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Abstract
Objectives  To investigate, in patients with metastatic prostate cancer, whether radiomics of computed tomography (CT) 
image data enables the differentiation of bone metastases not visible on CT from unaffected bone using 68 Ga-PSMA PET 
imaging as reference standard.
Methods  In this IRB-approved retrospective study, 67 patients (mean age 71 ± 7 years; range: 55–84 years) showing a total of 
205 68 Ga-PSMA-positive prostate cancer bone metastases in the thoraco-lumbar spine and pelvic bone being invisible in CT 
were included. Metastases and 86 68 Ga-PSMA-negative bone volumes in the same body region were segmented and further 
post-processed. Intra- and inter-reader reproducibility was assessed, with ICCs < 0.90 being considered non-reproducible. 
To account for imbalances in the dataset, data augmentation was performed to achieve improved class balance and to avoid 
model overfitting. The dataset was split into training, test, and validation set. After a multi-step dimension reduction process 
and feature selection process, the 11 most important and independent features were selected for statistical analyses.
Results  A gradient-boosted tree was trained on the selected 11 radiomic features in order to classify patients’ bones into bone 
metastasis and normal bone using the training dataset. This trained model achieved a classification accuracy of 0.85 (95% confi-
dence interval [CI]: 0.76–0.92, p < .001) with 78% sensitivity and 93% specificity. The tuned model was applied on the original, 
non-augmented dataset resulting in a classification accuracy of 0.90 (95% CI: 0.82–0.98) with 91% sensitivity and 88% specificity.
Conclusion  Our proof-of-concept study indicates that radiomics may accurately differentiate unaffected bone from metastatic 
bone, being invisible by the human eye on CT.
Key Points   
• This proof-of-concept study showed that radiomics applied on CT images may accurately differentiate between bone  
   metastases and metastatic-free bone in patients with prostate cancer.
• Future promising applications include automatic bone segmentation, followed by a radiomics classifier, allowing for a  
   screening-like approach in the detection of bone metastases.
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PSA	� Prostate-specific antigen
PSMA	� Prostate-specific membrane antigen
ROC	� Receiver operating characteristic
SD	� Standard deviation
Tc	� Technetium

Introduction

Prostate cancer (PCa) is the most common solid tumor in 
men, accounting for the third most common cause of can-
cer-associated death in developed countries [1]. Metastatic 
spread of PCa is primarily to the skeleton, with pelvis, verte-
bra, and ribs being the most commonly affected bones [2, 3]. 
Approximately 12% of patients present with bone metastases 
at the time of diagnosis [2], resulting in restricted quality of 
life with a 5-year survival rate of only 6% [4–6]

Computed tomography (CT) is a useful and widely avail-
able imaging tool for screening the skeleton, allowing to 
establish the extent of cortical bone destruction, the presence 
of pathological fractures and to plan operative treatment [7, 
8]. However, CT has shortcomings in detecting small bone 
metastases without apparent pathologic changes of the osse-
ous structure and—if at all—showing only very subtle imag-
ing findings [9, 10]. Positron emission tomography (PET) 
in combination with CT (PET/CT) using 68 Ga-PSMA as 
radiotracer has emerged as a useful technique for the diagno-
sis of bone metastases in patients with PCa, showing robust 
performance, with a patient-based sensitivity and specific-
ity of 98.7–100% and 88.2–100%, respectively [11–13]. 
Interestingly, 68 Ga-PSMA often demonstrates bone metas-
tases while CT shows no visible abnormality [14], when 
CT images are being analyzed in a pure qualitative manner.

Recent developments of machine learning techniques 
and the huge growth of computational power has driven the 
field of radiomics [15]. The principles of radiomics include 
extraction of high-dimensional data from various sources of 
medical images, followed by an analysis of various classes of 
radiomic features, aiming to support clinical decision-mak-
ing and overcoming the limitations of a solely visual image 
interpretation [16]. Several studies have already shown that 
a radiomics-based machine learning method allows not only 
for the quantification of imaging results but has the poten-
tial to detect pathological findings in the absence of visible 
abnormalities [16–18]. We hypothesized that the application 
of CT-derived radiomics in metastatic bone disease from 
prostate cancer might reveal important imaging information 
that cannot be detected visually by the human eye.

Thus, the aim of this proof-of-concept study was to inves-
tigate, in patients with metastatic prostate cancer, whether 
radiomics of CT image data enables the differentiation of 
bone metastases invisible on CT from unaffected bone.

Methods

Based on a database search, 196 patients with 68 Ga-PSMA-
positive bone metastases in the thoracic and/or lumbar spine 
and/or pelvic bones who underwent imaging in one tertiary 
referral center between May 2016 and June 2019 were iden-
tified. A senior radiologist with 10 years of experience in 
oncologic imaging excluded 127 of these 196 patients (65%) 
because the bone metastases were also clearly visible on CT. 
Two patients denied usage of their medical data for research 
(Fig. 1). Finally, 67 patients (mean age 71 ± 7 years; range: 
55–84 years) were included. At the time of the study, the 
indication of PSMA PET/CT was biochemical recurrence of 
prostate cancer with a rise of the PSA ≥ 0.2 ng/mL following 
radical prostatectomy, or a rise of 2 ng/mL or more above the 
nadir PSA after radiation therapy. Nowadays, under special 
circumstances, PSMA PET/CT is also used and will be reim-
bursed in patients with initial diagnosis of prostate cancer.

Demographic patient data and anatomic locations of all 
segmented bone volumes are provided in Tables 1 and 2, 
respectively. Our study had institutional review board and 
local ethics committee approval. All patients provided writ-
ten informed consent prior to the study.

Image acquisition

Patients received a single injection of 68  Ga-PSMA 
(mean dose ± standard deviation, 130 ± 11  MBq, range 
114–158 MBq) 60 min prior to image acquisition. To reduce 
tracer activity in the bladder, ureters, and kidneys, furosem-
ide was injected intravenously 30 min prior to the radiotracer 

Fig. 1   Flowchart of the study cohort
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injection (0.13 mg/kg), patients drank 200 mL of water prior 
to radiotracer injection, and patients were asked to void prior 
to the scan. PET/CT acquisitions were performed on a Dis-
covery VCT 690 PET/CT (GE Healthcare) (n = 38) or on a 
Discovery MI PET/CT (GE Healthcare) (n = 29) with six-
bed positions (2.5 min acquisition time). CT as part of PET/
CT was performed using the following scan parameters: tube 
voltage 140 kVp, tube current with automated dose modu-
lation of 80 mA/slice, collimation 512 × 0.976, pitch 1.0, 
rotation time 0.5 s, coverage speed 78 mm/s, field of view 
(FOV) 50 cm. Images with a transverse pixel size of 1.00 
and a slice thickness of 1.25 mm were reconstructed in the 
axial plane using the standard kernel.

Image segmentation and radiomic feature 
extraction

Image segmentation was performed semi-automatically 
with a commonly used open-source software platform 
(3D Slicer, Version 4.11; www.​slicer.​org; [19]) by two 
independent and blinded readers (with one and 4 years of 
experience in oncologic radiology, respectively) (Fig. 2). 
After loading the digital imaging and communications 
in medicine (DICOM) files (complete set of CT images), 
the entire bone (e.g., whole vertebra or entire iliac bone) 
with a 68 Ga-PSMA-positive bone metastasis (total of 205 
metastases in the 67 patients) was manually segmented 
using the standard segment editor tool (Fig. 2). In addition, 
bone regions of the thoracic/lumbar spine and the pelvic 
bones appearing normal on PET/CT were manually seg-
mented in each patient (total of 86 normal bones in the 67 
patients) in order to investigate whether a radiomics classi-
fier is a feasible option in the categorization of metastases 
vs. no metastases of all segmented bone volumes.

Before feature extraction, segmented images were pre-
processed in order to minimize the influence of contrast 
and brightness variations on texture features [20, 21]: 
Images were spatially resampled to 2 × 2 × 2 mm using 
sitkBSpline as SimpleITK constant; signal intensity values 
were discretized to a bin width of 25 with relative inten-
sity rescaling. The voxelArrayShift was set to 1000. All 
segmented bone volumes were separately included in the 
analysis. Subsequently, a total of 1218 radiomic features 
were extracted using the open-source tool pyRadiomics 
[21] integrated as a plugin into 3D Slicer. Extracted radi-
omic features comprised 5 different categories: histogram, 
gray-level cooccurrence matrix (GLCM), gray-level run 
length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), and gray-level dependence matrix (GLDM). On 
each feature matrix, additional wavelet filtering (8 decom-
positions per level) and 5 different Laplacian of Gaussian 
filters (with sigma values of 1, 2, 3, 4, and 5) were applied. 
Shape features were not extracted, since only entire bones 
were segmented.

Analysis of intra‑ and inter‑reader reproducibility

To determine the intra-reader reproducibility, the first 
reader (with 1 year of experience in oncologic radiology) 
repeated the segmentation of 10 randomly selected subsets 
after a pause of 4 weeks and in random order. The second 
reader (with 4 years of experience in oncologic radiology) 
segmented the same image volumes to determine the inter-
reader reproducibility.

Table 1   Demographic data of the study cohort

Study cohort (n = 67)

Age (years) (mean ± SD) 71 ± 7
Weight (kg) (mean ± SD) 82 ± 12
Height (cm) (mean ± SD) 175 ± 5
BMI (kg/m2) (mean ± SD) 26 ± 3
TNM stage (initial)

  T1
  T2
  T3
    T3a (extracapsular extension)
    T3b (infiltration of seminal vesicles)
  T4

5 (7%)
16 (24%)
38 (57%)
21 (55%)
17 (45%)
8 (12%)

Gleason Score
  Grade 1 (3 + 3 = 6)
  Grade 2 (3 + 4 = 7a)
  Grade 3 (4 + 3 = 7b)
  Grade 4 (4 + 4 = 8)
  Grade 5 (Gleason 9–10)
Initial PSA (ng/ml) (mean ± SD)

2 (3%)
12 (18%)
14 (21%)
8 (12%)
31 (46%)
72 ± 172

Treatment
Surgery
  Radical prostatectomy
  Radical prostatovesiculectomy
  Radical prostatovesiculectomy with pelvic 

lymphadenectomy

50 (75%)
13 (19%)
10 (15%)
27 (40%)

Radiation and/or hormone therapy 67 (100%)

Table 2   Anatomic locations of affected and unaffected segmented 
bone volumes

Affected bone volumes Unaffecetd 
bone volumes

Thoracic spine n = 81 n = 22
Lumbar spine n = 46 n = 59
Left iliac bone n = 28 n = 3
Right iliac bone n = 24 n = 2
Sacrum n = 26 n = 0
Total n = 205 n = 86

http://www.slicer.org
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Data augmentation

To account for slight imbalances in the dataset (imbal-
anced ratio: 0.42), we performed a data augmentation step 
in order to achieve improved class balance and to avoid 
model overfitting. Data augmentation was performed using 
the imbalance package [22] in R (R Foundation; version 
3.4.0) [23] and applying a Majority Weighted Minority 
Oversampling Technique (MWMOTE). After applying the 
MWMOTE technique, the dataset consisted of an equal 

number of observations with bone metastasis (n = 205) and 
normal bone (n = 205).

Splitting of the dataset into training and testing 
datasets

In order to ensure the generalizability of the trained statisti-
cal models, the balanced dataset was then randomly split into 
separate training (n = 328 observations, n = 164 bone metas-
tases and n = 164 normal bones) and testing datasets (n = 82 

Fig. 2   Representative examples of 3D bone volume segmentations of L4 (a), the right iliac bone (b), and the sacrum (c)
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observations, n = 41 bone metastases, and n = 41 normal 
bones) using a ratio of 0.8:0.2. The entire dimension reduc-
tion and feature selection process described as part of the 
results section was performed only on the training dataset.

Statistical analysis, dimension reduction, 
and feature selection

Statistical analyses were performed in R (R Foundation; ver-
sion 3.4.0) using R Studio (RStudio; version 1.0.136 [24]). 
All continuous data are given as mean ± standard deviation 
(SD). Categorical variables are expressed in percent.

Intra- and interobserver agreement of radiomic features 
was assessed by calculating intraclass correlation coeffi-
cients (ICCs). A cut-off of 0.90 was used for selecting highly 
reproducible features.

Radiomics feature selection and dimension reduction 
were performed on the augmented training dataset only. In 
a first step, a total of 367 out of 1218 features were excluded 
based on calculation of intra- and interobserver reproduc-
ibility, with ICCs < 0.90 considered as non-reproducible. 
After normalization of all features using Z-score standardi-
zation, the remaining 851 features were fed into the Boruta 
dimension reduction and feature elimination algorithm as 

previously described [25, 26], resulting in selection of 105 
features, which were considered most important for clas-
sification accuracy (Supplemental Fig. 1). Since the Boruta 
algorithm does not account for collinearity in the data, a 
correlation matrix was calculated in a next step in order to 
detect clusters of highly correlated features (defined as Pear-
son’s r ≥ 0.60; Fig. 3). After fitting separate random forest 
models on each of the 11 detected correlation clusters, only 
one feature from each cluster with the highest mean decrease 
accuracy index was selected for further analyses.

Results

At the end of the multi-step dimension reduction pro-
cess, the following 11 most important and independent 
features were selected for further statistical analyses: log.
sigma.5.0.mm GLDM dependence non-uniformity nor-
malized, wavelet-LHL-transformed GLSZM gray-level 
non-uniformity (GLN), log.sigma.4.0.mm GLSZM zone 
percentage, log.sigma.5.0.mm GLCM inverse variance, 
wavelet-HHL-transformed first-order mean, wavelet-LHH-
transformed first-order entropy, wavelet-LLL-transformed 
GLSZM large-area low gray-level emphasis (LALGLE), 

Fig. 3   Correlogram illustrating 
the auto- and cross-correlation 
of the 105 most important 
features to classify metastatic 
and normal bone. Features 
were recorded after hierarchical 
clustering for depicting different 
feature clusters. Eleven clusters 
of radiomic features were iden-
tified (rectangular boxes). Blue 
points indicate positive correla-
tion, red points negative correla-
tion. The larger the points and 
the darker the color, the higher 
the correlation between two 
variables
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wavelet-HHH-transformed GLSZM large-area high gray-
level emphasis (LAHGLE), wavelet-HLL-transformed 
GLCM cluster shade, log.sigma.5.0.mm GLDM depend-
ence variance, and wavelet-LHH transformed GLDM large 
dependence low gray-level emphasis (LDLGLE).

Training of a radiomics‑based machine learning 
classifier

A gradient-boosted tree was trained on the selected 11 
radiomic features in order to classify patients’ bones into 
bone metastasis and normal bone using the training data-
set. The model was tuned, leading to the following optimal 
tuning parameters: nrounds = 50, max_depth = 3, eta = 0.4, 
gamma = 0, colsample_bytree = 0.8, min_child_weight = 1, 
subsample = 0.75. Leave-one-out cross-validation was used 
to validate the model’s performance on the independent test 
dataset, which had not been shown to the algorithm before. 
Since the dataset was relatively small, this approach ensures 
that the greatest amount of data was used for each round of 
training of the model. In addition, this approach avoids the 
randomness of splits, since the model is trained on every 
possible combination of observations. The trained model 
achieved a classification accuracy of 0.84 (95% confidence 
interval [CI]: 0.74–0.91, p < 0.001) with 78% sensitivity and 
90% specificity in the test dataset (Fig. 4a). The calibra-
tion plot (Fig. 4b) indicates some model overfitting. Further 

feature reduction did not lead to any additional improvement 
of the model.

Discussion

In our study, we assessed the potential of a CT-radiomics-
based machine learning approach to enable the discrimina-
tion between metastatic and metastasis-free bone matrix in 
patients with PCa, while using 68 Ga-PSMA PET/CT as the 
reference standard. The main finding of our proof-of-concept 
study indicates that the usage of a gradient-boosted tree, 
trained on the selected 11 most important CT-derived radi-
omic features, achieved a diagnostic accuracy of 90% with 
91% sensitivity and 88% specificity.

We decided to use a gradient-boosted tree to train our 
model. Gradient boosting is a technique from the ensemble 
learning spectrum, which—instead of finding the optimal 
hyperparameters for a single model—uses several comple-
mentary weak models to build a more powerful ensemble 
model. For multidimensional datasets such as in radiomics, 
ensemble learning techniques have been shown to be pow-
erful techniques with higher accuracies [16]. The drawback 
is the higher tendency to overfitting, especially in smaller 
sample sizes.

Particularly small lesions within the bone marrow without 
substantial destruction of the bone matrix can be missed 

Fig. 4   Graph represents receiver operating characteristic (ROC) anal-
ysis (a) and the calibration plot (b) for the trained machine learning 
algorithm in order to differentiate between bone metastases and nor-
mal bone. The ROC analyses indicate accuracy, sensitivity, and speci-

ficity of the gradient-boosted tree trained on the selected 11 most 
important radiomic features and applied on the independent test data-
set. The calibration plot shows the calibration in terms of agreement 
between the predicted and the actual probability of bone metastases
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with CT [27]. Likewise, technetium 99 m (99mTc) diphos-
phonate bone scan shows only a limited detection rate of 
bone metastases, particularly of small lesions with low 
bone turnover [27]. A meta-analysis of 1102 patients with 
PCa comprising 12 studies using 99mTc bone scan showed 
a sensitivity of only 59% and a specificity of 75% for bone 
metastasis detection [28]. Since both bone scan and CT will 
underestimate the presence and extent of metastatic bone 
disease, PET imaging is increasingly used in these patients, 
often resulting in upstaging of the disease [27, 29, 30].

According to the results of our proof-of-concept study, 
CT imaging as an inexpensive, easily accessible, and 
time-saving modality might be a feasible option to differ-
entiate between bone metastases and metastasis-free bone 

in patients with metastatic PCa, showing an overall good 
diagnostic accuracy in this moderately large patient group, 
hereby displaying image information that may not be visible 
for the radiologists’ eye (Fig. 5). It has to be noted, however, 
that the trained model showed some overfitting when consid-
ering the calibration plot. This was somewhat expected due 
to the relatively low lesion number included in this proof-
of-concept study. As a consequence, future studies should 
retrain the model on a considerably larger dataset.

Recently, a study by Acar et al. [10] evaluated the poten-
tial differences between sclerotic bone lesions with 68 Ga-
PSMA uptake (metastatic) and those without (completely 
responded) using CT texture analysis and machine learn-
ing. Similar to our study (bone metastasis vs. metastasis-free 

Fig. 5   CT and corresponding 
PET/CT in three representa-
tive patients with metastatic 
bone disease from PCa. Can 
you identify the bone metas-
tases in the upper (a) and mid 
(b) thoracic spine, the inferior 
part of the sacrum (c), and the 
right iliac bone (d) on CT only, 
without the additional meta-
bolic information from PET? 
Corresponding PET/CT images 
clearly show high 68 Ga-PSMA 
uptake of the bone metastases 
in the aforementioned skeletal 
regions (e–h). Note additional 
68 Ga-PSMA-positive lymph 
node metastases along the left 
iliac vessel axis (g, h)
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bone), the visual distinction between metastatic and com-
pletely responded sclerotic bone lesions on CT was not 
possible in their study. However, they detected statistically 
significant differences between both groups in 28 of 35 
acquired texture features, resulting in an overall good accu-
racy of 73.5% [10].

Another study by Xu et al. developed a texture analysis 
and machine learning method on CT- and 18F-fluorodeoxy-
glucose (FDG) PET images to differentiate between malig-
nant and benign bone and soft tissue lesions [31]. While 
the accuracy of CT-derived texture features was separately 
calculated with 73% (sensitivity 81% and specificity 61%), 
the accuracy increased to 83% (sensitivity 86% and speci-
ficity 77%) when combined with the additionally acquired 
PET texture features. Xu et al. [31] included several different 
entities of benign and malignant bone lesions in the analysis, 
representing a possible explanation for the slightly lower 
performance compared to the results of our study.

The main purpose of our study was to address the diag-
nostic and clinical dilemma of frequently missing meta-
static bone disease in CT, which can only be detected with 
additional information of PET imaging due to the lack of 
morphologic changes. From this clinical point of view, we 
had to perform the segmentation of the entire bone of a 
metastatic lesion (e.g., whole vertebra), in order to use the 
radiomic classifier for the categorization in metastases vs. 
no metastases. In contrast to our study, Acar et al. [10] and 
Xu et al. [31] performed a preselection by including only 
the target lesions in the volume of interest, suggesting even 
greater value of our results. Despite the merely good diag-
nostic accuracy of our study with an accuracy of 0.85 (sen-
sitivity 78% and specificity of 90%), it can be assumed that 
the human eye (without the metabolic information) would 
hardly be able to detect these relatively small lesions without 
or only subtle morphologic changes, although our study is 
lacking the comparison with a human reader.

Besides the early detection of metastatic bone disease, 
a timely and accurate prediction of bone metastases and 
identification of patients at high risk for bone metastases 
would be highly desirable and could allow for the selection 
of those patients most likely to benefit from targeted therapy. 
Recently, Wang et al. [32] developed and validated an MRI-
based radiomics model for the individualized pretreatment 
prediction of bone metastases in patients with PCa. T2w and 
dynamic contrast-enhanced (DCE) T1w images in combi-
nation with clinical risk factors showed excellent predic-
tive performance in the training cohort with an area under 
the curve (AUC) of 0.92 (accuracy: 0.85; sensitivity: 0.81, 
specificity: 0.89), which could be confirmed in the validation 
cohort (AUC = 0.9; accuracy: 0.85; sensitivity: 0.82, speci-
ficity: 0.88). Zhang et al. [33] confirmed these results in their 
study, additionally incorporating the DWI sequence in the 
newly developed MRI-based radiomics nomogram reaching 

an AUC of 0.93 in the training cohort and an AUC of 0.92 in 
the validation cohort, introducing a robust model for predict-
ing bone metastases in patients with newly diagnosed PCa. 
We believe that the results of our study could add incremen-
tal value for diagnostic and treatment strategies, especially in 
patients with high probability of bone metastases according 
to the aforementioned MRI-based radiomics nomogram.

The currently favored PSMA radiotracer is 18F-PSMA, 
and not anymore 68 Ga-PSMA, which was used in our study. 
Besides having several advantages over 68 Ga-PSMA, such 
as less noise, mainly owing to lower positron energy and 
higher positron yield, and less activity in the urinary bladder, 
18F-PSMA has the major disadvantage of occasional unspe-
cific bone uptake [34, 35]. This uptake is supposedly due 
to defluorination and is typically seen in the ribs and pelvic 
bone, which are predilection sites for prostate cancer bone 
metastases [34, 35]. Hence, CT-based radiomics might be 
helpful in clinical 18F-PSMA scans in order to differentiate 
unspecific PSMA uptake from bone metastases.

Although radiomics has demonstrated its potential for 
diagnostic, prognostic, and predictive purposes, the method 
is still facing certain challenges. The reproducibility of 
radiomics studies is often poor, which is partly due to the 
retrospective nature of most studies resulting in insufficient 
standardization of imaging protocols, including acquisition 
and reconstruction parameters [36]. Accordingly, it has been 
shown that automatic image segmentation enhances repro-
ducibility of texture features and thus would be the preferred 
technique to improve standardization of radiomics analyses 
[36]. Also, the lack of adequate validation with the conse-
quence of statistical type I errors impedes the transition to 
routine clinical practice [37]. Furthermore, the reproduc-
ibility of radiomic features might also depend on different 
modalities or scanners and is not necessarily generalizable 
to various disease entities [38].

Adding to the aforementioned shortcomings of the 
applied methodology, we acknowledge several other limita-
tions of our study. First, there were the inherent drawbacks 
of the retrospective study design. Second, pelvic bone and 
vertebral bodies without 68 Ga-PSMA uptake were consid-
ered unaffected, metastasis-free bone. Third, our dataset 
consisted of paired data with different observations from 
the same patient. Since it was not possible to correct for 
this potential bias during the training of our model (due to 
methodological constraints), this might have led to poten-
tial overfitting of our model. Fourth, no clinical parameters 
were included in the radiomics analysis, although this might 
have the potential to further increase the diagnostic accuracy. 
Fifth, no external validation dataset was used. Another limi-
tation is the use of different PET/CT scanners with different 
intrinsic system sensitivity.

In conclusion, our proof-of-concept study shows promising 
results of radiomics applied on CT images for the differentiation 
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between bone metastases and metastatic-free bone in patients 
with PCa. Importantly, radiomics enabled this differentiation in 
a quantitative way on CT images showing only discrete abnor-
mality. Future advancing applications include fully automati-
cally bone segmentation frameworks for all patients with newly 
diagnosed prostate cancer, followed by the usage of a radiomics 
classifier, allowing for an opportunistic screening-like approach 
in the early detection of bone metastases.
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