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Abstract

Introduction: Despite continuous efforts, not a single predictor of breast cancer chemotherapy resistance has made it into
the clinic yet. However, it has become clear in recent years that breast cancer is a collection of molecularly distinct diseases.
With ever increasing amounts of breast cancer data becoming available, we set out to study if gene expression based
predictors of chemotherapy resistance that are specific for breast cancer subtypes can improve upon the performance of
generic predictors.

Methods: We trained predictors of resistance that were specific for a subtype and generic predictors that were not specific
for a particular subtype, i.e. trained on all subtypes simultaneously. Through a rigorous double-loop cross-validation we
compared the performance of these two types of predictors on the different subtypes on a large set of tumors all profiled
on the same expression platform (n = 394). We evaluated predictors based on either mRNA gene expression or clinical
features.

Results: For HER2+, ER2 breast cancer, subtype specific predictor based on clinical features outperformed the generic, non-
specific predictor. This can be explained by the fact that the generic predictor included HER2 and ER status, features that are
predictive over the whole set, but not within this subtype. In all other scenarios the generic predictors outperformed the
subtype specific predictors or showed equal performance.

Conclusions: Since it depends on the specific context which type of predictor – subtype specific or generic- performed
better, it is highly recommended to evaluate both specific and generic predictors when attempting to predict treatment
response in breast cancer.
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Introduction

Breast cancer is a heterogeneous disease, which can be

subdivided into distinct subtypes. Based on clinical features,

including age, tumor grade, and TNM stage, patients can be

stratified into more homogeneous subgroups. By measuring

estrogen receptor (ER), progesterone receptor (PR) and human

epidermal growth factor receptor 2 (HER2) expression, we can

stratify tumors into a HER2 positive set (HER2+, either ER+ or

ER2), a Luminal set (HER22, ER+) and a Triple Negative set

(HER22, ER2, PR2; TN). These three different subtypes of

breast cancer are considered distinct diseases and are approached

accordingly in the clinic. Breast cancer patients of all subtypes

receive chemotherapy as part of the treatment process.

Neoadjuvant therapy, the administration of therapeutic agents

before the main treatment (typically surgery), reduces the mortality

of breast cancer patients [1]. However, some patients only

experience the downside of the therapy (i.e. toxicity) and not the

benefit (i.e. increased survival). It has been shown that patients

who achieve a pathological complete response after neoadjuvant

treatment have a higher chance of relapse free survival [2,3].

Because neoadjuvant treatments can be very toxic and not all

patients benefit from the treatment, it would be desirable if the

non-responders to therapy can be accurately separated from the

responders. Multiple approaches to predict the response of

patients to neoadjuvant treatment have been undertaken [4–10],

a number of which were reviewed in [11]. Unfortunately, up to

now none of the published predictors have been applied in the

clinical setting. This lack of clinical implementation can be

attributed to the fact that the results that were reported in the

original papers are either not reproducible in external data sets or
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the fact that the reported accuracy is not high enough to be used in

clinical decision making.

The best performing predictor of chemotherapy response

published to date has an area under the receiver operator curve

(AUC) of 0.805 [8]. In a subsequent independent validation study,

AUCs of 0.711 (T-FAC treatment) and 0.584 (FAC treatment)

were achieved for this same predictor [12]. While this is an

improvement over previous attempts, the accuracy of this

predictor is insufficient for clinical decision making. In order for

a predictor to be useful in the clinic, it should have a high true

positive rate (sensitivity) and a high true negative rate (specificity).

How high ‘high’ should be depends on the clinical decision to be

made. For example, if a predictor is employed to predict whether a

chemotherapeutic treatment will benefit a specific patient, the

decision will have far reaching consequences. However, if no

alternative methods of predicting response to treatment are

available, any sensitivity and specificity rates better than random

will be useful. While it is very hard to set a specific required

minimal specificity and sensitivity rate, we believe at least 0.9

should be required for both (note that the specificity and sensitivity

determine the AUC). This predictor was trained on all available

samples in the training dataset, irrespective of breast cancer

subtype.

In this study, we set out to determine if we could increase the

accuracy of the chemotherapy response predictors by creating

predictors that are specific for each breast cancer subtype, instead

of a predictor that was trained on all subtypes combined. In order

to make sure that our results would not be biased towards a certain

type of methodology we included six feature selection approaches

and six classifiers. These methods reflect commonly used methods

in the context of class prediction. Additionally, to answer the

question of how generally applicable our results are, we included

predictors based on gene expression data and predictors based on

clinical features.

Methods

Samples
For this study we selected three gene expression data sets, all

hybridized on either the Affymetrix HG U133A platform or the

Affymetrix HG U133 plus 2.0 platform. The three sets consisted of

the microarray quality control II (MAQC2) breast cancer dataset

[13]; a breast cancer dataset from the Department of Breast and

Endocrine Surgery of the Osaka University (BESOU) [14] and a

breast cancer dataset from the MD Anderson Cancer Center

(MDACC) [12]. For all three datasets, informed consent from the

included patients and approval from an ethics committee were

obtained (the University of Texas M.D. Anderson Cancer Center

ethical committee for the MAQC2 study, the Ethics Review

Committee at Osaka University Hospital for the BESOU dataset,

and the institutional review boards of each participating institution

for the MDACC study). These datasets are publicly available from

the Gene Expression Omnibus website (MAQC2 GEO ID is

GSE16716, BESOU GEO ID is GSE32646, and MDACC GEO

ID is GSE20271). From these sets we extracted the samples that

were treated with taxol followed by 5-fluorouracil, (Adriamycin or

Epirubicin), cyclophosphamide (T-FAC or T-FEC). Patients that

were treated with a regimen including trastuzumab or FAC alone

were removed from our dataset in order to get a more

homogeneous treatment group. After this selection the dataset

consisted of 394 samples in total. Unfortunately not all of these

had all clinical data available, so for analyses based on clinical

features the total dataset consisted of 374 samples. Table 1 and

Table S1 show an overview of the characteristics of this set of

patients.

In these datasets, a pathological complete response (pCR) was

defined as no residual invasive cancer in the breast and axillary

lymph nodes. Samples were defined to be ER-positive or PR-

positive when 10% or more of the tumor cells showed positive

staining of ER or PR respectively, based on immunohistochem-

istry. Samples were marked as positive for HER2 when there was

strong membrane staining (3+) or the sample had a gene copy

number equal to or greater than 2.0 as measured by Fluorescent

In Situ Hybridization (FISH ratio greater than 2.0 for the BESOU

dataset).

Data preparation
All datasets (raw data) were downloaded from GEO [15]. The

samples were background corrected and normalized using

GeneChip-RMA [16] and subsequently log2 transformed. Since

we combined datasets which originated from different experiments

and platforms we applied a normalization strategy to enable

reliable combination of the different datasets. First we verified the

individual probe quality by employing ProbeMapper [17]. We

selected the probes that were mapped to the same transcript by the

vendor, the bioconductor annotation packages and a BLAST

mapping of the probes to the set of transcripts of the latest human

genome build (Hg19). In addition, we discarded the probes that

were mapped to multiple genes. The probes that passed these tests

were median centered, i.e. we set the median expression of each

probe per dataset to match the median expression of that probe in

the MAQC2 dataset. The median centering was performed by

taking into consideration the ratio of clinical subtypes and

response rates in each dataset, i.e. the median expression of a

gene within a dataset was determined on a subset that was chosen

such that it matched the other datasets with respect to the

percentages of clinical subtypes and response rates. We chose the

largest possible subsets that satisfied these constraints. For the

subsequent analysis we selected the most informative probe per

gene, i.e. the probe which showed the highest standard deviation

across all data sets.

Feature selection and classification
After probe matching and gene median centering, 12010 genes

were entered into the subsequent analysis. In addition to

expression based predictors we also investigated the predictive

Table 1. Distribution of samples in the subgroups.

Stratification pCR (%) No pCR (%)

Clinical subtypes

HER2 positive 31 (38) 51 (62)

Luminal 14 (9) 185 (91)

Triple Negative 42(37) 71 (63)

HER2 positive, ER negative 25 (56) 20 (44)

HER2 positive, ER positive* 6 (16) 31 (84)

No stratification

All 87 (22) 307 (78)

The sample sizes that are depicted are from the expression based predictors.
The sample sizes for the clinical predictors are a bit lower due to missing data
and can be found in Table S1.
*The HER2 positive, ER positive group was not included in the analysis due to
the small sample size.
doi:10.1371/journal.pone.0088551.t001
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power of clinical features. For these predictors we selected ER

status, PR status, HER2 status, TNM-stage, age and grade as the

features to be used. All of these are routinely determined in the

clinic and were directly available in the datasets we selected.

We employed three feature selection approaches for the

expression based predictors and three for the clinical predictors.

We chose different feature selection approaches for the expression

and the clinically based predictors, since the expression features

are all continuous valued and most of the clinical features are

categorical, implying different requirements for feature selection.

The feature selection approaches employed by the expression

predictors were: Wilcoxon-Mann-Whitney test (WMW), Wil-

coxon-Mann-Whitney test after removal of features with a Pearson

correlation exceeding 0.75 (WMW-uncor.) and the ratio of

between- to within group sum of squares (BWR). These methods

are either available in R [18] or were implemented in R. The

ranking approaches employed for the clinical features were:

information gain (Inf.gain), correlation feature selection (CFS) and

RELIEF. These feature selection methods are available in the

‘‘FSelector’’ R package [19]. The features were ranked by their

respective scores when comparing responder samples to non-

respond samples (i.e. their discriminative power) in order to select

the best features for classification.

The classifiers that we employed were the same for the

expression data and the clinical data. We tested the following

classifiers: the J48 decision tree (J48), the 3-nearest neighbor

classifier (3NN) based on Euclidean space, the nearest mean

classifier (in Euclidean space), logistic regression (LREG), naive

Bayes (NB) and a support vector machine (SVM) (WeKa SMO

with default settings). This represents a wide range of classifiers

including linear and non-linear classifiers as well as classifiers

designed for discrete and continuous features. All classifiers were

implemented in the ‘‘RWeka’’ R package [20,21].

We implemented each possible combination of classifier and

feature ranking approach, except for the J48 classifier since this

classifier includes its own feature selection approach. This resulted

in 16 clinical and 16 expression based predictors. We will refer to a

specific combination of a set of selected features and the associated

classifier as a predictor.

Estimation of predictive performance
To estimate the accuracy of the predictors we employed the

AUC. The AUC is estimated through a double loop cross-

validation strategy, illustrated in Figure 1.

Full details of the procedure are outlined in the supplementary

materials and methods (Methods S1 and Figure S1), in summary

the following steps are taken: 1) the input dataset is divided into 2/

3 for the training set and 1/3 for the validation set; 2) the training

set (i.e. 2/3 of all data) is employed to determine the optimal

number of features to be used in each feature selection method

and classifier combination (i.e. for each of the 16 possible

combinations of feature selection method and classifier, a single,

optimal number of features is determined); 3) the training set is

then used to train each of the 16 predictors with the number of

features previously determined to be optimal for each combina-

tion; 4) finally the performance of each feature selection and

classifier combination is assessed by applying these 16 predictors to

the validation set (i.e. 1/3 of all data). The split into training and

validation sets was performed such that the ratios of subtypes and

response rates within the two sets were equal. This whole

procedure was repeated 15 times in order to get a more accurate

average performance per predictor and subtype. This double loop

cross-validation procedure is similar to the approach that was

employed by Popovici et al. [13] and Wessels et al. [22].

For the non-subtype specific predictors, we divided all data of all

subtypes into three equal parts, i.e. the dataset was subdivided into

2/3 of the samples in the training set and the remaining 1/3 in the

validation set. For the subtype specific predictors the input dataset

consisted only of samples of the specific subtype being analyzed

(i.e. the 2/3 training set and 1/3 validation set consisted only of

samples belonging to the relevant subtype). In order to compare

the performance of the non-subtype specific predictor with the

subtype specific predictor on a given subtype, say TN, the non-

subtype specific predictor was trained on a training set consisting

of all subtypes, but only validated on a the validation set consisting

of TN samples.

Finally we selected the best performing predictor per subtype for

both the subtype specific and the non-subtype specific predictors in

order to compare their performances. To compare the AUC

values of non-subtype specific predictors to the AUC values of

subtype specific predictors we employed the two-sided t-test.

Results

Subtype specific versus non-subtype specific predictors
We employed a stratification based on ER and HER2 status.

We stratified patients into a HER2 positive group (HER2+), a

Luminal group (HER22, ER+) and a Triple Negative group

(HER22, ER2)(TN). We further subdivided the HER2-positive

group based on ER status, resulting in a HER2-positive and ER-

negative group (HER2+, ER2) and a HER2-positive and ER-

positive group (HER2+, ER+). Unfortunately, the (HER2+, ER+)-

group contained too few samples to analyze this group separately

with adequate power (n = 37).

Figure 2 shows the comparison of the best performing classifiers

for the subtype specific and non-subtype specific predictors.

Predictors based on clinical features. The AUCs for the

clinical subtype specific and non-subtype specific predictors were

highly similar for most sets (HER2+, TN and ER+) (Red boxplots

in Figure 2). Only in the HER2+, ER2 subgroup there was a

significant difference, where the subtype specific predictor had a

significantly higher AUC than the non-subtype specific (multiple

testing corrected p-value: 4.361025). None of the other groups

showed a significant difference in AUC between the subtype

specific and non-subtype specific clinical predictors.

Predictors based on gene expression data. The AUC

comparisons for the expression based predictors (blue boxplots in

Figure 2) mostly mirrored the results for the clinical features based

predictors. All groups showed highly similar results for the subtype

specific and the non-subtype specific predictors. Only in the

Luminal group, a borderline significant difference in AUC

between the subtype specific and non-subtype specific predictor

was observed (corrected p-value: 0.0709).

Table 2 shows the best performing feature selection method-

classifier combination for each dataset (these correspond to

predictors whose AUCs were compared in Figure 2). The exact

average AUC scores and details about the different data sets can

be found in Table S2.

Discussion

From our analysis we can conclude that there is very little

difference in performance between building subtype specific

predictors compared to building non-subtype specific predictors

(i.e. combining data of all subtypes and training on that dataset).

This is true for the predictors employing clinical features as well as

the predictors employing gene expression predictors. We did

observe that in the Luminal subgroup all the non-subtype specific

Subtype Specific and Generic Classifiers Compared
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models (gene expression or clinical features based) tended to

achieve better AUC scores compared to the subtype specific

predictors, although this difference was not significant. The

Luminal group has been reported to consist of a combination of

two distinct intrinsic subtypes, Luminal A and Luminal B. This

further subdivision of the Luminal subtype could prove interesting,

since these subtypes were reported to show different response rates

following neoadjuvant treatment. Table S3, Table S4, and Figure

S2 show the results of our analysis of the Luminal intrinsic

subtypes, which were classified according to the ‘‘PAM50’’

predictor [23]. In the expression based model, we observed a

significant difference between the subtype specific predictor and

the non-subtype specific predictor in the Luminal A and Luminal

B subgroups. Analogous to the Luminal subgroup analysis, the

non-subtype specific predictors outperformed the subtype specific

predictors. This could be explained by the fact that positive events

(i.e. pathological complete responses) are rare in these sets (13, 13,

and 14 cases, corresponding to 9%, 13%, and 14% of the samples

showed a pCR in the Luminal A, Luminal B, and Luminal groups,

respectively). Having few samples in the minority class will make it

difficult to train a predictor that correctly classifies samples from

this minority class, leading to lower AUC values. The higher

performance of the non-subtype specific predictor (compared to

the subtype specific predictor) could be explained by the fact the

Figure 1. Cartoon of the double loop cross-validation scheme. Our analysis employed a double look cross-validation. The inner loop
determines the optimal number of features to be used by a specific combination of feature selection and classifier, here depicted by the green block.
This inner loop uses 2/3 of all data (i.e. the training data), the remaining 1/3 is employed to measure the performance of the trained classifier (i.e. a 3
fold cross-validation setup). The outer loop is repeated 15 times in order to get an average AUC for each predictor.
doi:10.1371/journal.pone.0088551.g001
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Figure 2. The AUC scores for the best performing predictors on each subtype. AUCs for the (A) HER2 positive subtype; (B) Luminal subtype;
(C) Triple negative subtype and (D) HER2 positive and ER negative subtype. The red bars represent the clinical predictors, blue bars the expression
based predictors and darker colors represent non-subtype specific predictors. When two boxplots are connected with a u-shaped line, the means of
the AUC distributions are significantly different for the experiment represented by the boxplots (two-sided t-test, p,0.05, Bonferroni multiple testing
corrected.)
doi:10.1371/journal.pone.0088551.g002

Table 2. Characteristics of the optimal predictors for the different subtypes.

Clinical Gene Expression

Stratification Subtype specific Non specific Subtype specific Non specific

Luminal LREG-Relief NM-Relief NM-WMW NB-BWR

Triple Negative NM- CFS NB-Relief NB-BWR LREG-WMW- uncor.

HER2-positive NB-Relief NB-CFS NB-WMW NB-WMW

HER2-positive, ER-negative 3NN-CFS NM-CFS NB-WMW LREG-BWR

In each cell the optimal combination of classifier, and feature selection method, is shown.
Legend: classifiers: NB = Naive Bayes, NM = Nearest Mean, LREG: Logistic regression, SVM = Support vector machine, 3NN = 3-Nearest Neighbor; Feature selection
methods: CFS = Correlated feature selection, WMW = Wilcoxon-Mann-Whitney, BWR = Ratio between to within class sum of squares, WMW-uncor. = Wilcoxon-Mann-
Whitney where correlated features are removed, Inf.gain = information gain.
doi:10.1371/journal.pone.0088551.t002
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complete dataset on which it was trained has a higher (absolute)

number of samples in the minority class (i.e. responders), which in

turn might lead to better classification of samples in the minority

class in the validation set and a higher AUC as a result.

For the TN and HER2+ subtypes, there was no clear difference

between the subtype specific and the non-subtype specific

predictors. Only for the HER2-positive and ER-negative sub-

group, we found a significant difference in clinical feature based

predictor performance. The subtype specific predictor, based on

clinical features, was superior to the non-subtype specific model.

While the AUC of the subtype specific model was 0.59, the AUC

of the non-subtype specific model was exactly 0.5. This could be

explained by the fact that in most iterations of the predictor

training, the non-subtype specific predictor included only a single

feature. This single feature was ER status (in some cases combined

with either PR or HER2). Taken over the whole dataset, ER status

(or PR and HER2) is highly predictive of response to chemother-

apy. However, the HER2+, ER2 subtype is, by definition,

completely ER negative and HER2 positive, so the ER and

HER2+ status feature will not yield any predictive power in this

subgroup. The subtype specific predictor did not include ER or

HER2 status, but included age, stage and grade. Given that the

subtype specific predictor included more informative features, it

was no surprise that it could achieve higher AUC values. This

scenario forms a clear example of when a subtype specific

predictor is preferred, i.e. a feature is predictive over the whole

dataset, but is non-informative within a specific subgroup of that

dataset. When we look at the same subtype, but now employing

gene expression data, the difference between the subtype specific

and non-subtype specific predictors, however. The selected

features in that classifier are predictive over both the entire set

and this specific subgroup of samples.

In our analysis we did not take into account that there is a large

difference in the size of the training set between subtype specific

and non-subtype specific predictors. That is, we compared the

subtype specific predictors, the predictors based only on data from

one subtype, to a predictor that was trained on data from all

subtypes. This means that the training set sizes of the non-subtype

specific predictors were two to four times as large as the subtype

specific training sets (depending on the size of the subtype relative

to the whole dataset). These training set size differences have an

influence on predictor performance and performance estimation.

Since we focused on comparing subtype specific to non-subtype

specific predictors in real world situations, we opted to compare

performance in this manner. When a dataset is to be analyzed, one

would always want to use as much data as available so it would not

make sense to only take part of the combined dataset purely for

comparison reasons. Our results suggest that the larger training set

of the generic predictor outweighs the benefits of a subtype specific

training set. This in turn implies the important notion that there

are features in the data that can predict response to therapy that

are shared amongst different subtypes. That is, if there was no

commonality between predictive factors in the different subtypes,

the increased training set size would not increase the performance

of the generic predictor. It has been shown that patients benefit

from receiving subtype specific treatments instead of a general

treatment [24,25]. When patients receive treatment that is specific

for a particular subtype, a predictor that combines all data will not

only have to deal with heterogeneity in subtypes, but also in

treatment regimens received. It remains to be seen if a non-

subtype specific predictor will, in such a scenario, still perform as

well as a predictor that was trained for a specific treatment and

subtype.

In this study we combined publicly available datasets in order to

have as many samples as possible available for analysis. Since

treatment and microarray platform could potentially be major

confounders in an analysis such as the one we present here, we

opted to limit our dataset to samples from patients receiving

similar treatment and which were analyzed on the same

microarray platform. To account for institute specific confounders

(and consequently also genetic background confounders to a

degree, given that one institute is located in Japan and two

institutes procured samples from US and Europe), we normalized

our datasets by median centering per probe, per institute. Even

with these stringent criteria and normalization procedure,

confounding effects could not be ruled out. Until larger

homogeneous datasets become available, such potential confound-

ers will remain an issue.

In recent papers studying outcome prediction after T-FAC or

T-FEC and FAC or AC neoadjuvant therapy, no predictors

specific for breast cancer subtypes were built [4,8,9,13]. Therefore,

we cannot directly assess if the subtype specific predictors that we

built perform better or worse than previously published predictors.

However, we could compare the non-subtype specific predictors

(i.e. built and tested on all subtypes at once). More specifically, we

compared the performance of our predictors to the predictors

published alongside the three Affymetrix datasets which we

included in our study. Unfortunately, the paper that was published

alongside the BESOU data did not include AUC values so we

could not compare their performance to ours. Instead, the authors

of this paper [9], focused on finding the best model to achieve a

high negative predictive value instead of a high AUC. In the paper

accompanying the MAQC2 dataset [13], the authors presented an

expression based predictor that combined LREG with BWR. The

gene expression based predictor published with the MDACC

dataset [12], was a predictor based on DLDA (Naive Bayes (NB)),

which included 30 genes, selected based on the t-test p-value. The

average AUC of the Popovici et al. model was: 0.805, Tabchy et

al. reported an AUC 0.711 for the T-FAC treated samples. Our

highest average AUC value was 0.768 (NB with BWR using 30

features). Given the variance we observed around our AUC

estimate, these AUC values are most likely not statistically

significantly different.

Tabchy et al. also validated a nomogram based on clinical data,

which achieved an AUC of 0.89 for the T-FAC treatment arms.

Our best clinical feature predictor was the predictor employing

NB and relief using six features, which achieved an average AUC

of 0.796. Again, the variance of the double loop CV estimate is of

such a magnitude that these values are most likely not significantly

different.

A possible explanation for the slightly lower AUC values for our

predictors could lie in the fact that we classified more samples and

-potentially- our AUC estimates are more accurate due to our

larger sample set. We included 2.9 times as many samples

compared to Tabchy et al. and 1.7 times as many samples

compared to Popovici et al. In addition, we combined data from

multiple sets and even though the patient characteristics were not

significantly different, this could have an influence on the AUC.

Differences in estimated AUC values could also be attributed to

the training and validation procedures employed. To test this we

applied our double-loop cross validation on the Tabchy and

Popovici datasets. Our best performing gene expression based

predictors showed AUCs of 0.807 and 0.780 respectively, which is

very close to the reported performances. This indicates that the

published performances are robust, but dataset specific. As we

trained and tested on a larger dataset, and as the training and

testing procedure has been proven to be robust, our achieved

Subtype Specific and Generic Classifiers Compared
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AUC of 0.768 is probably closer to the real value. However, as

indicated above, these values are within the error margins of the

experiments and since we compared the relative performance of

specific to generic predictors, this performance difference has no

consequences for the results presented here.

Conclusions

In general, subtype specific predictors would be preferred over

non-subtype specific predictors. However, when the phenotype to

be predicted has a skewed distribution, like response in the

Luminal subtype, a non-subtype specific predictor (i.e. based on all

data combined) will outperform the subtype specific predictor.

This implies that there are features that are predictive of response

to chemotherapy that are shared amongst different subtypes and

resistance mechanisms are not exclusive to particular subtypes. In

specific cases where features are predictive over the whole dataset,

but uninformative within a specific subgroup, like ER and HER

status in the HER2-positive and ER-negative subgroup, a subtype

specific predictor will offer a significant performance gain over

non-subtype specific predictors.

For breast cancer specifically - with the exception of the HER2-

positive, ER-negative group -, we can conclude that building a

subtype specific predictor offers equal performance compared to a

predictor based on all available data. However, when it is

unknown which of the scenarios mentioned above is present in the

data, it would be advised to analyze both subtype specific and non-

subtype specific predictors.

Supporting Information

Methods S1

(DOCX)

Figure S1 Illustration of the double loop cross-validation

scheme. Legend: 3FCV: 3 fold cross-validation, CFS: Correlated

feature selection method, Inf.gain = information gain,

WMW = Wilcoxon-Mann-Whitney test, WMW-uncor. = Wil-

coxon-Mann-Whitney with correlated features removed,

BWR = between to within group sum of squares. NMC = nearest

mean classifier, LREG = logistic regression, NB = naı̈ve Bayes,

3NN = k-nearest neighbor, SVM = support vector machine.

(TIF)

Figure S2 AUCs for the (A) Luminal A subtype; (B) Luminal B

subtype. The red bars represent the clinical predictors, blue bars

the expression based predictors and darker colors represent non-

subtype specific predictors. When two boxplots are connected with

a u-shaped line, the means of the AUC distributions are

significantly different for the experiment represented by the

boxplots (two-sided t-test, p,0.05, Bonferroni multiple testing

corrected.)

(TIF)

Table S1 Basic description of the dataset used to analyze the

influence of subtype specific versus the non-subtype specific

models for predicting outcome after treatment. There is a small

difference in samples size for the clinical versus the expression

based model as there are some samples which lack description of

clinical features.

(XLSX)

Table S2 AUC values for the models that were included in the

analysis. Each tab of the excel file describes a different set of

models. The different models are in the rows and the different

subtypes are next to each other.

(XLSX)

Table S3 Distribution of samples in the Luminal A and Luminal

B subtypes. The sample sizes shown are the sample sizes as

employed by the expression based predictors. The sample sizes of

the clinical predictors were a bit lower due to missing data and can

be found in Table S1.

(DOCX)

Table S4 Characteristics of the optimal predictors for the

different subtypes. In each cell the optimal combination of

classifier, and feature selection method, is shown. Legend:
classifiers: NB = Naive Bayes, NM = Nearest Mean, LREG:

Logistic regression, SVM = Support vector machine, 3NN = 3-

Nearest Neighbor; Feature selection methods: CFS = Corre-

lated feature selection, WMW = Wilcoxon-Mann-Whitney,

BWR = Ratio between to within class sum of squares, WMW-

uncor. = Wilcoxon-Mann-Whitney where correlated features are

removed, Inf.gain = information gain.

(DOCX)
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