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Abstract

Background: Fetal hemoglobin (HbF) induction has shown promise for the treatment of β-hemoglobinopathies.
HbF induction in β-thalassemia could overcome ineffective hematopoiesis and thus terminate transfusion
dependency for formerly transfusion dependant patients. Several miRNAs have been found to reactivate γ-globin
expression and increase HbF. In this study, we aimed to investigate the expression of 4 miRNAs (miR-15a, miR-16-1,
miR-96, and miR-486-3p) in high HbF thalassemia patients and correlate their levels with the patients’ HbF levels
then, in order to predict the exact role of the studied miRNAs in hematopoiesis, a bioinformatic analysis was carried
out. We went through this bioinformatic analysis to determine the network of genes regulated by miRNAs and
further investigate the interaction between all of them through their involvement in hematopoiesis. In this study,
the differential expression was measured by qRT-PCR for 40 patients with high HbF and compared to 20 healthy
controls. Bioinformatics was conducted involving functional annotation and pathway enrichment analyses.

Results: The studied microRNAs were significantly deregulated in thalassemia patients in correlation with HbF.
Functional annotation and pathway enrichment analyses revealed a major role of miR-486-3p and miR-15a in HbF
induction.

Conclusion: MiR-486-3p and miR-15a are crucial for HbF induction. Further validating studies are needed.
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Background
Hemoglobinopathies, especially thalassemias are one of
the commonest single gene disorders [10]. Thalassemia
is considered a global health problem with a high inci-
dence in the Mediterranean populations, Arabs, and
Asians [39].
Thalassemia is an autosomal recessive hereditary blood

disorder characterized by chronic hemolytic anemia due
to improper hemoglobin (Hb) synthesis. Insufficient β-
globin production results in excess unpaired α-globin

chains that precipitate within erythroid precursors caus-
ing premature death of these precursors and ineffective
erythropoiesis [46]. Normally, the process of globin
chain production keeps the ratio of α-chains to non-α-
chains, at 1:1 (± 0.05), but in thalassemia this ratio is dis-
rupted [19]. The clinical severity of β-thalassemia is re-
lated to the extent of imbalance between the α- and
non-α-chains (β-, δ-, and γ-globin chains) [44]. Inducing
HbF production is a novel therapeutic goal for hemoglo-
binopathies patients. Induced γ-globin chains can bal-
ance the pathological α-globin chains, thus, improving
anemia and terminating transfusion dependency [20,
24]. Several pharmacological HbF inducers were tested
mainly histone deacetylases (HDACs), short-chain fatty
acids (SCFAs), and hydroxyurea (HU). Both histone

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: khalda_nrc@yahoo.com
1Medical Molecular Genetics Department, Human genetics and genome
project Division, National Research Centre, El Buhouth St., Dokki, Cairo 12622,
Egypt
Full list of author information is available at the end of the article

Journal of Genetic Engineering
and Biotechnology

Eltaweel et al. Journal of Genetic Engineering and Biotechnology           (2021) 19:51 
https://doi.org/10.1186/s43141-021-00138-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s43141-021-00138-x&domain=pdf
http://orcid.org/0000-0001-8472-5911
http://creativecommons.org/licenses/by/4.0/
mailto:khalda_nrc@yahoo.com


deacetylases and SCFAs are not widely used because of
concerns about potential carcinogenicity. HU is the only
commercially available drug for HbF induction. It re-
duces the frequency and severity of sickle cell crises and
may inhibit end-organ damage [43]. However, HU has
some limitations; it has inconsistent effectiveness (only
in 50% of SCD cases), and limited utility for the treat-
ment of β-thalassemia [1]. Therefore, there is an urging
demand for new safe and effective alternatives.
Several miRNAs were identified as deeply involved in

the erythroid cells, regulating its proliferation, matur-
ation, and expression of fetal globin genes [5]. Both
miR-15a and miR-16-1 appear to cause the elevated em-
bryonic and fetal hemoglobin levels in newborns in hu-
man trisomy 13 through direct inhibition of MYB which
is a potent silencer of fetal and embryonic hemoglobin
genes [45]. MiR-486-3p is a direct inhibitor of BCL11A
gene expression which in turn control and inhibit γ-
globin gene expression [37]. In contrast, miR-96 directly
inhibits γ-globin gene expression through the human
erythropoiesis [3].
In this study, we aimed to have an overview on the se-

lected miRNAs (miR-15a, miR-16-1, miR-96, and miR-
486-3p) as potential therapeutic target. This overview in-
cluded the differential expression of the four miRNAs in
thalassemic patients with high HbF compared to con-
trols. Secondly, investigating the potential role of the
studied microRNAs either directly or indirectly in differ-
ent major mechanisms affecting hematopoiesis and the
hemoglobin switching process, using different bioinfor-
matic analysis tools. Up to our knowledge, this is the
first study that performed the relative expression of
miR-15a, miR-16-1, and miR-486-3p in high HbF thalas-
semia cases. Studying such miRNAs and their role in
normal blood physiology is urgently needed to open the
door for new therapies for β-hemoglobinopathies.

Novelty statement
Our work presents unique study of 4 selected micro-
RNAs crucial for HbF induction first by qRT-PCR then
by bioinformatics tools.
The central finding of our work: the major role of

miR-486-3p and miR-15a in HbF induction.
The clinical relevance of our work: it could help in intro-

ducing novel HbF inducers which could help in treating pa-
tients with beta thalassemia and sickle cell disease as well.

Methods
Patients
Forty Egyptian beta-thalassemia patients (with high
HbF) presented with different degrees of clinical severity
were recruited from the Hereditary Blood Disorders
Clinic, Center of Medical Excellence, National Research
centre (NRC), Egypt over the period from January 2016

to October 2017 from different areas of Upper and
Lower Egypt, in addition to 20 sex- and age-matched
healthy controls with negative family history of thalas-
semia or any other anemias. All patients were subjected
to clinical evaluation, lab investigations including CBC,
serum ferritin, and hemoglobin electrophoresis, in
addition to molecular diagnosis. For transfusion-
dependent patients, blood samples were collected just
before receiving blood transfusion.

Blood sample collection
Five milliliters of blood samples were collected from 40
thalassemic patients and 20 controls, each in Vacutainer®
tubes with EDTA. Plasma was separated within max-
imum 4 h after blood collection and stored at − 40 °C.

Total RNA isolation and miRNA quantification
Total RNA was extracted from plasma using miRNeasy
mini kit (QIAGEN, CA, USA) according to the manufac-
turer protocol for plasma/serum samples. Fifty nano-
grams from each RNA sample were used for reverse
transcription reaction. Targeted miRNAs quantification
was carried out using the miScript PCR System (QIAG
EN, CA, USA) (miScript II RT Kit, miScript SYBR Green
PCR Kit (QIAGEN, Valencia, USA), and specific miS-
cript Primer Assays for each miRNA) using comparative
method. The results were normalized with SNORD68.
Relative changes in gene expression (Rq) were calculated
using 2-ΔΔCT method [36].

Statistical methods
Data analyses was conducted using Statistical Package for
the Social Sciences (SPSS) software (SPSS Inc., Chicago,
USA), version 19.0. Results were expressed as mean (SD).
Statistical differences were considered significant at P <
0.05. The Shapiro-Wilk test was used to check normality.
Student’s t test was run to test the significance of the dif-
ferences in means in the studied variables between the 2
groups. MiRNA expression levels were compared using
the non-parametric Mann-Whitney’s U test. The Spear-
man’s rank correlation coefficient (r) was calculated.

MicroRNA target gene prediction
To gain a comprehensive view of the potential target
genes of the studied miRNAs, especially they are decided
to be used as therapeutic targets, the MiRWalk database
V.2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk2/) [17] was used to identify predicted and vali-
dated target genes of each miRNA. We retrieved pro-
spective target genes found in the following 4 online
databases simultaneously: miRWalk2.0, RNA22, mi-
Randa, and Targetscan. Genes that were identified in the
4 databases were chosen for further analysis to improve
the reliability of the predictions made. In this study, the
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predicted miRNA-binding sites within the 3′ UTR of
genes in the entire human genome were studied.

Functional enrichment analysis
GO annotation and KEGG pathways enrichment ana-
lyses were carried out (based on the selected target
genes) using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) (https://david.ncifcrf.
gov/). Kyoto Encyclopedia of Genes and Genomes
(KEGG) was used to perform pathway analysis and to
clarify the functional mechanism of the target genes. In
GO and KEGG pathway analyses, q value (Benjamini) <
0.01 was considered to be highly significantly enriched.

Network construction and analysis
In order to assess any other possible effect of the studied
microRNAs on the globin genes and their interacting
proteins, we used the Search Tool for the Retrieval of
the Interacting Genes (STRING) available at (https://
string-db.org/) to search and construct an interaction
network of the different globin genes with other possible
target genes of the studied microRNAs [48]. STRING
provides both experimental and predicted protein-
protein interaction information. All associations are pro-
vided with a combined confidence score depending upon
prediction (neighborhood in different species, occur-
rence in the same pathway, and observed co-expression
of genes), besides experimentally determined interac-
tions, database annotations, and automated text-mining
of scientific texts (e.g., OMIM, PubMed). STRING also
imports protein associations from databases of physical
interaction and databases of biological pathways (e.g.,
MINT, HPRD, BIND, BioGRID, KEGG, Reactome,
IntAct, GO). Each score represents a rough estimate of
how likely a given association describes a functional
linkage between two proteins (> 0.5 = medium confi-
dence, > 0.7 = high confidence, > 0.9 = highest confi-
dence). The pairs with a combination score > 0.7 were
selected. The whole data were used to construct a net-
work using Cytoscape platform: https://cytoscape.org/.

Results
Demographic data and clinical presentation of the
studied groups
Patients recruited in our study were referred from all
over Egypt (27.3% from Upper Egypt, 40.9% from Nile
delta and 31.8% from Greater Cairo). Seventy-five per-
cent of the recruited patients received regular blood
transfusion at different intervals, while 20% did not re-
ceive any blood transfusion. The remaining 5% were
transfused only once. Clinical data of the studied cases
are shown in Table 1.

Relative expression levels of target microRNAs in patients
vs controls
Mean (SD) of relative quantification “Rq” of target miR-
NAs in the studied groups are shown in (Fig. 1). MiR-96
was significantly downregulated (FC = 0.13), while
miRNA-15a, miRNA-16-1, and miRNA-486-3p were
highly significantly upregulated (FC = 42.97, 17.8, and

Table 1 Clinical data of the studied groups

Groups Patients
(n = 40)

Controls
(n = 20)

P value

Variables

Sex

Male (n-%) 20–50% 14–70% 0.26

Female (n-%) 20–50% 6–30%

Age (years)

Range 0.5–16 6–12 0.06

Mean ± SD 5.16 ± 4.7 8.4 ± 2.12

Age of onset (month)

Range 3-36 –

Mean ± SD 12.87 ± 10.7

Interval of transfusion (weeks)

Range 3–8 –

Mean ± SD 5.1 ± 2.02

Hemoglobin (g/dL)

Mean ± SD 7.2 ± 1.3 12.18 ± 1.0 < 0.0001***

Hematocrit (%)

Mean ± SD 21.4 ± 4.0 38.9 ± 2.6 < 0.0001***

RBCs count (×106/μL)

Mean ± SD 3.0 ± 0.44 4.66 ± 0.49 < 0.0001***

MCV (fL)

Mean ± SD 65.6 ± 12.5 87.29 ± 5.23 < 0.0001***

MCH (pg)

Mean ± SD 20.8 ± 5.2 29.2 ± 2.37 < 0.0001***

RDW (%)

Mean ± SD 28.0 ± 8.3 13.3 ± 1.58 0.002**

PLT (×106/μL)

Mean ± SD 426 ± 36.8 308 ± 54 0.004**

TLC (×103/μL)

Mean ± SD 16.1 ± 1.9 6.1 ± 1.7 0.001**

Reticulocytes count (%)

Mean ± SD 4.8 ± 1.28 1.4 ± 0.39 0.02*

Serum Ferritin (ng/ml)

Mean ± SD 1161.8 ± 245 143.4 ± 24.49 0.003**

Hemoglobin electrophoresis

HbA (%): Mean ± SD 42.5 ± 30.6 97.55 ± 0.5 < 0.0001***

HbF (%): Mean ± SD 53.5 ± 33.5 0.58 ± 0.18 < 0.0001***

HbA2 (%): Mean ± SD 2.8 ± 1.4 1.76 ± 0.56 0.001**
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Fig. 1 Box and whisker plots representing the expression of the 4 miRNAs in the studied groups (the plot shows the maximum and minimum
values, the median, Q1, Q3, and the interquartile range)

Fig. 2 Correlation coefficient between Rq of the studied miRNAs and the clinical data, correlations with HbF is shown in the graph
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21.45, respectively) in patients compared to healthy con-
trols (P < 0.0001 for all).
The correlation analyses of the Rq of the studied miRNAs

vs. clinical data of the cases are shown in Fig. 2. MiR-96 ex-
pression was found inversely correlated with HbF level with
highly significance; on the other hand, a highly significant
positive correlation between miR-15a, miR-16-1, and miR-
486-3p and HbF was found, as shown in Fig. 2.

MicroRNA target prediction
The output data obtained though application of 4 men-
tioned online prediction databases revealed that 2642
genes that appeared in them all simultaneously were
subsequently considered as predicted target genes for
the upregulated miRNAs (miR-15a, miR-16-1, miR-486-
3p), and 550 genes for the down-regulated miRNA
(miR-96).

Enrichment analysis and bioinformatics of target genes
The pathway enrichment analysis (blue bars) revealed
that 25 pathways were highly enriched for the target
genes of the upregulated miRNAs studied. Among
them, the highly enriched pathways related to

hematopoiesis were MAPK [21], insulin signaling
pathway [2, 40], neurotrophin signaling pathway [18],
Ras [27], FOXO [38], and mTOR signaling pathways
[50], in addition to pathways involved in cancer espe-
cially AML and CML as shown in Fig. 3.
Through GO enrichment analysis, biological process

(BP) and molecular function (MF) were highlighted. In
the biological process module (red bars), 10 terms were
significantly enriched and many of them were related to
regulation of transcription of what genes. In molecular
function domains (green bars), 10 terms were signifi-
cantly highly enriched, the analysis mainly noted protein
binding, transcriptional repressor and activator activity,
ATP and transcription factor binding.
The target genes involved in the highly enriched path-

ways and GO terms are represented in the following net-
work drawn by Cytoscape (Fig. 4).

The potential role of the studied miRNAs in the whole
hematopoiesis process
The possible role of each microRNA in hematopoiesis
was predicted through reviewing the role of their

Fig. 3 The GO and KEGG pathway analyses of the upregulated microRNAs. Blue bars represent highly enriched KEGG pathways, while red and
green bars represent highly enriched biological processes and molecular functions, respectively. q value: FDR adjusted p value
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putative target genes in the literature. The results are
shown in Table 3.

The indirect interaction of the studied miRNAs with
globin genes
Using the STRING database, the protein-protein interac-
tions involving the globin genes were exported. The
major interacting proteins with the globin genes with
the highest score (> 0.9) were HP, MYB, GATA1, NFE2,
CAMP, APOA1, MAFG, MAFK, and MAFF. The inter-
acting genes targeted (either validated or predicted) with
our studied microRNAs are shown in Fig. 5.

Discussion
The study of hemoglobin switching process represented
a focus in hematology to ameliorate the severity of β-
hemoglobinopathies. Additionally, the process by which
this switch occurs represents an important paradigm for
developmental gene regulation and the possible inter-
action of different microRNAs in this process. In the
current study, the relative expression of four microRNAs
(mir-96, mir-486-3p, mir-15a, and mir-16-1) in high

HbF Egyptian thalassemia patients were found to be dif-
ferentially expressed compared to controls and could
also predicted that had a potential role on hematopoiesis
and hemoglobin switching processes.

Relative expression levels of target microRNAs in patients
vs. controls
Our study revealed that the Egyptian thalassemia pa-
tients had concordant miR-96 profile with the previous
records in other populations, such that miR-96 expres-
sion in high HbF cases was about 10-fold lower than
controls. On the other hand, miR-15a, miR-16-1, and
miR-486-3p expression in high-HbF cases were showed
significantly high expression than controls (FC = 42.97,
17.8, and 21.45, respectively; Fig. 1).
Moreover, miR-96 expression levels were found in-

versely correlated with HbF (Fig. 2), in accordance with
Azzouzi et al. [3]. In the same context, Noh et al. [42]
stated that miR-96 was upregulated and the most differ-
entially expressed on the arrays with 10-fold increase in
adult blood versus cord blood when they examined the

Fig. 4 The studied microRNAs and their target genes involved in highly enriched pathways related to hematopoiesis
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Fig. 5 (See legend on next page.)
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erythrocyte microRNA profiles in adults and at birth to
correlate with hemoglobin switching phenomenon.
On the other hand, a highly significant positive correl-

ation between miR-486-3p and HbF was found (Fig. 2)
in agreement with Lai et al. [31]. Lulli et al. [37] showed
that miR-486-3p is a critical inducer of HbF level,
through direct inhibition of BCL11A gene expression.
Moreover, BCL11A is a major regulator of HbF switch-
ing and critical for the maintenance of γ-globin gene si-
lencing in adult human erythroid cells. The study was
carried out on erythroid cells of patients affected by
major or intermedia β-thalassemia, and they assumed
that the observed variable miR-486-3p expression levels
among β-thalassemic patients might be the cause of the
observed different HbF content among those patients
and possibly to the clinical severity of the disease.
It is worse to mention that Hojjati et al. [26] examined

in vivo expression of some miRNAs thought to be in-
volved in pharmacological induction of HbF among β-
thalassemia patients who were undergoing hydroxyurea
(HU) therapy. Expression of γ-globin and miR-486-3p
had higher levels in responders than non-responders
group, but the expression of miR-96 did not show any
significant difference between the study groups. These
results highlight the importance of mir-486-3p in the
mechanism of HPF switching process.
Also, our results showed that miR-96 had positive cor-

relation with age (r = 0.402, P = 0.003). This positive

correlation was reported also by Budzinska et al. [8]
where the expression of miR-96 increases upon aging,
while miR-486-3p showed negative correlation with age
(r = − 0.441, P = 0.001). This finding meet the study of
Lai et al. [30] who found that miR-486 has age-related
expression such that it is constantly expressed in infancy
and childhood, then downregulated in young adulthood,
and then diminished with aging.
Additionally, expression levels of miR-15a and miR-

16-1 were found to be correlated with the level of HbF
(Fig. 2); these results go with Sankaran and coworkers
[45] who reported that elevated HbF expression in hu-
man trisomy13 is due to increased expression of miR-
15a and miR-16-1.

Role of the studied microRNAs in hematopoiesis
We conducted a computational analysis to examine the
effect of the studied microRNAs on hematopoiesis in gen-
eral. We found a link between the studied microRNAs
with both the whole hematopoiesis process, as well as
their indirect interaction with globin genes through inter-
mediate genes. The enrichment analysis revealed the
highly enriched pathways related to hematopoiesis as
shown in Fig. 3. MAPK signaling pathways are essential in
the regulation of multiple processes involved in blood cell
production, in regulation of hematopoiesis in general and
myelopoiesis in particular and also it has been demon-
strated to play a key role in the maintenance of HSC

(See figure on previous page.)
Fig. 5 Network of the globin proteins and their interacting proteins, besides the possible link with the studied microRNAs, drawn by cytoscape.
The red triangles are the microRNAs, the yellow ovals represent the globin proteins, while the blue round rectangles are other proteins. The
width of the edge represents the confidence score where the bold solid lines are > 0.9 while normal solid are > 0.7. MicroRNA interactions are
represented by dashed lines. Bold genes in the table are those validated as targets of the corresponding miRNA

Table 2 Enriched pathways and the involved target genes of the studied miRNAs in each pathway

Pathway Target genes of the studied microRNAs involved in that pathway

Predicted Validated

Insulin signaling
pathway

AKT2, BRAF, KRAS, SOS1, PDPK1, CALM1, ERS2, INSR, MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, NRAS,
PIK3R1, PIK3R2, PIK3R3, PRKAA1, PRKAA2, PRKAB2, RPS6KB1

AKT3, KRAS, FOXO1

MAPK signaling
pathway

AKT2, BRAF, KRAS, SOS1, EGFR, MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, MAP2K4, NRAS, TGFBR1,
TGFBR2

AKT3, KRAS, RPS6KA3

Neurotrophin
signaling pathway

PDPK1, ABL1, AKT2, BRAF, KRAS, SOS1, CALM1, BCL2, FOXO3, PIK3R1, MAPK1, MAPK3, MAPK8, MAPK9,
MAPK10, NRAS, PIK3R1, PIK3R2, PIK3R3,

AKT3, KRAS, BCL2,
FOXO3, RPS6KA3

Chronic myeloid
leukemia

ABL1, AKT2, E2F1, E2F2, E2F3, BRAF, KRAS, MDM2, SMAD4, SOS1, CCND1, CDK6, MAPK1, MAPK3,
NRAS, PIK3R1, PIK3R2, PIK3R3, RUNX1, STAT5B, TGFBR1, TGFBR2

AKT3, KRAS, CCND1

Ras signaling
pathway

ABL1, AKT2, KRAS, SOS1, CALM1, IGF1R, EGFR, INSR, MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, NRAS,
PIK3R1, PIK3R2, PIK3R3

AKT3, KRAS

FOXO signaling
pathway

PDPK1, AKT2, BRAF, KRAS, SOS1, BC2L11, GABARAPL1, MDM2, SMAD2, SMAD3, SMAD4, CCND1,
CCND2, EGFR, FOXO1, FOXO3, IGF1R, IRS2, INSR, IL7R, MAPK1, MAPK3, MAPK8, MAPK9, MAPK10,
NRAS, PIK3R1, PIK3R2, PIK3R3, PRKAA1, PRKAA2, PRKAB2, SGK1, TGFBR1, TGFBR2

AKT3, KRAS, CCND1,
CCND2

GnRH signaling
pathway

KRAS, SOS1, CALM1, EGFR, MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, MAP2K4, NRAS KRAS
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(Hematopoietic stem cells) quiescence. Moreover, MAPK
pathways play critical role in the pathogenesis of various
hematological malignancies such that aberrant activation
of this pathway could be considered as a likely cause of
hematopoietic disease [21].
Many signaling molecules affect hematopoiesis either dir-

ectly or indirectly. Of them, insulin growth factors (IGF-1
and IGF-2) and insulin signaling pathway have a major func-
tion in hematopoiesis. IGF-1 stimulates erythropoiesis
in vitro and in vivo [2, 40] as well as the neurotrophin signal-
ing pathway [18]. Moreover, Ras is one of the signaling mole-
cules activated during erythropoiesis and appear important
for the balance of proliferation/differentiation/apoptosis of
erythroid cells [27]. Also, FoxOs genes known to regulate
intracellular reactive oxygen species (ROS) levels such that
loss FoxOs results in elevated ROS levels, which in turn
negatively regulate cellular responses to erythroid differenti-
ation. It was reported that FoxOs including FoxO3a regulate
hematopoietic stem cell function by controlling oxidative
stress and cell cycling. FoxO3a plays a pivotal role in main-
tenance, integrity, and stress resistance of HSCs through
negative feedback pathways. It also regulates hematopoietic
homeostasis [38]. Another signaling molecule is mTOR pro-
tein kinase that responds to multiple signals and maintains
homeostasis during embryonic development and adulthood.
Altered mTOR activity can alter HSC function and cause
hematological disorders [50].
The target genes either validated or predicted involved

in the enriched pathways are shown in Table 2. It was
demonstrated that AKT3 is a direct target of miR-15a
and miR-16 and both AKT2 and AKT3 are critical regu-
lators of HSC function [28, 47]. Both miR-15 and miR-
16 are considered as tumor suppressors that could be
used for therapy of inhibiting BCL2-, CCND1-, and
CCND2-overexpressing tumors, e.g., chronic lympho-
cytic leukemia, breast cancer, prostate, and lung cancer
[4, 7, 9, 11, 12]. Moreover, miR-96 is known as a tumor
suppressor in pancreatic cancer by suppressing KRAS
[29], as well as in endometrial and breast cancers [23,
34, 41] by suppressing FoxO1 and FOXO3 genes. FoxO1
gene is also a validated target for miR-15a [15].
The possible role of each microRNA in hematopoiesis

was predicted through reviewing the role of their puta-
tive target genes in the literature. Studies involved silen-
cing of one of these target genes using miRNAs were
extracted from the literature, and tabulated. The results
are shown in (Table 3).
Kras has an important function in adult hematopoiesis

and its loss might develop profound hematopoietic de-
fects and is prone to myeloid diseases [14]. On the other
hand, the abnormal activation of Kras had been found to
contribute to Kras-driven tumorigenesis. So, miRNAs
that target and regulate Kras could have tumor-
suppressive role [29].

More studies are needed to confirm the effect of the
studied microRNAs (miR-15a, miR-16-1, miR-96, and
miR-486-3p) on these suggested pathways to answer the
puzzle of their role.

Indirect interaction of the studied microRNAs with globin
genes
From protein-protein interaction study using STRING,
many interacting genes with the globin genes are puta-
tive targets of the studied microRNAs as shown in Fig.
5. Globin gene expression is regulated through nuclear
factor erythroid-2 (NFE2) elements located in enhancer-
like locus control regions positioned many kb upstream
of α- and β-gene clusters. NFE2 DNA-binding activity
consists of a heterodimer containing a small MAF pro-
tein (MAFF, MAFG, or MAFK) [6]. MAF proteins are

Table 3 The expected role of the miRNAs in hematopoiesis
through their putative target genes (bold miR are validated)

miRNA Target
gene

Predicted role in hematopoiesis Reference

miR-
486-3p

E2F1 Inhibits granulocytic proliferation and
activity

[25]

miR-
15a
miR-
16-1

cMyb • Drives MK differentiation
• Block DN3 to DN4 T-cell transition
• promotes differentiation of bi-potent
K562 cells into MKs

• the forced expression of miR-15a in
bone marrow mononuclear cells
blocked the erythroid transition from
BFU (erythroid burst-forming units) to
CFU (erythroid colony-forming units)

[25, 32]

miR-
15a
miR-
16-1
miR-
96

BCL2 • Modulate T cell development
• Regulation of positive selection by
governing the homeostasis

[25]

miR-
15a

RUNX1 Highly expressed in
megakaryocytopoiesis

[33]

miR-
486-
3p
miR-
96

FOXO3 Deprotect erythroid cells from oxidative
stress

[25]

miR-96
miR-
16-1

CDK6 Prognostic marker for Mantle cell
lymphoma

[49]

miR-
15a
miR-
16-1
miR-
486-3p

CCND1 Protect against Mantle cell lymphoma [49]

miR-96
miR-
15a

ABL1 Involved in CML [35]

miR-96
miR-
15a

KRAS Tumor suppressors [29]
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essential for activation of β-globin gene expression [16].
Our target prediction revealed that MAFG is a target for
miR-15a while MAFK is a target for miR-15a and miR-
486-3p. Therefore, both miR-15a and miR-486-3p are β-
globin gene silencers.
Moreover, NR2F2 is thought to play an important role

in the stage-specific silencing of the ε- and γ-globin
genes [13]. On the same context, MTA1 is a component
of the methyl binding domain 2 (MBD2)-nucleosome re-
modeling and deacetylating (NURD) complex. MBD2-
NURD complex contributes to DNA methylation-
dependent embryonic and fetal β-globin gene silencing
during development [22]. Both NR2F2 and MTA1 are
target genes for miR-486-3p. Together with the previ-
ously reported study by Lulli et al. [37] which revealed
that BCL11A (γ-globin silencer) is a target of miR-486-
3p, these results suggest that miR-486-3p is a potent γ-
globin enhancer via different targets.
Moreover, from the protein–protein interaction, a pu-

tative target of miR-486-3p is TAL1 gene which is con-
sidered as a key of hematopoietic transcription factor
that binds to regulatory regions of a large cohort of
erythroid genes. In addition, TAL1 plays an important
role for γ-globin expression [51].
The correlation of the studied micoRNAs with the

predicated genes was not reported before and further
wet lab studies are needed to confirm this correlation.

Conclusions
The studied microRNAs have a potential role in
hematopoiesis through affecting other genes mediating
signaling pathways or interacting with globin genes. MiR-
486-3p overexpression is thought to suppress β-globin
gene by targeting MAFK gene, and induce γ-globin gene
expression by targeting BCL11A, MTA1, and NR2F2 lead-
ing to HbF overexpression. In the same context, miR-15a
overexpression is thought to favor hemoglobin switching
toward increasing HbF expression by targeting several
MAF proteins and MYB gene. Our results need to be
more validated via wet lab methods, and that is what we
are going to do soon.
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