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Recently, red blood cell-derived extracellular vesicles (RBCEVs) have attracted attention

for clinical applications because of their safety and biocompatibility. RBCEVs can escape

macrophages through the binding of CD47 to inhibitory receptor signal regulatory protein

α. Furthermore, genetic materials such as siRNA, miRNA, mRNA, or single-stranded

RNA can be encapsulated within RBCEVs and then released into target cells for

precise treatment. However, their side effects, half-lives, target cell specificity, and limited

large-scale production under good manufacturing practice remain challenging. In this

review, we summarized the biogenesis and composition of RBCEVs, discussed the

advantages and disadvantages of RBCEVs for drug delivery compared with synthetic

nanovesicles and non-red blood cell-derived EVs, and provided perspectives for

overcoming current limitations to the use of RBCEVs for clinical applications.

Keywords: therapeutic drug delivery, cancer, RBCEVs, extracellular vesicles, exosome, microvesicles, clinical

application

INTRODUCTION

Extracellular vesicles (EVs) are cell-derived vesicles present in bodily fluids that play an
essential role in intercellular communication between tumor cells and other cells within the
tumor micro- and macroenvironment (1). These secreted membranous vesicles are currently
separated into three main classes on the basis of their size and biogenesis as follows: (i)
apoptotic bodies (800–5,000 nm in diameter) released by cells undergoing programmed cell
death; (ii) microvesicles (MVs; 50–1,000 nm in diameter), which are large membranous vesicles
produced via plasma membrane budding; and (iii) exosomes (40–100 nm in diameter), which
are small vesicles originating from the endosomal compartment (2, 3). Most cell types have
been found to naturally secrete EVs under normal, physiological, and pathological conditions
because of the dynamics of the cell membrane (4). Moreover, the biological functions of
EVs are based on their surface composition and cellular cargo, which typically consists
of bioactive molecules such as nucleic acids, lipids, and proteins. These molecules are
delivered to adjacent and distant cells (5), and they lead to alterations of recipient cell fate
and function and consequently modulate the surrounding microenvironment. EVs mediate
functions in both healthy and disease states, as they circulate mini-messages throughout
the body. For instance, healthy non-senescence mesenchymal stem cells can release EVs
to repair damaged tissues and improve the stemness of the premature senescence stem
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cells (6, 7). EVs released from cells of the disease state contain
specific molecules that could serve as biomarkers, and may
also function as the mediators/aggravators of pathophysiologic
processes (8–11).

EVs can be isolated from various human cells, including
cancer cells, fibroblasts, epithelial cells, endothelial cells, immune
cells, platelets, and red blood cells (RBCs) (12). RBCs can
pass through all types of vessels and squeeze into capillaries
with smaller diameters than normal RBCs for oxygen transport
and carbon dioxide exchange in cells in all tissues throughout
the body. RBC-derived extracellular vesicles (RBCEVs) are
generated in circulation via shedding of the plasma membrane
caused by complement-mediated calcium influx, followed by
vesicle shedding (13). RBCEVs participate in several biological
processes, such as nitric oxide (NO) homeostasis, redox balance,
immunomodulation, and coagulation (14). Because they are
produced from human RBCs, which practically lack both
mitochondrial and nuclear DNA, RBCEVs therefore have a
lower risk of horizontal gene transfer. RBCs have been widely
used for blood transfusion for several decades, highlighting
the potential safety and biocompatibility of RBCEVs (15).
This review focuses on RBCEVs as robust nanocarriers with
potential utility in future strategies as drug delivery platforms for
clinical applications.

RBCEV BIOGENESIS AND PRODUCTION

Normal RBCs have a flexible biconcave shape with a diameter
of 7.5–8.7µm and thickness of 1.7–2.2µm (16). Phospholipids,
including phosphatidylcholine, phosphatidylethanolamine,
sphingomyelin, and phosphatidylserine, comprise 60% of the
RBC membrane. The remaining content consists of lipidic
compartments composed of cholesterol and glycolipids,
representing 30 and 10% of the membrane, respectively (17).
Furthermore, the RBC membrane also contains various proteins,
such as peripheral proteins (e.g., spectrins) and integral proteins
(e.g., band 3, glycophorins). Additionally, RBC membrane
proteins can be classified by function into three groups:
cytoskeletal proteins (e.g., spectrin, actin, protein 4.1), integral
structural proteins (e.g., band 3, glycophorins), and anchoring
proteins (e.g., ankyrin, protein 4.2) (17). Although hemoglobins
are the major cytosolic proteins of intact RBCs, the cytoplasmic
fraction also contains several proteins that serve as anti-oxidant
and metabolic enzymes (18, 19). These proteins can release
adenosine triphosphate (ATP) and NO into the intracellular
environment (20, 21). Furthermore, RBCs are also the major
vesicle-secreting cells in blood circulation. During their 120-day
lifespan, RBCs lose ∼20% of their hemoglobin content and
membrane integrity during vesiculation. The physiological
aging of RBCs, especially during the second half of their
lifespan, accelerates vesicle generation (22). Indeed, vesiculation
is one of the most important mechanisms by which RBCs
eliminate any hazardous substances accumulated throughout
their lifespan and prevent their early clearance from blood
circulation (23, 24).

RBC membrane vesiculation is a homeostatic process
activated in response to impaired or dangerous signaling
machinery (25). This specific mechanism of vesiculation is
related to the physical distortion of the RBC membrane
caused by changes of the phospholipid organization (21). RBC
vesiculation can be induced by ATP depletion, calcium loading,
lysophosphatidic acid exposure, membrane protein disruption
under pH 5.4 or heating, and cross-linking with diamide,
resulting in interactions among the disrupted membrane
proteins/lipids and shedding of the RBC membrane to generate
spectrin-depleted MVs (26–30). Other stimuli known to
induce RBC vesiculation include oxidative injury, endotoxin,
cytokines, complement, and high shear stress (31). During
ATP depletion, the activity of plasma membrane Ca2+ pumps
is decreased, leading to increased Ca2+ concentrations within
RBCs (26). Because plasma membrane enzymes such as flippase,
floppase, and scramblasemust maintainmembrane phospholipid
asymmetry, RBC scramblase increases anionic phospholipid
exposure on the external leaflet of the plasma membrane (i.e.,
phosphatidylserine) and then releases vesicles (32). Moreover,
circulating RBCs can remove membrane attacking complex
pore components from the plasma membrane in a process
requiring Ca2+, calpain activation, and spectrin disruption via
vesiculation, resulting in EV formation (33). This membrane
vesiculation may occur slowly during erythrocyte aging, in the
blood circulation of patients with hemolytic RBC disorders,
and in stored RBCs obtained for blood transfusion (34–36).
Meanwhile, RBC vesiculation may also occur in response
to energy depletion and compressive force on the RBC
membrane (30).

Several stimuli have been applied to reproducibly generate
RBCEVs as drug carriers, although it remains unclear whether
different types of stimuli may lead to various RBCEV properties.
The inducing factors used to stimulate RBCs to produce RBCEVs
are presented in Table 1.

RBCEV COMPOSITION

RBCEVs consist of lipid bilayer spheroids (buds) with a diameter
of 100–200 nm, and they are enriched in phospholipids, proteins,
cholesterol, lipid rafts, hemoglobin, and acetylcholinesterase
(37, 42). The components of RBCEVs are derived from RBC;
however, they are not identical. Compared with their parental
cells, RBCEVs lack cytoskeletal-linked molecules and possess
lower membrane protein content, but they retain residual
hemoglobins and metabolic proteins that contribute to their
various biologic effects (25). The composition of hemoglobins,
includingHbA1c, of these vesicles is similar to that of intact RBCs
(43). Table 2 summarizes and compares the main components of
RBC and RBCEVs.

RBCEVs contain lipid rafts and Fas-associated proteins
to facilitate the action of a Fas–FADD–caspase 8–caspase 3
complex during RBC aging and death (51). The stomatin-
specific lipid rafts present on RBCEVs are enriched in
glycophosphatidylinositol-anchored proteins, i.e., complement
decay-accelerating factor (DAF or CD55), membrane attacking
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TABLE 1 | Factors that induce RBCEV production.

Inducing factors Mechanisms EVs characteristics References

Chemical reagents

- Calcium ionophore

- Lysophosphatidic acid

- Phorbol

12-myristate 13-acetate

Calcium channel and protein kinase C

activation leads to PS exposure and MV

formation

RBC morphology changes from a spherical shape to a

stomatocyte-, echinocyte- or discocyte-like shape. Negative

surface charges on EVs depend on number of PS moieties

(30, 32, 37, 38)

Oxidative stress

- tert-Butyl hydroperoxide

Oxidative stress-induced decrease in the

osmotic fragility of RBCs, Hb oxidation, and EV

formation

RBCEVs express PS and cell-specific band 3 epitopes on

their surface, as well as enzymes involved in redox

homeostasis and the complement-inhibiting proteins CD55

and CD59

(39)

Long-term storage ATP depletion leads to changes in membrane

mechanical properties and metabolic depletion

following disturbances of

membrane/cytoskeleton interactions

Accumulation of oxidized proteins (40, 41)

PS, phosphatidylserine; MV, microvesicle; RBC, red blood cell; EV, extracellular vesicle; RBCEV, red blood cell-derived extracellular vesicle; Hb, hemoglobin.

TABLE 2 | Comparison of the major components of RBCs and RBCEVs.

Composition RBCs RBCEVs References

Size 5–7µm 100–300 nm (16, 37)

Membrane

- Phospholipid

bilayer

PC, PE, SM, PS PS, PE, PA (17, 31)

- Lipids Cholesterol, glycolipids DAG, cholesterol (17, 44)

- Proteins Spectrins, band 3,

glycophorins

Band 3, glycophorins,

complement receptors,

GPI-anchored proteins

(17)

- Genetic

materials

DNA N/A (39)

Cytoplasm

- DNA Lack both nuclear and

mitochondrial DNA

N/A (15, 45)

- miRNAs (high

abundance)

miR-451, miR-144,

miR-486

miR-125b-5p,

miR-4454, miR-451a

(46, 47)

- Proteins or

markers

Hb tetramer–dimer,

PRX

oxidation-reduction,

NOS

Hb, synexin, sorcin (18, 19, 48–

50)

PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; PS,

phosphatidylserine; Hb, hemoglobin; PA, phosphatidic acid; DAG, diacylglycerol;

GPI, glycophosphatidylinositol; N/A, data not available; NOS, nitric oxide synthase;

PRX, peroxiredoxin.

complex inhibitory protein (CD59) (52, 53). RBCEVs also
express CD47 on their surfaces to inhibit phagocytosis through
an interaction with the macrophage inhibitory receptor signal
regulatory protein alpha (SIRPα), thus preventing RBCEV
clearance via endogenous elimination (54). RBCEVs are also
enriched in synexin and sorcin, two proteins associated with
stomatin-specific lipid rafts, as well as diacylglycerol and
cholesterol as membrane lipids (24, 44, 48).

Notably, the components of RBCEVs can be modified
during RBC storage (47, 55, 56). Previous evidence
illustrated that RBCEVs released from stored RBC units

had increased surface CD47 expression and intravesicular miR-
4454 and miR-451a levels over time (47, 56). Concerning
the membrane lipids, RBCEVs released after 4 weeks
of RBC storage had higher ceramide, dihydroceramide,
lysophosphatidylinositol, and lysophosphatidylglycerol levels,
lower phosphatidylinositol and phosphatidylglycerol levels,
but relatively unchanged phosphatidylethanolamine and
lysophosphatidylethanolamine levels (55).

RBCEV APPLICATIONS FOR DRUG
DELIVERY

Cumulative evidence suggests that RBCEVs can be applied
in drug delivery systems (15, 57). The summary of RRBCEV
production and cargo packaging for drug delivery is shown in
Figure 1. RBCEVs have several advantages over conventional
synthetic vehicles and non-RBC–derived EVs, all of which are
discussed in this section.

RBCEVs vs. Synthetic Nanovesicles
The desired properties of drug carriers include efficient cellular
entry, near-natural physicochemical properties, and the ability to
evade immune responses (58, 59). NVs are derived from natural
and synthetic vesicular carriers. The types of natural lipid NVs
include exosomes, virosomes, bacterial ghosts, and erythrocyte
ghosts (60). Conversely, synthetic NVs were created to mimic
the physicochemical properties of liposomes (61). Liposomes
contain a lipid bilayer surrounding an aqueous core to allow the
encapsulation and protection of hydrophilic molecules such as
miRNA or DNA (62).

Liposomes have been widely used in drug delivery because
their structure can effectively entrap various drugs and
then transport cargo to target sites (63). This approach
has demonstrated strong therapeutic efficacy in some cancer
types (64, 65). However, liposomes have poor selectivity for
cancer cells, resulting in severe systemic side effects (66).
Conjugating liposomes with specific molecules, such as ligands,
antibodies, or small molecules, improves selectivity and cellular
targeting (67–69). By mimicking EV properties, synthetic
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FIGURE 1 | RBCEV production and cargo packaging for drug delivery. RBCs produce extracellular vesicles in response to increasing intracellular Ca2+

concentrations. Molecular therapeutic cargo (e.g., compounds, RNA, DNA) can be packaged into RBCEVs via electroporation for drug delivery. ATP, Adenosine

triphosphate; PMA, Phorbol 12-myristate 13-acetate; RBCEVs, red blood cell-derived extracellular vesicles; RBCs, red blood cells.

NVs created from biomimetic phospholipid bilayers result in
several improvements such as increased solubility, prolonged
action, reduced toxicity, and lower adverse effects (66, 70–72).
Nonetheless, the issues limiting the utility of synthetic NVs are
immunorecognition as foreign substances and immune clearance
by phagocytic cells (73).

In this regard, RBCEVs have proven extremely safe, and
they can be used as robust carriers clinically because of their
biocompatibility (74). Regarding biosafety, biocompatibility,
efficiency, accessibility, and cost-effectiveness, RBCEVs are
superior to conventional RNA delivery systems such as
tripartite formulations with RNA, cationic polymers, and anionic
liposome-encapsulated neutral lipopolyplexes (15, 75). Although
conventional RNA delivery systems such as lipid nanoparticles
are more stable than RBCEVs, they cause toxic side effects,
and they are rapidly cleared from the circulation (76). RBCEVs
have been used as carriers for RNA-based therapeutics to
facilitate the effective delivery of both short RNA molecules and
long mRNA molecules to their target sites for cancer therapy
(47). RBCEVs loaded with RNA molecules display long-term
stability and retain their functional capacity for long periods
(77). Moreover, RBCEVs have great potential in drug delivery
platforms because they can penetrate anatomical barriers and

display sufficient binding (78, 79). This outstanding drug delivery
platform carries special properties that make it suitable for
drug delivery approaches (15). Further development of cancer-
targeting peptide- or antibody-coated RBCEVs may result in
improved target specificity and reduced adverse side effects
in normal tissues. In addition to therapeutic agent delivery,
RBCEVs can be applied to deliver ultra-small superparamagnetic
iron oxide particles into human bone marrow mesenchymal
stem cells for cellular magnetic resonance imaging to increase
the performance of stem cell therapies (74). In addition,
99mTc has been delivered to white blood cells via RBCEVs
to observe organ inflammation in a mouse model using
a gamma camera (80). This novel strategy using RBCEVs
as delivery vehicles overcomes the limitations of traditional
imaging including low intracellular labeling efficiency and
biosafety concerns (74).

Production upscaling is perhaps easier for synthetic NVs.
However, it should be noted that RBCEVs can be easily prepared
at a relatively low cost from RBC units available in blood
banks. Chemical induction (using modalities such as calcium
ionophores) to enhance RBCEV release is an interesting scaling-
up strategy for large-scale preparation and clinical applications
(22, 81). Moreover, RBCEVs retain their stability and efficiency of
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delivery without any harmful effects even after multiple freeze–
thaw cycles (82). As previously mentioned, CD47 expressed
on the surface of RBCEVs prevents phagocytosis through an
interaction with SIRPα (54), thus supporting the stability of
RBCEVs after intravenous administration. In addition, EVs
can efficiently penetrate the blood–brain barrier (83). Signaling
molecules on the RBC membrane, which is a component of
RBCEVs, can inhibit immune cell engulfment via an interaction
between CD47 and SIRPα and defend against complement
system attack via C8 binding protein, homologous restriction
protein, DAF, membrane cofactor protein, complement receptor
1, and CD59 (84–86). This property of RBC membranes was
applied to coat nanoparticles to increase their half-lives in blood
circulation for drug delivery (87). Notably, it is feasible to prepare
autologous RBCEVs for therapeutic agent loading (88).

Taken together, RBCEVs display advantages over
conventional drug carriers in terms of high biocompatibility
with limited immunogenicity, simple scaling-up, and high
stability (15). Nonetheless, there are some disadvantages of
RBCEVs for drug delivery. RBCEVs require a robust isolation
method to separate them from blood cells and contaminating
proteins. The heterogeneity of EV populations, including
differences in EV size in the isolates, is nearly unavoidable
depending on the isolation methods. A systematic comparison
of EV isolation methods on the quality and quantity of
plasma EVs indicated that ultracentrifugation (the gold
standard) was the most appropriate method. Ultracentrifugation
provided better EV purity compared to ExoQuick (System
Biosciences), Total Exosome Isolation (TEI, Invitrogen), size
exclusion chromatography (qEV), ultrafiltration, and exoEasy
(Qiagen, membrane-based affinity binding) (89). However,
the highest recovery rate was yielded by qEV (∼60%), while
ultracentrifugation and ultrafiltration yielded ∼40% recovery
rate (89). Polymer-based precipitation had impurity particles
while exoEasy kit caused fusion and aggregation of EVs during
the isolation process (89). Microfluidic and antibody selection
platforms based on antigen-specific capture were successfully
applied to isolate tumor-specific EVs (90). Unfortunately,
microfluidic platform could separate EVs in a relatively small
amount, i.e., 100 EVs per 1 µl and may cause EV aggregation
during the isolation process (90). An optimized protocol for
RBCEV preparation including an additional quality-control
step is required to minimize batch effects and ensure the
reproducibility of RBCEV applications. Notably, there is no
study to clarify the normal range of EV concentration in the
human body and it is unclear how various EV distributions in
healthy or disease states might affect the efficacy of RBCEV-
based therapy. For example, neuronal-enriched EV levels had
not changed between healthy individuals and patients with
Alzheimer’s disease (91), so further study of RBCEV therapy
in this disease context have no confounding from other EV
distribution. Human lactoferrin could promote EV releasing
from human adipose-derived stem cells (92), so the diseases
with evidence of plasma lactoferrin changes might affect the
interpretation of RBCEV therapeutic efficacy. The relationship
between (exogenous) therapeutic RBCEVs and (endogenous) EV
distribution should be clarified in future studies.

RBCEVs vs. Non-RBC–derived EVs
Currently, which cell types represent the best sources of EVs
for drug delivery remains unclear. Because EVs carry the
membrane ligands and receptors of their parental cells, different
cell types may produce EVs with differing delivery proficiency
and targeting selectivity (81). RBCs, endothelial cells, monocytes,
granulocytes, and platelets have been reported as cell sources
for EV-based drug delivery (93). Conversely, fibroblast- and
dendritic cell-derived EVs are not stably obtained from all
subjects (94, 95), whereas cancer cell lines may release EVs
that promote tumor development (96, 97). Various circulating
cell type-derived EVs, especially those derived from nucleated
cells, might contain genetic material, leading to horizontal gene
transfer to recipient cells (98). Whole plasma is a major source of
EVs that is easily obtained and readily available. However, whole
plasma-derived EVs are heterogeneous, and they may contain
several (unknown) substances (42).

Blood exosomes were engineered by co-embedding of
drug and cholesterol-modified miR-21 inhibitor with high
payloads into the lipid bilayer of exosomes (99). Moreover,
superparamagnetic molecules and targeting proteins/peptides
were loaded into the exosome membrane using ligand-
receptor coupling and electrostatic interactions to enhance
delivery to tumor cells and then inhibit tumor growth
(99, 100). For example, in Parkinson’s disease treatment,
the engineering blood exosomes were applied to loaded
dopamine by a saturated solution incubation method
into blood transferrin receptor positive exosomes which
were purified by multiple superparamagnetic nanoparticles
labeled with transferrin (101, 102). Additionally, in type
2 diabetes mellitus treatment, a potential therapeutic
peptide BAY55-9837 was loaded into exosome and
coupled with superparamagnetic iron oxide nanoparticles
with pancreas islet targeting activity to increase insulin
secretion (103).

Interestingly, several properties of RBCEVs allow them to
overcome the limitations of other cell source-derived EVs. First,
RBCs are easily obtained and stored for prolonged periods after
blood transfusion. Second, RBCEVs have long been present
as a hidden component of transfused RBCs, which highlights
their safety and biocompatibility. Third, RBCEVs have a low
risk of horizontal gene transfer during delivery because RBCs
lack nuclear and mitochondrial DNA (44). Finally, RBCEV
release can be triggered by several processes, such as membrane
complement activation and calcium influx. This EV release
process can be applied to produce a large number of RBCEVs
for experimental and clinical applications (81). Nonetheless,
RBCEVs should be considered a blood product, and as such,
blood group compatibility must be considered. In this regard,
autologous RBCs can be an ideal source of EVs to avoid blood
group incompatibility or immunorecognition.

For allogeneic treatments in patients with cancer, RBCEVs are
safer than plasma EVs because cancer and immune cells generally
release an extremely large number of cancer-promoting EVs into
the circulation (96, 97).

A comparison of drug delivery characteristics between
RBCEVs and non-RBC-derived EVs is presented in Table 3.
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TABLE 3 | Comparison of drug delivery systems between RBCEVs and other EVs.

Property RBCEVs Other EVs Refences

Gene transfer ND Horizontal gene

transfer

(15)

Drug content

within EVs

ASOs = 200 pmol

USPIO particles =

200 µg

Catalase = 0.1 mg/mL

Curcumin = 2.9 g/g

Paclitaxel = 5µM

(15, 74, 104–106)

Number of

EVs

1 × 1011 1 × 1011 (15, 106)

Packaging Electroporation,

hypoosmotic swelling

Electroporation,

sonication, extrusion

(15, 74, 107)

Safety Relatively safe Oncogenic phenotypes (15, 108)

RBCEV, red blood cell-derived extracellular vesicle; EV, extracellular vesicle; ND, not

detectable; ASO, anti-sense oligonucleotide; USPIO, ultra-small superparamagnetic

iron oxide.

Drugs and Therapeutic Molecules Suitable
for RBCEV-Mediated Transport
EVs, as natural carrier systems, efficiently deliver complex
molecules including proteins, nucleic acids, lipids, and sugars
similarly as their parental cells (109, 110). Moreover, because they
have similar membrane properties as their parental cells, EVs
can easily internalize into parental cells as well as target cells via
clathrin-independent endocytosis and macropinocytosis (109).
The different cell types may use different EV uptake pathways
such as membrane fusion, phagocytosis, micropinocytosis, and
endocytosis (111). EVs may bind to surface receptors of targeted
cells, trigger intracellular signaling cascades, and then mediate
EV uptake depending on EV composition and origin (112).
For example, monocyte-derived dendritic cells could uptake
the milk-derived EVs via dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) and
mucin1 (MUC1) protein interaction and phagocytosis, but
not the EVs derived from other sources or lacking MUC1
(113). Furthermore, EV uptake capability depends on the
recipient cell types but not the donors (114). For instance,
EV uptake of human colon carcinoma cells was mediated
by clathrin-dependent endocytosis, but that in human lung
carcinoma cells was mediated through neither clathrin- nor
caveolin-dependent endocytosis (114). However, RBCEVs can
internalize into cancer cells through their primary membrane
components (i.e., phospholipids) (14, 115). To reduce the loss
of drugs/molecules during transport to target cells, RBCEVs are
designed to internalize drugs/molecules and reach the target cells
without inducing immune system attack and drug/molecule loss,
leading to increased treatment efficacy (116).

Drugs/small molecules are easily loaded into EVs. For
example, the anti-inflammatory agent curcumin was loaded into
exosomes via incubation at 22◦C for 5min (105). Curcumin-
loaded exosomes were more stable than free curcumin in vivo
following intranasal administration (105, 116). In addition, a
heat shock technique for bacterial cell transfection (incubation
on ice for 30min followed by 42◦C for 60 s) and five rounds
of electroporation at 500V using a 10-ms pulse were used
to load miR-15a mimic/inhibitor into exosomes (117, 118).

The EV loading protocol should be optimized to account for
differences in properties among different EV sources (119). The
size of EVs may also influence the size and number of loaded
drugs/molecules (120). MVs can carry larger amounts of linear
and plasmid DNA than EVs following electroporation (120).
Additionally, smaller linear dsDNA (<750 bp) was loaded to EVs
(85± 41 nm) at higher amounts than larger dsDNA (>1,000 bp)
(120). Furthermore, miRNA loading into EVs has been optimized
via incubation at 22◦C for 2 h at pH 2.5 (121). Notably, unlike
miRNA loading methods of RBCEVs that were comprehensively
evaluated and optimized (15, 121), the protocols for small
molecule drug-loading into RBCEVs require further studies in a
systematic manner.

CHALLENGES AND LIMITATIONS OF
RBCEV APPLICATIONS

Potential Side Effects
RBCEVs may have some cellular effects because they participate
in several biological processes including oxidative stress,
inflammation, NO homeostasis, thrombosis, and foam cell
formation (122). In oxidative stress, RBCEVs can upregulate
NADPH oxidase expression via the excessive production of ROS
by activated neutrophils through respiratory burst (123, 124).
This may change cytoskeletal and cell membrane asymmetry,
leading to Oxi-ERY formation and hemolysis. This can ultimately
cause cholesterol release, lipid peroxidation production, and
protein and iron aggregation, thereby inducing vascular
cell damage (24, 125). Furthermore, during inflammation,
components on the membrane of RBCEVs, including cholesterol
(induces inflammation reaction), iron and myeloperoxidase
(catalyst and source of ROS production, respectively),
hemoglobin (activates pro-inflammatory transcription factor),
and phospholipase A2 (hydrolyzes phospholipid, resulting
in inflammatory mediator production), may cause vascular
inflammation, leading to coronary heart disease (21, 125–127).
In NO homeostasis, RBCEVs can induce NO synthase, resulting
in excessive NO production, enhanced ROS production,
increased erythrocyte adhesion, and increased endothelial
cell damage and dysfunction (128, 129). During thrombosis,
RBCEVs have pro-coagulant activity, providing a site (i.e.,
phosphatidylserine) for prothrombinase assembly to accelerate
the coagulant cascade from prothrombin to thrombin-mediated
clot formation (130). When aged or damaged RBCs enter
suicidal death (eryptosis), cell shrinkage and cell membrane
blebbing and scrambling lead to phosphatidylserine (“eat
me” marker) exposure on the outer cell surface and then
induce macrophage engulfment, thereby stimulating foam
cell formation (24, 131, 132). Additionally, cholesterol
on the RBC membrane can trigger foam cell formation
(133). However, these aforementioned causes of vascular
damage may occur when blood vessels contain high numbers
of RBCEVs (134).

Drug-loaded RBCEVs are designed to significantly reduce side
effects on normal cells (135). For example, RBCEVs containing
miR-125b anti-sense oligonucleotides effectively antagonized
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oncomiRs and suppressed tumorigenesis without any observable
side effects in breast cancer (15). In addition, RBCEVs induce
pro-coagulant activity in vitro, but the effect on thrombotic
complications after blood transfusion is unknown (136).

Specific Cellular Targets
In prior research, fluorescently labeled EVs could be up taken
and accumulated by every cell type (137). However, EVs contain
parts of the plasma membrane as their parental cells, including
surface ligands and receptors. This fact highlights that EVs have
specific interactions with target cells through several mechanisms
such as direct fusion with the plasma membrane, endocytosis,
binding to cell surface receptors and docking at the cell surface
(111, 138, 139). For these mechanisms, interactions between the
surface proteins of EVs and those of recipient cells, such as that
between syncytin and its receptor major facilitator superfamily
domain 2a, are required (140, 141).

RBCEVs bound to the target amino acid sequence can deliver
drugs to specific cancer cells (135). Moreover, Plasmodium
falciparum-infected RBC-derived RBCEVs loaded with drugs
produced better therapeutic efficacy against malaria in vitro than
normal RBCEVs loaded with drugs and free drugs (142). The
specific interaction between EVs and cells depends on the origin
of the EVs and the target cells under active processes (115).

Half-Life and Shelf Life
The factors influencing RBCEV release include (i) RBC storage
conditions (i.e., several weeks at 4◦C in additive solutions),
(ii) donor variability, and (iii) the leukoreduction method (89).
First, during RBC period, ATP concentrations inside RBCs
decrease, resulting in membrane skeleton destabilization and
intracellular calcium increase and leading to vesiculation (143).
Moreover, the loss of endogenous anti-oxidants during RBC
storage causes a number of proteins to undergo oxidative
degradation such as spectrin, beta-actin, glyceraldehyde-3-
phosphate dehydrogenase, and band 4.1, leading to vesiculation
processes (144, 145). Furthermore, oxidative modification has
been observed in the hemoglobin-beta chain, which affects the
function of hemoglobin (146). Similarly, storage at 4◦C can
inhibit the ATP-dependent activity of Na+/K+ cationic pumps,
resulting in increased Na+ and Ca2+ concentrations inside cells
and subsequently increased RBC vesiculation (147). Conversely,
the size of RBCEVs changes during storage from 100 nm after
5 days up to 200 nm after 42 days (148). Second, donor-
specific factors depend on the hematological profile, which affects
the basal number of RBCEVs and level of hemolysis during
packed RBC preparation. Third, the leukoreduction method
affects the size and number of RBCEVs, as RBCEVs obtained
via whole-blood filtration had a smaller diameter (<200 nm)
and higher total count than those prepared using the buffy
coat method (149).

The RBC half-life is 58± 1.5 days (150), whereas the clearance
half-time of RBCEVs in peripheral circulation after injection
using 125I-tagged RBCEVs is 44min (83). In addition, RBCEVs
remain stable and intact even after multiple freeze–thaw cycles,
and they have long-term stability at−80◦C without effects on the
moiety, uptake, and genetic material loading capacity (135).

FIGURE 2 | A proposed strategy of drug-loaded RBCEV therapy. RBCs can

be collected from a single patient in order to produce autologous RBCEVs and

administration back after drug loading to the same patient when required.

Alternatively, RBCEVs can be produced in a large scale from the blood

group-matched packed red cell units released from the blood bank for the

allogenic RBCEV therapy.

FUTURE PROSPECTS AND CONCLUSION
REMARKS

Because the applications of EVs are not obvious, the International
Society for Extracellular Vesicles aimed to standardize and
develop recommendations and guidelines to improve the
reproducibility of EV research (151, 152). EVs can deliver
small molecules, nucleic acids, proteins, and metal nanoparticles
for therapy and diagnosis (153). In addition, miRNA inside
EVs is more stable than free miRNA because it is shielded
from potentially damaging agents (154). Although EV-based
drug delivery systems have limitations including a lack of
standard isolation and purification methods, limited drug-
loading efficiency, and insufficient clinical-grade production, EVs
have a number of advantages, such as limited immunogenicity
and cytotoxicity, stability in circulation, and specific cell targeting
(153). However, there is no systematic study to define a normal
range of EV concentration in a human body and this could be
an important research topic in future. Also, several common
medications may also affect the number of EV distribution
in the body, for example, indomethacin (a non-steroidal anti-
inflammatory drug for pain controlling), glibenclamide (a
blood sugar lowering drug for diabetes mellitus treatment),
clopidogrel (an anti-platelet medication for preventing blood
clots) can inhibit EV biogenesis and release (155). These
medications are potential confounding factors in the clinical
EV studies.

RBCEV-based drug delivery was examined in several
disease models (156). RBCEVs can be used to deliver RNA
molecules to cellular targets and then release the material into
the recipient cells (156). RBCEVs have been used delivery
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vehicles for gene therapy to cancer cells (26). RBCEVs
have several advanced such as no risk of horizontal gene
transfer (lack of both mitochondrial and nuclear DNA),
extraordinary biosafety and biocompatibility, easy storage
and transportation, and easy production in a large-scale and
cost-effective manner (157).

In addition to drug delivery, RBCEVs may have other clinical
uses, such as biomarkers for diagnosis. Human RBCEVs carrying
α-synuclein isolated from patients with Parkinson’s disease can
cross the blood–brain barrier and impair glutamate uptake
via an interaction between excitatory amino acid transporter
2 and oligomeric α-synuclein at astrocytic endfeet, leading to
reduced synaptophysin levels in the striatum in a mouse model
(158). In addition, increased numbers of RBCEVs in blood
circulation can indicate hemolytic disorders such as autoimmune
hemolytic anemia, complement-mediated hemolysis, malaria,
and hereditary erythrocyte membrane disorders, whereas
reduced counts were observed in Scott syndrome (cellular
calcium abnormality) (21, 159–162). RBCEVs containing
miRNA are potential biomarkers for several specific diseases
such as cancers, malaria, sickle cell anemia, multiple sclerosis,
and diabetes (46). Moreover, circulating MVs originating from
RBCs, leukocytes, platelets, or other organs and tissues can
serve as potential biomarkers for diagnosis and therapeutic
monitoring during the pathogenesis of cardiometabolic
diseases and coronary artery disease (163, 164). Moreover,
investigating the therapeutic nature of RBCEVs could support
the development of therapies combining the basal effects of
RBCEVs with specific drugs/functional molecules of interest.
In this direction, the RBCEV-based therapeutic strategy is
proposed in Figure 2. RBCEVs can be produced from the
self-RBCs (autologous) or the blood group-matched packed
red cell units (allogenic) and loaded with therapeutic agents,
i.e., small molecular compounds, miRNAs, or DNAs before
use. Drug-loaded RBCEVs, with the full compatibility to
the patients, are administered to pathological tissues in the
targeted organs where the drugs are released from EVs to cure
the diseases.

In summary, RBCEVs are derived from RBCs, and they
contain small amounts of genetic material and proteins. Because
of their small size and absence of horizontal gene transfer,
RBCEVs represent a good delivery system for carrying drugs to
cellular targets with cost-effectiveness, non-immunogenicity, and
high stability and biocompatibility. Furthermore, RBCEVs can be
easily targeted to every cell type, and they have a short lifespan
in the body. Thus, they could be outstanding carriers for drug
delivery systems in the future.
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