately. Notably, compared with

low variable families, high variable families had significantly more

TE peak regions (p = 0.022, Student’s t test) and lower propor-

tions of accessible instances in the top TE peak region (p =

0.0037, Student’s t test) (Figure S6B). This is consistent with

the longer length of high variable families (Figure 3G).

To further investigate themolecular mechanism underlying the

enhanced families, we examined the TF binding motifs that were

enriched in each TE peak region (Figure 5D; Figure S6C). The

enrichment of binding sites for STATs and IRFs in MER41B

were previously reported.19 Here we found that the STAT related

motifs mainly came from MER41B instances that were acces-

sible in region 1, while IRF-related motifs came from region 3.

STATs were also observed in various Tigger3 and MER44

families, while IRF-related motifs were also enriched in various

MER44 families, LTR8, and Tigger7. Other motifs of interest

observed in consensus peak regions included FOSs/JUNs,

BATFs, NFkBs/NFYs, and RELs. Notably, this instance-level

motif analysis also revealed distinct sets of binding motifs

between high variable and low variable families (Figure 5D). Spe-

cifically, low variable families were enriched for motifs of known

immune regulators (e.g., BATFs, FOSs/JUNs, IRFs, STATs,

NFkBs, NFYs, RELs), while high variable families were enriched

for other motifs (e.g., ASCLs, CTCFs, EBFs, MAZ, MYOG,

PLAGs, TFAP2s, various KRAB-ZNFs).

We speculated that the binding of TFs like KRAB-ZNFsmay be

associated with the individual epigenetic variability observed in
Figure 5. Low variable and high variable families contribute binding site
(A and B) Distribution of chromatin accessibility along the THE1B (A) and LTR12C

reads permillion (RPM) values across accessible instances. Infected and non-infe

of the consensus sequence length) are shown. Heatmaps (bottom) show z-scaled

zero are shown in white color and the deletions relative to the consensus sequenc

per instance. The total number of instances are indicated as the y axis.

(C) Distribution of TE peak regions on each enhanced family. A TE peak region w

instances. Here, the locations and proportions (%) of the top-five TE peak regions

proportion among accessible instances (R10%) in each TE peak region. The y

instances in TE peak regions. The inset bar plot shows the proportion of instances

proportion, region 2 refers to the second highest, and so on. High variable famili

(D) TF binding motifs enriched in enhanced families. Same motifs enriched acros

instances are shown as representatives. Black boxes highlight candidate motifs re

boxes highlight top candidate motifs recognized by potential novel host factors e

color. Mean TF activity was obtained from Aracena et al.32 Missing values are in
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high variable families post-infection. For example, by clustering

accessible HERVE-int instances, we found that instances with

peaks in regions 3 and 4, which were enriched for TFAP2 and

ZNF460 motifs (Figures 5D and S6C), were prone to be acces-

sible in group 3 rather than group 1 individuals (Figures S6D

and S6E). Supporting the potential role of KRAB-ZNFs in high

variable families, we observed that the binding sites for KAP1

andmultiple ZNF TFs40 were enriched in some high variable fam-

ilies (Figure S7A; Table S7); Moreover, the binding regions signif-

icantly overlapped the open chromatin regions in some high var-

iable families post-infection (Figure S7B). Because of the limited

number of KRAB-ZNF motifs in the JASPAR database, we used

another source of KRAB-ZNF motifs41 to identify motifs across

the accessible instances from enhanced families. We observed

enrichment of KRAB-ZNF motifs in high variable families but

not in low variable ones (Figure S7C; Table S7). KRAB-ZNFs

are commonly found to interact with the KAP1/TRIM28 machin-

ery to repress TEs through DNA and histone repression,42,43 thus

the enrichment of KRAB-ZNF binding sites and motifs in high

variable families is also consistent with the high DNA and histone

repression observed in these families (Figure 4B).

Finally, we performed a similar analysis to examine the TE

peak regions and corresponding motifs enriched in the 39

families with reduced accessibility (Figures S8A and S8B). We

identified the enrichment of IRF1, MEF2A/B/C/D and SPI related

motifs in these families. Notably, L1MA2, L1MA4, L1MA6,

L1MA7, and L1MA8 were significantly enriched for MEF2 related

motifs. MEF2 TFs are central developmental regulators,44 which

are also required in the immune response that functions as an

in vivo immune-metabolic switch.45 Last, by further inspecting

TFs with their binding motifs that were enriched in enhanced

and reduced TE families, we found that TFs bound to high vari-

able families were mainly enriched in transcription-related path-

ways while TFs bound to low variable and reduced families were

mainly enriched in immune-regulated pathways (Figure S8C).

Taken together, we concluded that high variable families have

a unique profile and are associated with potentially new host

factors, including KRAB-ZNFs.

TE-associated host factors can be used to predict viral
load post-infection
Finally, we asked whether TE and TE-associated host factors

can be predictive of viral load post-infection. As we previously
s for distinct sets of potential host factors in the response to infection
(B) consensus sequence. Distribution plots (up) show aggregated (summed)

cted samples are shown separately. Upstream and downstream regions (±20%

RPMvalues per accessible instance. In the heatmap, scaled RPM values below

e are shown in gray color. The centroid (blue triangle) refers to the peak summit

as previously defined as a location within a TE that has a peak centroid in R5

are shown on each consensus sequence. The number in each dot refers to the

axis shows the family name, consensus name, and the number of accessible

in each TE peak region. Region 1 represents the TE peak region with the highest

es are in blue color.

s TE peak regions are aggregated. TE peak regions with the most number of

cognized by known immune regulators enriched in low variable families; brown

nriched in high variable families. High variable families are highlighted in blue

gray color.
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noted, the expression changes of most TE families were not

correlated with viral load (Figure 1D), however, we further in-

spected the TE expression levels in non-infected and infected

samples, respectively. Unlike expression changes, we observed

that the basal and post-infection expression levels of many fam-

ilies were correlated with viral load (Figures 6A and S9A;

Table S3). Basal expression of most TE families had comparable

correlation coefficients, in contrast to post-infection expression

levels. Combining reads across families, we found that there

was a strong inverse correlation between the total amount of

basal TE transcripts and viral load post-infection (R2 = 0.45,

p = 2.69 3 10�6; Figure 6B). Inverse correlations were also

observed for each of the four main TE subclasses (Figure S9B).

As expected, the basal activation of the immune system

(interferon signature) was also inversely correlated with viral

load (Figure 6C; R2 = 0.38; see STAR Methods).

To explore the role of other factors known to be associated

with the regulation of TEs, we inspected both TRIM28 and

SETDB1. We first examined the FC and observed a strong corre-

lation to viral load post-infection for SETDB1 but not for TRIM28

(Figure S9C). Similarly, an inverse correlation was observed

between SETDB1 basal expression and viral load (R2 = 0.42,

p = 7.83 3 10�6) but not for TRIM28 (R2 = 0.026, p = 0.32)

(Figures 6D-6E). We then examined the basal expression levels

of all KRAB-ZNFs and observed a significantly higher correlation

with viral load compared with immune and non-immune-related

genes (Figure 6F; Table S7). Next, looking at the average DNA

methylation in TEs pre-infection, we did not observe a correlation

with viral load (Figure S7D). Age is another factor that is poten-

tially associated with TEs, even though it was not observed to

correlate with viral load in our data (Figure S9E). We noted that

the variability of basal TE transcription increased as the age

increased (Figure S9E). Actually, the inverse correlation

observed between basal TE transcripts and viral load became
Figure 6. TEs and TE-associated host factors are predictive of viral loa

(A) Distribution of correlation coefficients (R2) between the TE expression level (TP

viral load post-infection. Log2FCs and TPM values were calculated as we previous

are shown in Figure S9A. R2 values were computed using the linear regression m

(B) Inverse correlation between the amount of basal TE transcripts and viral load.

counts in TEs among the global transcripts. The black line represents the regressio

(C) Inverse correlation between the basal type I interferon (IFN) signature (score)

value) of genes involved in type I interferon signaling pathways (Table S8).

(D and E) Correlations between the basal expression levels of SETDB1 (D) and TR

(R2 = 0.03) basal expression is associated with viral load. Basal SETDB1 express

before infection (Figure S9I).

(F) Violin plot of the correlation coefficients between the basal expression of KRA

ZNFs was obtained from Imbeault et al.40 and immune genes were obtained f

highlighted.

(G) Violin plot of the correlation coefficients between basal TF expression levels (TP

paired Student’s t test, and the p value is also shown. Black bars represent mean

used for themotif analysis and Immune TFswere obtained from the InnateDB data

different categories of families, and asterisk highlights the motifs that are enriche

(H) Multivariable regression model developed for the prediction of viral load using

TFs to viral load that are also associated with TEs were used. The model was g

adjusted R2 are shown.

(I) Multivariable regression model developed for the predictive of viral load using t

same approach (see STAR Methods), a subset of features were selected amon

methylation, ZNF566, ZNF611, and PLAGL1.

(J) Multivariable regression model developed for the predictive of viral load using t

included all the non-immune factors as well as STAT2 to generate the model. ST
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even stronger (R2 = 0.76, p = 4.6 3 10�7) with the exclusion of

individuals older than 40 years old (Figure S9F).

We continued our analysis of the host factors that are associ-

ated with epigenetic variability in high variable families. First, we

examined the correlations between basal expression levels of all

expressed TFs and viral load (Figure 6G). As expected, known

immune-related TFs had higher correlation coefficients with viral

load compared with non-immune TFs (p = 3.73 10�3). Focusing

on TFs associated with enhanced and reduced TE families, we

found that many were strongly correlated with viral load

(Figure 6G). We further found that the expressions of ten

KRAB-ZNF genes were strongly correlated with the aggregated

accessibility of high variable families post-infection (Table S7; R2

R 0.3, p % 0.05). After integrating these results, we identified

PLAGL1 and three KRAB-ZNFs (i.e., ZNF519, ZNF566, and

ZNF611) as top candidate host factors (Figure S9G; Table S7).

Notably, PLAGL1, which is a family member of PLAG1, also

encodes a C2H2 zinc finger protein that could be repressed by

SUMOylation.46

Last, we wanted to test our ability to combine all this informa-

tion into predictive models to estimate the variable responses to

IAV infection. We started with IFN related features as variables

including the IFN signature and age to achieve a model explain-

ing 36% of the variation (Figure S9H). Next, we included the top

six immune factors bound to low variable families that were

correlated with viral load as variables and used a stepwise

approach to select the final set of features in a generalized linear

model (see STAR Methods). Age was also included as an inter-

action term variable because of its influence on multiple vari-

ables. Using this approach, we were able to build a better model

(adjusted R2 = 0.625) (Figure 6H). Afterward, we looked at all the

TE-related host factors described above in a correlation matrix

chart with viral load (Figure S9I). Notably, when we included six

non-immune factors associated with TEs and age in our model,
d post-infection

M) in non-infected and infected samples and TE expression fold changes with

ly described. Four TE subclasses are shown separately. Correlation directions

odel.

The basal TE transcript refers to the proportion of aggregated normalized read

n line.R2 and p values computed using the linear regression model are shown.

and viral load. The IFN signature represents the median expression level (TPM

IM28 (E) and viral load. It shows that SETDB1 (R2 = 0.42) rather than TRIM28

ion is also positively correlated with the basal TE transcripts and IFN signature

B-ZNFs and other genes with viral load post-infection. A list of human KRAB-

rom the InnateDB database.51 The top 10 most correlated KRAB-ZNFs are

M values) and viral load. Immune and non-immune TFs are compared using the

values. TF genes were obtained from the JASPAR database as we previously

base. Only expressed TFs are shown. Colors indicatemotifs that are enriched in

d in multiple categories.

the expression levels of immune TFs in the basal state. The top six correlated

enerated as we described in STAR Methods. The formula and variables and

he TE-associated non-immune (novel) host factors in the basal state. Using the

g the age and six non-immune factors, including SETDB1, TE transcripts, TE

he TE-associated immune and non-immune host factors in the basal state. We

AT2 was selected on the basis of the correlation to viral load.
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Figure 7. Regulatory models of TEs in response to influenza infection in human primary macrophages

(A) Epigenetic states of enhanced and reduced families in macrophages pre-infection. Before infection, high variable and low variable families are not accessible

because of the lack of corresponding TFs binding or repression by high DNA methylation or histone methylation. In contrast, families with reduced accessibility,

also called reduced families, are accessible and bound by a distinct set of known immune-related (IR) TFs, including MEF2s and SPIs. High variable families are

relatively longer and show a higher DNA and histone methylation level compared with other families.

(B) Epigenetic states of enhanced and reduced families in macrophages post-infection. Chromatin accessibility of high variable and low variable families are

enhanced post-infection. High variable families are boundmainly by potential novel host factors (non-IR TFs), includingmultiple KRAB-ZNFs such as ZNF566 and

ZNF611; low variable families are bound mainly by known immune-related regulators (IR TFs), including IRFs and STATs. Reduced TEs are prone to be less

accessible because of the decreased expression of various TFs (e.g., MEF2s) post-infection. High variable families display a high variability in accessibility post-

infection and may differentially regulate nearby genes between individuals.
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we obtained a slightly better fit with a model that includes TE

transcripts and the new factors including ZNF566, ZNF611,

and PLAGL1 (adjusted R2 = 0.655) (Figure 6I). Adding the top

correlated immune TF (i.e., STAT2) further increased the accu-

racy of the model (adjusted R2 = 0.758) (Figure 6J). As expected,

if we used age as an independent variable in these models, the

predictive accuracies decreased significantly (Figure S9J). Alto-

gether, we concluded that TEs and TE-related host factors can

be used to predict viral load in macrophages post-infection.

DISCUSSION

Inter-individual variability in disease is at the core of precision

medicine. By examining TE transcription and epigenetic state

in macrophages derived from 39 individuals, we provided new

insights into the contribution of TEs to the response to IAV infec-

tion. Specifically, we discovered a set of 15 TE families with high

inter-individual variability in chromatin accessibility post-infec-

tion (Figure 3C). Besides the distinct sequence features and

chromatin states they promote, we found that high variable fam-

ilies enrich for TF binding motifs of potentially new host factors in

the response to infection (e.g., KRAB-ZNFs); in contrast, other

TE families of interest mainly enrich TF binding motifs for known

immune regulators (Figures 7, S6, S7). Given that many of the TF

binding motifs enriched in high variable families were associated

with proteins that are known to interact with the KAP1/TRIM28

machinery suggests that this pathway may contribute to the in-

ter-individual epigenetic variability post-infection. We also spec-

ulate that the enhanced accessibility in these families may be

because of gradual chromatin de-repression led by the reduced

expression of SETDB1 or TRIM28 upon infection.

In this study, multiple chromatin regions were identified for

each TE family (Figures 5C and 5D). For example, we observed
the top peak region of MER44D to be significantly enriched for

FOS/JUN related motifs, while another region was enriched

mainly for IRF-related motifs. Thus, the same TE family appears

to contribute multiple binding regions recognized by different

TFs, suggesting that each family may play complex regulatory

roles upon infection. Additionally, by comparing the TE enrich-

ment levels between infected and non-infected monocyte-

derived macrophages following IAV infection, we were able to

identify families with reduced chromatin accessibility (Figure 2F).

These families would have beenmissed by previous approaches

that relied on an expected distribution as control.18,19,47,48 More-

over, although many LINE families were found to have reduced

accessibility post-infection, we still observed two LINE families

(L1PA12 and L1M2a) with enhanced accessibility. This may be

due to the absence in these families of TFBS found enriched in

their counterparts with reduced accessibility (e.g., SPIs,

MEF2s). On the other hand, the observed epigenetic changes

in the LINE families with reduced accessibility may not affect

their transcription which were slightly upregulated post-

infection.

Our data also revealed a strong inverse correlation between

the basal TE transcripts and viral load post-infection. In line

with the involvement of TE transcripts in the activation of innate

immunity,26,27 we speculate that TE transcription in macro-

phages before infection may be involved in the activation of

the innate immune response to IAV infection. To further support

this claim, we combined TE basal expression levels with other

factors identified in the analysis of high variable families, such

as TE DNA methylation, SETDB1, and PLAGL1 expression

levels, and were able to build a model that was predictive of

the response to infection (Figures 6H–6J). Some polymorphic

TEs were also found to be expression quantitative trait loci

(eQTLs) for genes upon infection, such as TRIM25,49 thus we
Cell Genomics 3, 100292, May 10, 2023 13
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speculate that polymorphic TEs may act as enhancers and

further contribute to the variable response to infection.

Altogether, our data depict major epigenetic shifts in TEs in hu-

man macrophages upon infection, opening mostly in LTR/ERVs

and closing in LINEs. It is intriguing to consider that TEsmight not

only be an important source of regulatory innovation between

species18,19 but also of regulatory variation within a population.

Limitations of the study
The proximity of these variable TE loci to important immune

genes suggest that they may contribute to the variable response

to influenza infection, although further work will be needed to

demonstrate a causal link between variation in TE activity and

viral control. Another aspect that would be interesting to dissect

is whether the variation observed is consistent over time or a

consequence of the fact that we looked at a specific time point.

It will also be interesting to expand this analysis and study the

contributions of TEs in other immune cells (e.g., CD4+ T cells,

pneumocytes, and dendritic cells5,50) and to challenges with

other pathogens. More samples will be needed to improve and

validate the predictive model we constructed using TEs and

TE-associated host factors.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d All datasets used in this study have been deposited,32 and are available at the European Genome-phenome Archive (EGA) as

follows: RNA-seq & ATAC-seq & ChIP-seq – EGA: EGAD00001008422; and WGBS – EGA: EGAD00001008359.

d We also constructed a versatile browser (https://computationalgenomics.ca/tools/epivar), which allows users to explore

genomic tracks for gene expression, chromatin accessibility, histone modifications, DNA methylation.
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d Scripts for main analyses are available at https://github.com/xunchen85/VariabilityInTEs and Zenodo with the linked https://

doi.org/10.5281/zenodo.7532781.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Materials and sequencing data generation
To study the inter-individual variability in TEs following influenza A (IAV) infection, we collected primary macrophage cells from pe-

ripheral blood mononuclear cells of 39 healthy female individuals with African American (n = 19) and European-American (n = 20)

ancestry between 18 and 54 years old. We then infected macrophages (cultured for 6 days) with IAV for 24-h and collected both

non-infected and infected macrophages for multiple sequencing assays. The details were described here.32 Briefly, we conducted

the ATAC-seq assay to study chromatin accessibility. Using chromatin immunoprecipitation sequencing (ChIP-seq) technology, we

also investigated the genome-wide profiles of H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications. H3K27ac and

H3K4me1 have been widely used to mark enhancers; H3K4me3 mark has been associated with promoters or active transcription;

H3K27me3 mark has been associated with chromatin repression. Whole-genome bisulfite sequencing (WGBS) was further used to

profile genome-wide DNA methylation. RNA sequencing (RNA-seq) was used to profile the transcriptome. All sequencing assays

were performed in both infected and non-infected macrophages of each donor. Samples and generated sequencing datasets

were summarized in Table S1.32 Detailed methodologies to profile the genome-wide DNA methylation level and chromatin modifi-

cations were also described here.32

METHOD DETAILS

RNA-seq read alignment
Trimmomatic (v0.36) was first used to trim adapter sequences with the parameters PE -phred33 -quiet -validatePairs ILLUMINACLIP:

$EBROOTTRIMMOMATIC/adapters/TruSeq3-PE.fa:2:30:15:2:true LEADING:3 TRAILING:30 MINLEN:50.52 After trimming off the

adapters and low-quality nucleotides, high-quality paired-end RNA-seq reads were aligned against the human reference genome

(hg19, https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz) using TopHat2 v2.1.1.53 To optimize for the analysis

of TE transcription, we kept multi-mapped reads with the recommended parameters -x 100 –no-mixed.56 Gene annotation file

‘‘hg19.ensGene.gtf’’ was obtained from https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/.

Viral load calculation
To estimate the viral load, we re-aligned high-quality paired-end RNA-seq reads against the human reference genome (hg38, https://

hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz) using TopHat2 with the default parameters. Paired-end un-

mapped reads were extracted from the unmapped BAM files and converted to FASTQ format using SAMtools (v1.10) fastq func-

tion.54 Obtained FASTQ files were then reformatted using Fastq-pair (v0.3) tool with the parameter -t 1000000.55 Using TopHat2

with the same parameters, paired-end unmapped reads were aligned against the influenza A virus (H1N1) reference genome, which

contains eight fragments including NC_002016.1, NC_002017.1, NC_002018.1, NC_002019.1, NC_002020.1, NC_002021.1,

NC_002022.1, NC_002023.1. After that, we retrieved the number of reads mapped to influenza. Lastly, viral load was computed

as the percentage of reads mapped to the influenza genome versus the total number of reads mapped to both human and influenza

reference genomes.

Gene/TE expression levels measurement
TEcount implemented by TEtranscripts (v2.1.4)56 was used tomeasure the gene and TE expression at the family level using RNA-seq

data. Expression of each family represents the total number of reads mapped to all instances from the same family. We ran it with the

use of sorted BAM file as the input and following parameters: –sortByPos –TE hg19_rmsk_TE.gtf –GTF hg19.ensGene.gtf –stranded

reverse –mode multi. The repeat annotation file ‘‘hg19_rmsk_TE.gtf’’ was downloaded from http://labshare.cshl.edu/shares/

mhammelllab/www-data/TEtranscripts/TE_GTF/. After running, we obtained the output file for each sample which contains two col-

umns, one column specifying the names of genes and TE families, and another column specifying corresponding read counts. The

output files of all samples were combined into a count matrix for the downstream analysis.

Differential expression and PCA analysis
To perform the differential expression analysis, the obtained count matrix was used as the input to DESeq2 v3.9.57 Non-infected

samples were used as the control group and infected samples were used as the case group. After the removal of non-expressed

TE families and genes (<2 reads across samples), the countmatrix was then standardized followingQC steps ofDESeqDataSetFrom-

Matrix, estimateSizeFactors, estimateDispersions, and nbinomWaldTest included by DESeq2. Lastly, after we retrieved the output

using the results function, we kept the significantly differentially expressed genes and TE families from DNA, LINE, SINE, LTR and

SVA subclasses with the thresholds of |log2FC| R 1 and adjusted p value %0.001.
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To perform the principal component analysis (PCA), we applied a variance stabilizing transformation (vst) to the achieved normal-

ized count matrix. We then used the PCAtools pca function with the parameter removeVar = 0.1 for the PCA analysis and biplot func-

tion for the visualization (https://github.com/kevinblighe/PCAtools). Genes and TE families were analyzed separately.

Expression levels normalization
Transcripts per kilobase million (TPM) values were calculated using the raw count matrix for genes and TE families. Specifically, we

first computed the reads per kilobase (RPK) for each gene and family. For genes, we divided the read counts by the aggregated total

lengths of exons per gene in kilobases; for TE families, we divided the read counts by the aggregated lengths across all instances per

family. We next counted up the RPK values of both genes and TE families and divided them by 1,000,000 to obtain the TPM values.

Genes and viral load correlation analysis
We then examined which differentially expressed genes (DEGs) are correlated with viral load. Here, we only considered highly-ex-

pressed genes with an average of TPM values R1 in either infected or non-infected samples. The expression fold change (log2FC)

of each gene was computed using the formula: log 2 FC = log 2ðTPMFlu + 0:01Þ � log 2ðTPMNI + 0:01Þ. FCs were correlated with

viral load post-infection using R lm function. DEGs correlated with viral load (R2R 0.3 and p value%0.05) were then submitted to the

g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with the default parameters for the pathway enrichment analysis.58 G:SCS threshold

with a minimum p value of 0.05 was used to determine the enriched pathways. Kyoto Encyclopedia of Genes and Genomes

(KEGG) database was used to determine the enriched pathways and the top 30 terms were visualized. Key immune regulators

involved in the RNA viral signaling pathway were obtained here.8 Similarly, we also correlated the basal gene expression (TPM)

with viral load.

TEs and viral load correlation analysis
To measure the variability of TE transcription, we correlated expression fold changes of each family with viral load post-infection.

Expression FC of each family per sample was computed with the same formula: log2FC = log 2ðTPMFlu + 0:01Þ �
log 2ðTPMNI + 0:01Þ. Similarly, R lm function was used for the correlation analyses. Positive and negative correlated (R2 R 0.3

and p value %0.05) families were reported.

To study the enrichment of positively or negatively associated families among each TE subclass, we performed the

permutation test by comparing the actual proportion of positively/negatively correlated families among each TE subclass

or superfamily relative to 10,000 randomized proportions. p value was calculated using the formula in R: P value = 23

meanðrandomized counts R actual countsÞ.
Using the same approach, we correlated the expression of TE families in infected and non-infected samples with viral load post-

infection. Computed TPM values were used for the correlation analysis.

Peaks-associated TEs detection
After profiling the epigenetic state, we obtained ATAC-seq and Chip-seq narrow peaks in BED format. Peak regions were then con-

verted to peak summits (median positions). To identify ATAC-seq peaks-associated instances, peak summits were intersected with

the obtained repeat annotation file ‘‘hg19_rmsk_TE.gtf’’ using BEDtools v2.29.2 intersect function59 with the parameters -wa -u. The

same analysis was performed for other histone marks.

Epigenetic variability analysis
Unique ATAC-seq consensus peaks were obtained as we previously described.32 To identify consensus peaks in TEs, we first con-

verted peak regions to summits (median positions) and then intersected with the repeat annotation file aforementioned using BED-

tools intersect function with the parameters -wa -wb. After that, read counts were normalized to RPM value for the downstream

comparative analysis across samples. Specifically, the read count was first divided by the total number of reads and then multiplied

1,000,000. The coefficient of variation (cv) of each peak region was computed using the formula: cv =
�
�standard deviation

mean

�
�. Infected and

non-infected samples were analyzed separately. Consensus peak regions with a minimum RPM value of ‘‘1’’ were kept. Variable re-

gions were defined as the peak regions with cv valuesR0.5, referring to regions with the standard deviation that is half of the mean.

Proportions of variable regions in TEs and non-TEs were compared. Same analysis was performed for other histone marks.

TEs with epigenetic changes detection
We next aimed to identify TE families with enhanced accessibility upon infection. Firstly, we normalized the number of peaks-asso-

ciated instances per family. Briefly, we divided the number of peaks-associated instances by the total number of peaks per sample,

and then multiplied the average number of peaks across samples. Infected and non-infected samples were normalized, separately.

Secondly, to identify families with enhanced accessibility during infection, we kept families with significantly more peaks-associated

instances (R1.5-fold, adjusted p value%0.05) in infected than non-infected samples. Two-tailed paired Student’s t test was used for

the comparison and the resulting p value was adjusted for multiple testing with the Benjamini-Hochberg using the R p.adjust function.

Lastly, we kept family candidates fromDNA, LINE, SINE, LTR, and SVA subclasseswith aminimumof 20 peaks-associated instances

on average among either infected or non-infected samples.
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Similarly, to identify families with reduced accessibility, we kept families with significantly more peaks-associated instances (R1.5-

fold, adjusted p value%0.05) in non-infected than infected samples. Same analysis was applied to each histonemark to identify fam-

ilies with dynamic regulatory (e.g., enhancer or promoter) potentials upon infection.

We also computed the enrichment level of each family by comparing the actual number of peaks-associated instances with its

expected distribution.18 Specifically, we first annotated peaks-associated instances using BEDtools intersect function with the pa-

rameters -wa -u based on the annotation files (i.e., desert, distal, proximal, 50 untranslated region (50UTR), promoter, transcription

start site (TSS), exon, and intron regions) obtained from https://github.com/lubogdan/ImmuneTE. We then shuffled the true peaks

while keeping the distribution relative to each region using BEDtools shuffle function with the parameters -incl or -excl, for 1000 times.

The randomized peaks were intersected with the repeat annotation file to achieve the number of expected peaks-associated in-

stances per family. Lastly, we computed the enrichment level of each family as the actual number of peaks-associated instances

relative to the average number of the expected values.

TE clustering analysis
To identify families with high variability, we performed the semi-supervised clustering analysis of enhanced families in 35 infected

samples. Here, to rule out the impacts of different genomic distribution between TE families, we used the enrichment level relative

to the expected distribution rather than the actual number of instances for the clustering analysis. Briefly, the enrichment levels of

enhanced families were gathered into a data matrix followed by the log2 conversion. R heatmap.2 function was used to perform

the unsupervised clustering analysis with the default parameters. Based on the obtained enrichment pattern among samples, we

re-ordered the families. Families with higher enrichment levels in Group 3 individuals than Group 1 individuals were distinguished.

Non-infected samples were analyzed separately.

We then want to understand whether individual instances from high variable families display a high variability in infected samples.

Peaks-associated instances from high variable families were collected. Instances with open chromatin were recorded as ‘‘1’’; in-

stances with closed chromatin were recorded as ‘‘0’’. We then performed the clustering analysis using R hclust function with the

default parameters.

High variable instances analysis
For each accessible instance, we first computed the percentage of samples from each group that were accessible post-infection.

Next, we defined commonly accessible instances as the instances that were accessible in 25% or more samples from one individual

group; we also defined rarely accessible instances as the instances that were accessible in less than 25% samples from any groups.

An instance that was accessible in more than 25% samples for commonly accessible instances and one or more samples for rarely

accessible instances was considered as enriched in one individual group. Lastly, we computed the proportion of instances that were

prone to be accessible in each group.

TE age estimation
The evolutionary age of each instance was estimated using our previous approach.18,62 In brief, the sequence divergence of

each instance relative to the corresponding consensus sequence was obtained from the ‘‘.align’’ file generated by

RepeatMasker (https://www.repeatmasker.org/). Hg19 ‘‘.align’’ file was obtained from the UCSC database (https://hgdownload.

soe.ucsc.edu/goldenPath/hg19/bigZips/). The divergence rate of each instance was divided by the substitution rate for the human

genome (2.2 3 10�9) to compute the age per instance.63 The average ages across all instances was referred to the age of each TE

family.

TE peak centroids detection
We next want to fine-map the peak centroid on each accessible instance. Read depths were extracted from the aligned BAM file

using BEDtools genomecov function with the parameter -d and then divided by 1,000,000 to compute the RPM values. We then

aggregated (summed) RPM values of each nucleotide across accessible instances. Infected and non-infected samples were

analyzed separately. The nucleotide with the highest RPM value was recorded as the peak centroid of each instance. Peak centroids

in infected samples were used for families with enhanced accessibility; peak centroids in non-infected samples were used for families

with reduced accessibility.

Alignment of instances to consensus sequences
We next wanted to map accessible instances to corresponding consensus sequences. The aforementioned RepeatMasker ‘‘.align’’

file was used to retrieve the consensus positions at single-nucleotide resolution. Instances with consistent start and end positions

with the ‘‘.out’’ file were kept for downstream analyses. The inconsistency was potentially due to the defective annotation method-

ologies for the nested instances, extremely short instances, etc. It was a fact that instances of one TE family may be aligned to

different consensus sequences. Thus, we wanted to focus on instances aligned to the most representative consensus sequence

for each family. In the end, we pinpointed the peak centroid to the consensus sequence.

We plotted the aggregated RPM values relative to the consensus sequence using R. We also clustered accessible instances using

the RPM values relative to the consensus sequence. Specifically, after z-transformation, scaled RPM values %0 and consensus
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regions with deletions were recoded as ‘‘0’’. R function heatmap.2 with the default parameter was used for the unsupervised clus-

tering analysis. Heatmap was plotted using ggplot2 in R.

TE peak regions detection
We next wanted to identify ‘‘TE peak regions’’, which referred to the consensus regions that become accessible on multiple in-

stances. We first excluded instances that were only accessible in the outlier sample and then used the sliding window approach

to identify TE peak regions. To iterate over the entire consensus sequence, the window size was set at 100 bp with a step size of

one base pair. In each step, we counted the total number of peak centroids within each 100 bp window. The 100 bp-window con-

taining the most peak centroids was identified as a TE peak region (R5 peak centroids). After the exclusion of previously counted

peak centroids, the analysis was repeated until all candidate TE peak regions were identified. The proportion of instances in each

TE peak region was computed. TE peak regions were identified using peak centroids in infected samples for enhanced families

and non-infected samples for reduced families.

Motif enrichment analysis
Firstly, we extracted 100 bp sequence centered at the centroid of each TE instance using BEDtools getfasta function with the -s

parameter and then used the MEME fimo function to search the extracted sequences for knownmotifs from the latest eighth release

of JASPAR motif database (http://jaspar.genereg.net/download/CORE/JASPAR2020_CORE_vertebrates_non-redundant_pfms_

meme.txt).60,61 Instances uniquely accessible in the outlier sample were excluded. Secondly, instances were categorized into

each TE peak region, e.g., TE peak region with the most instances was named as ‘‘Region 1’’ and so on. TE peak regions with

less than five instances were excluded. Instances not in TE peak regions were grouped as ‘‘No regions’’. Thirdly, we computed

the proportion of instances (100 bp centered at the centroid) containing eachmotif for each TE peak region. The top 5most abundant

motifs in each TE peak region were kept as candidates. To obtain enriched motifs per family, we kept motif candidates appearing in

more than 20% instances in each TE peak region and more than 50% instances per family. Lastly, the same motifs detected in mul-

tiple TE peak regions were aggregated (summed) to recalculate the proportion; motifs enriched in a total of R50 instances across

families were kept as top candidates. After the analysis, enriched motifs were compared between different TE peak regions and

families.

The JASPARmotif database contains a small number (<30) of KRAB-ZNFmotifs. To comprehensively search for KRAB-ZNFmotifs

in TEs, we further screened motifs across the accessible TE instances from enhanced families by using the 242 KRAB-ZNF motifs

reported by Barazandeh et al.41

KRAB-ZNF binding site enrichment analysis
To explore whether KRAB-ZNF binding sites are enriched in enhanced families, we achieved the KRAB-ZNF binding sites reported by

Imbeault et al.40 We then computed the enrichment level of KAP1 and each KRAB-ZNF across TE families using the same approach

as we described above.

We also inspected whether the KAP1 and KRAB-ZNFs are in the open chromatin regions in TEs. To do it, we first extracted 100 bp

centered at the ATAC-seq peak centroid of each TE instance in BED format. Then, the extracted 100-bp open chromatin regions in flu

sampleswere intersectedwith KRAB-ZNF binding sites using BEDtools intersect functionwith the parameters -wa -wb -f 0.5 -F 0.5 -e

-a. Candidate KRAB-ZNFs that are located in the open chromatin regions of a minimum of 5% accessible instances from any

enhanced families were kept.

We further looked at the expression of KRAB-ZNFs that are associated with high variable families in infected samples. To do it, we

first achieved the number of reads mapped to each accessible instance using BEDtools coverage function with the TE annotation file

and parameter ‘‘-counts’’. After we obtained the RPKM value per instance (reads per kilobase per million mapped reads), all acces-

sible instances from a family were aggregated as the representative of the accessibility of each family. We then performed the correl-

ative analysis between each high variable family and the expression levels of KRAB-ZNFs using R lm function, respectively. Strongly

correlated KRAB-ZNFs with any high variable families (R2 R 0.3 and p value %0.05) were kept.

TE regulation of neighboring genes
To explore whether TEs regulate neighboring genes, we examined differentially expressed genes (DEGs) nearby flu-specific in-

stances from enhanced families and nearby NI-specific instances from reduced families. After the differential expression analysis,

we retrieved corresponding gene names and coordinates through the command line and parameters: mysql –user=genome -N

–host=genome-mysql.cse.ucsc.edu -A -D hg19 -e "select ensGene.name, name2, chrom, strand, txStart, txEnd, value from ens-

Gene, ensemblToGeneName where ensGene.name = ensemblToGeneName.name". To compute the distance between genes

and TEs, the first nucleotide (50 end) (TSS) was used to represent each gene and the median position was used to represent each

TE instance. Highly expressed genes (average TPM valuesR1 in either infected or non-infected samples) were used for the analysis.

BEDtools window function was used to obtain human genes centered at each accessible instance within an 1-Mb window. We then

computed the proportion of significantly upregulated and downregulated genes among inspected genes, respectively, within each

interval of 0-50 kb, 50–100 kb, 100–200 kb, 200–300 kb and so on. Each gene was counted once within each interval.
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We also compared the proportions of significantly up/down regulated genes with the expected distribution to compute the statis-

tical significance. Accessible instances were randomly shuffled for high variable, low variable families, and reduced families for 1000

times separately. After the detection of genes near accessible instances, the proportions of significantly up/down regulated genes

were computed as the expected values. The binomial distribution of the proportions of up/down regulated genes within each

genomic interval was plotted with the 95% confidence interval, suggesting a statistical significance of p < 0.05 for any observed

values outside the distribution. We then compared the proportions of significantly up/down regulated genes near accessible in-

stances from high variable families, low variable families, and families with reduced accessibility.

We also compared the proportion of up/down regulated genes between flu-specific, NI-specific instances and instances overlap-

ped with shared peaks (instances that were accessible in both infected and non-infected samples).

To identify genes that are potentially regulated by nearby TE-loci, we first picked TE instances overlapped with ATAC-seq peak

centroids. We then intersected these instances with the consensus peak regions of ATAC-seq, H3K27ac and H3K4me1 peaks32 us-

ing BEDtools2 intersect function with the parameters -wa -wb -f 0.5 -F 0.5 -e -a. Candidate TE-loci with significant changes of both

ATAC-seq and active marks (H3K27ac and/or H3K4me1) were kept. We lastly obtained significantly up-regulated genes near (%50

kb) repeat loci from enhanced families and downregulated genes near reduced families. Correlation analysis was also performed

using R lm function between the TE accessibility and nearby gene expression level post infection.

Profile of DNA methylation and histone marks
Focusing on enhanced families, we calculated the number and proportion of accessible instances overlapped with each mark post-

infection. Specifically, we used BEDtools intersect function to identify accessible instances overlapped with each histone mark in

infected samples. The median position of each peak was used for the analysis. We further identified instances overlapped with

both H3K27ac and H3K4me1 marks in infected samples, suggesting the active or strong enhancer potential. We also computed

the number and proportion of nearby DEGs within 100 kb (log2FC R 0.5, adjusted p value %0.05). Additionally, we computed the

average DNAmethylation level of each instance and thenwe used themean value across instances to represent the DNAmethylation

level of the family. DNAmethylation level was calculated as the number ofmethylated cytosines divided by the sumofmethylated and

unmethylated cytosines at each locus.

Pathway enrichment analysis
The list of significantly up/down regulated genes near each accessible instance was obtained using BEDtools window function with

the parameters -l 100000 -r 100000. The transcription start site was used to represent each gene. We focused on the significantly

upregulated genes near accessible instances (within 50 kb) for high variable and low variable families, and significantly downregu-

lated genes near accessible instances for reduced families. The obtained gene lists were submitted to the g:profiler tool with the

same settings for the pathway enrichment analysis. We visualized the enriched pathways using ggplot2 in R.

Global TE transcripts calculation
The amount of global TE transcripts was computed as the proportion of aggregated (summed) read counts normalized by DEseq2 in

TEs among the total RNA-seq read counts in both TEs and genes. The linear regression model was used to evaluate the correlation

between the basal TE transcripts and viral load post-infection. R lm function was used for the analysis and the corresponding p value

and R2 were reported. Using the same approach, we further analyzed each of the four main TE subclasses, i.e., DNA, LINE, SINE

and LTR.

Average DNA methylation levels calculation
We computed the average DNA methylation levels among examined CpG sites across all annotated TE regions (TE methylation) in

non-infected samples. TE families from the four main subclasses were considered.

Predictive models construction
Multiple regression analysis was used to build the predictive models. Viral load post-infection was used as the outcome of the

models. The baseline of IFN signature (score) was computed as the median TPM value amongst 39 expressed genes from type I

IFN signaling pathways (Table S8). We first included the baseline of IFN signature and age as predictive variables. We then chose

the top six correlated immune TFs of which basal expression levels are also associated with TEs as variables, including STAT2,

IRF1, IRF7, IRF9, STAT5A, and REL. We also picked non-immune factors that were associated with TEs as predictive variables,

including age, the basal amount of TE transcripts, the average DNAmethylation levels in TEs (TE methylation), and the basal expres-

sion levels (TPM) of TRIM28,SETDB1,PLAGL1, ZNF519,ZNF566, andZNF611. To determine top candidate KRAB-ZNF host factors,

we gathered evidence of the correlation between KRAB-ZNF expression and TE accessibility post-infection, the correlation between

basal KRAB-ZNF expression and viral load, and the KRAB-ZNF binding sites and motifs found in high variable families (Table S7).

Here, we kept KRAB-ZNFmotifs that are found inR50 accessible instances andR50%of all instances in TE peak regions per family.

The family with the highest percentage was kept as the top-associated TE.

R glm function with the parameter family = Gaussian() was first used to include all variables in the generalized linear model. R

stepAIC function was then used to choose a subset of main features for the final model. R summary function was used to report
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the R2, adjusted R2 and p value. Lastly, we used the R predict function with the parameter type = ‘‘response’’ for the expected viral

load with each predictive model.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details can be found in the corresponding section of ‘‘method details’’. All statistical analyses were performed in R.

ADDITIONAL RESOURCES

The study did not generate any additional resources.
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