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Abstract 

Background: 

Despite advances in managing traditional risk factors, coronary artery disease (CAD) remains the 

leading cause of mortality. Circulating hematopoietic cells influence risk for CAD, but the role 

of a key regulating organ, spleen, is unknown. The understudied spleen is a 3-dimensional 

structure of the hematopoietic system optimally suited for unbiased radiologic investigations 

toward novel mechanistic insights. 

Methods:  

Deep learning-based image segmentation and radiomics techniques were utilized to extract 

splenic radiomic features from abdominal MRIs of 42,059 UK Biobank participants. Regression 

analysis was used to identify splenic radiomics features associated with CAD. Genome-wide 

association analyses were applied to identify loci associated with these radiomics features. 

Overlap between loci associated with CAD and the splenic radiomics features was explored to 

understand the underlying genetic mechanisms of the role of the spleen in CAD.   

Results: 

We extracted 107 splenic radiomics features from abdominal MRIs, and of these, 10 features 

were associated with CAD. Genome-wide association analysis of CAD-associated features 

identified 219 loci, including 35 previously reported CAD loci, 7 of which were not associated 

with conventional CAD risk factors. Notably, variants at 9p21 were associated with splenic 

features such as run length non-uniformity.  

Conclusions: 

Our study, combining deep learning with genomics, presents a new framework to uncover the 

splenic axis of CAD. Notably, our study provides evidence for the underlying genetic connection 23 
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between the spleen as a candidate causal tissue-type and CAD with insight into the mechanisms 24 

of 9p21, whose mechanism is still elusive despite its initial discovery in 2007. More broadly, our 25 

study provides a unique application of deep learning radiomics to non-invasively find 26 

associations between imaging, genetics, and clinical outcomes.  27 
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Introduction 28 

Despite advances in the management of traditional risk factors, coronary artery disease (CAD) 29 

remains the leading cause of mortality and disability-adjusted life-years (DALYs) worldwide.
1,2

 30 

Advances in CAD prevention beyond targeting traditional risk factors continue to remain limited 31 

due to poor understanding and limited mechanistic frameworks of such distinct CAD pathways. 32 

The hematopoietic system has long been known to contribute to CAD, largely through 33 

inflammatory cells in both atherogenesis and atherosclerotic cardiovascular disease events.
3
 34 

Inflammation markers, such as high-sensitivity C-reactive protein (hsCRP), are independently 35 

predictive of CAD risk. Among individuals with CAD and high hsCRP, a monoclonal antibody 36 

targeting interleukin (IL)-1B reduced the risk for recurrent CAD events but increased risk for 37 

serious infections.
4
 While this trial validated the causal role of inflammatory cytokines for CAD, 38 

the optimal strategy to modulate hematopoietic cells and their products toward CAD risk 39 

reduction remains poorly understood.
5
  40 

 Longstanding circumstantial evidence has suggested involvement of the spleen, an 41 

extramedullary hematopoietic organ, in CAD.
6
 U.S. veterans who underwent splenectomy for 42 

trauma during World War II had greater mortality due to CAD in long-term follow-up.
7
 More 43 

recently, the spleen was described as an important reservoir for undifferentiated inflammatory 44 

myeloid cells that are mobilized in the context of myocardial ischemic injury infiltrating 45 

myocardium in murine models.
8
 Myelopoiesis after splenic activation, including during 46 

myocardial infarction, further leads to atherosclerosis instability in mice.
9
 Post-mortem human 47 

samples from varying times after myocardial infarction demonstrate splenic monocyte depletion 48 

early after myocardial infarction, invoking their mobilization early in the event.
10

 (18)F-49 

fluorodeoxyglucose ((18)FDG)-positron emission tomography among patients who sustained 50 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.16.24312129doi: medRxiv preprint 

https://www.zotero.org/google-docs/?eTxET8
https://www.zotero.org/google-docs/?jLzPFK
https://www.zotero.org/google-docs/?98kGEg
https://www.zotero.org/google-docs/?ZAs2m8
https://www.zotero.org/google-docs/?5n1Wm0
https://www.zotero.org/google-docs/?11CDAr
https://www.zotero.org/google-docs/?CoPbRz
https://www.zotero.org/google-docs/?U7O5GF
https://www.zotero.org/google-docs/?OhqKan
https://doi.org/10.1101/2024.08.16.24312129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

acute coronary syndromes showed that increased splenic metabolic activity strongly predicted 51 

recurrence.
11

 More recent human genome-wide association studies (GWAS) of CAD have 52 

implicated splenic gene regulation. Individual inflammatory genes, including CCR5, prioritized 53 

through this approach are strongly expressed in the spleen.
12

 Among the top signals for CAD 54 

GWAS, splenic tissue is one of the top three tissues enriched for variants residing within strong 55 

enhancers and active promoters. However, there is limited understanding regarding the critical 56 

factors regulating splenic function in relation to CAD risk. 57 

Advancements in machine learning applied to medical imaging offer new opportunities 58 

for unbiased, scalable detection and quantification of subtle alterations in internal organs, 59 

including the spleen, where specific circulating biomarkers may be unavailable. Deep learning 60 

enables large-scale automatic segmentation of organs in medical images, bypassing time-61 

consuming manual segmentation. Radiomics, an emerging field, quantifies features extracted 62 

from these segmentations to offer non-invasive insights into underlying pathologies. These 63 

features encapsulate a variety of metrics, such as shape, size, and texture.
13

 For the spleen, 64 

radiomics have been used to diagnose and differentiate lymphoma subtypes and predict the 65 

recurrence of hepatocellular carcinoma.
14

 Radiomics offers an opportunity to glean novel 66 

insights about splenic anatomy as typically only splenic size is annotated in clinical scans.  67 

In this study, we leveraged deep learning and radiomic analyses to extract and discover 68 

CAD-relevant splenic features from abdominal magnetic resonance imaging (MRI). Additionally 69 

using genomics, we further prioritize previously poorly known CAD-associated loci and genes 70 

with key splenic radiomic features. Utilizing a multi-disciplinary approach that integrates 71 

advanced imaging analyses, genomics, and clinical outcomes, our study introduces a new 72 

framework for understanding the spleen's potential role in residual CAD risk. 73 
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Methods 74 

Cohort selection and workflow 75 

The UK Biobank is a volunteer cohort of approximately 500,000 participants aged 40-69 years 76 

recruited from 2006 to 2010 with ongoing prospective follow-up.
15

 At baseline, participants 77 

provided surveys, biospecimens, anthropometrics, vital signs, and other study-specific 78 

procedures. Approximately 50,000 MRIs were performed for a subset of participants after 79 

reinvitation beginning in 2014. We limited our study population to those who had abdominal 80 

MRIs acquired during the study and whose spleen and liver segments were identifiable after 81 

applying our segmentation algorithm. Analysis of the UK Biobank data was approved by the UK 82 

Biobank application 7089 and Massachusetts General Hospital IRB protocol 2021P002228. The 83 

inclusion and exclusion criteria are visualized in Supplemental Figure 1.  84 

Figure 1 illustrates the study workflow. First, we segmented the spleen from abdominal 85 

MRIs and extracted comprehensive radiomic features linked to intrinsic splenic properties. Next, 86 

we used regression models to discover independent splenic features associated with CAD, which 87 

we investigated in subsequent analyses. We then performed GWAS to identify genetic variants 88 

associated with each of the CAD-associated splenic phenotypes, building on which we (1) 89 

prioritized genes that are likely to be causal and probed their functional relevance to CAD and (2) 90 

identified overlapping genetic variants that are significantly associated with both splenic 91 

phenotypes and CAD, whose corresponding functions may be the link between the spleen and 92 

residual CAD risk.  93 

 94 

Phenotyping of clinical and demographic variables 95 
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CAD was defined as a history of coronary artery bypass grafting, myocardial infarction (MI), 96 

coronary artery angioplasty, or billing codes (OPCS‐4: K40, K41, K45, K49, K50.2, K75) as 97 

previously performed.
16

 Prevalent and incident CAD status were defined by whether participants 98 

were diagnosed with CAD before or after the time of their MRI. Demographic variables were all 99 

ascertained at enrollment and included age, race, and sex of participants.  100 

 101 

Genotyping and genome-wide association study 102 

The genotyping procedures of the UK Biobank have been described previously in detail.
15

 The 103 

genotyping arrays were the UK BiLEVE Axiom Array or the UK Biobank Axiom Array (both 104 

Affymetrix). The array-derived genotypes were imputed using the Haplotype Reference 105 

Consortium, UK10K, and 1000 Genome reference panels. Variant quality control measures 106 

included the following filters: MAF ≥ 1%, single nucleotide variant missingness <10% and HWE 107 

P ≥ 10−15, MAC ≥ 50, and INFO score ≥0.6. Sample quality control measures included 108 

excluding individuals if the single nucleotide variant missingness was equal to or exceeded 10%. 109 

Association analysis was performed in participants of European ancestry using REGENIE with 110 

adjustment for age, sex, and first ten PC of genetic ancestry. 111 

 112 

Extraction of splenic features 113 

Briefly, the UK Biobank abdominal MRI protocol was as follows.
17

 The study aimed to image 114 

100,000 healthy UK participants aged between 40 and 69 years old. 1.5 T clinical MRI scanners 115 

were utilized (Magnetom Aera, Siemens Healthineers, Erlangen, Germany) to acquire whole-116 

body T1-weighted dual echo gradient echo (GRE) sequences. The parameters were as follows: 117 

echo times (2.39/4.77 ms), pixel size (2.23 × 2.23 mm2), slice thickness (3–4.5 mm), repetition 118 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.16.24312129doi: medRxiv preprint 

https://www.zotero.org/google-docs/?GBnmuF
https://www.zotero.org/google-docs/?XLixOw
https://www.zotero.org/google-docs/?5IG0Qs
https://doi.org/10.1101/2024.08.16.24312129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

time (6.69 ms), and flip angle (10°). For each patient, four MRI contrasts were available: in-119 

phase (IP), out-of-phase (OP), water, and fat. We downloaded all abdominal MRIs from the UK 120 

Biobank.  121 

We then used deep learning to segment spleens from abdominal MRIs of our study 122 

population and extracted 107 splenic radiomic features. Briefly, we used a stitching algorithm to 123 

stitch together MRI scans from six acquisition stations and compose whole-body scans outputted 124 

as four phases: water, fat, in phase, and out of phase (https://github.com/biomedia-125 

mira/stitching).
34

 Utilizing a pre-trained nnuNet segmentation model, originally trained on 126 

10,000 UK Biobank abdominal MRIs, we generated predictions of voxels corresponding to the 127 

spleen (code: https://github.com/BioMedIA/UKBB-GNC-Abdominal-Segmentation, trained 128 

models: https://gitlab.com/turkaykart/ukbb-gnc-abdominal-segmentation).
18

 This model had no 129 

errors in over 95% of the spleen segmentations in the UK Biobank data, and we performed no 130 

additional training. The models utilize a nnU-net architecture, a variant of the popular U-Net 131 

architecture that was shown to outperform U-Net on a range of biomedical imaging segmentation 132 

tasks. The models were validated in a previous study using 400 previously labeled images.
18

 The 133 

inputs to the model were water, fat, in- and opposed-phase stitched MRss. The model was 134 

applied on a Google Cloud Platform with CUDA version 11.6 and with 2 Tesla T4 GPUs 135 

available with 16 GB RAM each. Lastly, we extracted the voxels that corresponded to the spleen 136 

segment.  137 

We applied the pyradiomics software (version 3.1.0) to the voxels identified by the model 138 

as spleen segments to extract shape and texture-based features.
21

 Generation of these features 139 

includes first-order statistics describing the image region and computation of the relationships 140 

between neighboring pixels. All code was parallelized using multi-processing to decrease 141 
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runtime. In addition to the features extracted through this approach, we utilized the splenic 142 

volume features provided by the UK Biobank, which was determined using a deep learning U-143 

net architecture as described in this study.
22

  144 

 145 

Correlation of splenic features with each other and cardiometabolic outcomes 146 

We examined the associations of splenic features with age, sex, and BMI 147 

(https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=21001). We used a linear regression model 148 

with each splenic feature as the independent variable and age at enrollment, sex, BMI, and days 149 

between enrollment and MRI acquisition as dependent variables. All splenic radiomic features 150 

were normalized to a distribution with mean 0 and standard deviation 1 for all analyses. We 151 

reported the coefficients and standard errors of both BMI and sex for each splenic feature.  152 

We also associated the splenic features with blood-based biomarkers available in the UK 153 

Biobank. Blood-based markers include counts and percentages of basophils, eosinophils, 154 

lymphocytes, monocytes, neutrophils, platelets, reticulocytes, high light scatter reticulocytes, 155 

white blood cells, red blood cells, and nucleated red blood cells. Other biomarkers were C 156 

reactive protein, hematocrit, hemoglobin concentration, immature reticulocyte fraction, mean 157 

corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular, 158 

platelet, reticulocyte, and sphered cell volumes, and platelet and erythrocyte distribution width 159 

(https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=9081). For each of the blood-based biomarkers, 160 

we implemented a linear regression model with each splenic feature as the outcome and the 161 

biomarker as a covariate and adjusted for age, sex, BMI, and the days between enrollment and 162 

the MRI acquisition. We then reported the coefficient, which can be interpreted as the change in 163 
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one unit of the biomarker per 1 SD of the radiomic feature, and standard error of the biomarker 164 

in the model.  165 

 166 

Identification of splenic features associated with CAD 167 

We examined for splenic radiomic features that are associated with CAD outcomes. We 168 

differentiate between CAD diagnosed prior to MRI (prevalent cases) for assessing splenic 169 

markers of existing CAD, and first CAD after MRI (incident cases among those without 170 

prevalent CAD) for assessing splenic predictors of future CAD. We performed feature 171 

processing before training two models for the outcomes of prevalent and incident CAD. Race 172 

and sex were coded as binary indicator variables. For each feature, we imputed any missing 173 

values with the median of all values for the feature, since missingness was less than 10%. We 174 

then employed forward selection to identify independent features for each CAD outcome, 175 

thereby minimizing potential collinearity. Starting with all features including splenic features, 176 

age, race, and sex, this method selected features one at a time that had a P value of less than a 177 

threshold when added to a model with already included features 178 

(https://github.com/AakkashVijayakumar/stepwise-regression/tree/master). We selected this 179 

threshold using 5-fold cross-validation on a held-out validation set, and our threshold options 180 

were 0.025, 0.05, 0.1, and 0.2. After a subset of features was selected, we standardized all 181 

features to normal distributions. 182 

 Subsequently, we analyzed the associations between the selected radiomic features and 183 

CAD outcomes using L1-regularized multivariable regression models, specifically logistic 184 

regression and Cox proportional hazards for prevalent and incident CAD respectively. For each 185 

model, 70% and 30% of the data were utilized for training and evaluation respectively. To 186 
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identify splenic features associated with prevalent CAD, we trained an L1-regularized logistic 187 

regression model for the outcome of prevalent CAD. We optimized the logistic regression model 188 

using a 5-fold cross-validation grid search for various hyperparameters, including different 189 

regularization parameters (C = [5✕10
-5

, 5✕10
-4

, 5✕10
-3

, 0.05, 0.5, 1, 5, 10]), maximum number 190 

of training iterations (max_iter = [1000, 5000]), and reweighting of data points to minimize class 191 

imbalance (class_weight = [balanced, None]). We computed AUROC to evaluate the logistic 192 

regression. For the outcome of incident CAD, we used a Cox proportional hazards model in 193 

order to account for the temporal information of time from MRI acquisition to CAD diagnosis. 194 

The time event was the days from MRI date to CAD diagnosis, and patients with CAD diagnosis 195 

before MRI date were excluded from the analysis. We computed concordance and AIC to 196 

evaluate the model. To ascertain the robustness of our findings, we performed 1000 resamplings 197 

using Monte Carlo bootstrapping on the test set to calculate 95% CI of the AUROC or 198 

concordance index. 199 

 200 

Genome-wide association study and gene prioritization 201 

We explored the genetic underpinnings of CAD-associated splenic features by conducting  202 

GWAS on common variants (minor allele frequency > 0.01) for the fourteen splenic radiomic 203 

features. We used the PLINK (version 2.0) and REGENIE (version 3.2.8) software to run a 204 

GWAS for each splenic feature for chromosomes 1-22. We used a minor allele frequency of 0.01, 205 

missingness upper threshold of  0.1, and Hardy-Weinberg equilibrium value of 1*10
-15

. We 206 

adjusted for age, sex, first ten genetic PCs, and genotyping array. For all phenotypes, we 207 

computed the genomic inflation factor and the LD score intercept using LD Score Regression 208 

(LDSC) using LD scores from participants of European ancestry from the hapmap3 variants.
23

  209 
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To further analyze the results, we used the Functional Mapping and Annotation of 210 

Genome-Wide Studies (FUMA), a platform for annotation of GWAS results and gene 211 

prioritization.
24

 Independent, significant loci were detected based on a significance threshold of p 212 

< 5*10
-8

 and clumping with 1000 Genomes data, with an R
2
 threshold of 0.6. Lead SNPs were 213 

then detected based on clumping on independent, significant loci with an R
2
 threshold of 0.1. We 214 

used an online list comparator to identify overlapping lead SNPs 215 

(https://molbiotools.com/listcompare.php). For gene prioritization, we used FUMA to identify 216 

the nearest genes to each SNP and the genes prioritized by expression quantitative trait loci 217 

(eQTL).
24

 The nearest gene to each SNP was identified using a window of 10 Kb of the SNP. We 218 

combined the PoPS analysis with positional mapping in order to prioritize genes, as combining 219 

similarity-based and locus-based approaches has been shown to lead to better identification of 220 

causal genes.
25

 To implement PoPS, we first computed MAGMA scores from the summary-level 221 

results of the GWAS with each splenic feature. We then computed a PoPS score for all genes 222 

within 10 Kb of the significant SNPs. We selected the gene with the highest PoPS score in each 223 

locus. All GTEx v7 eQTL data were used for eQTL mapping, specifically adipose tissue, adrenal 224 

gland, blood, blood vessel, brain, breast, colon, esophagus, heart, liver, lung, muscle, nerve, 225 

ovary, pancreas, pituitary, pancreas, salivary gland, skin, small intestine, spleen, stomach, testis, 226 

thyroid, uterus, and vagina tissues. In order to prioritize genes using PoPS, we processed publicly 227 

available features derived from gene expression data from various organs 228 

(https://github.com/FinucaneLab/gene_features). For the GWAS results for each splenic 229 

phenotype, we then applied MAGMA, which provides gene-level association statistics. Finally, 230 

we applied the PoPS algorithm to derive scores for each gene.
26

 We stratified the genes by 231 

genomic locus and prioritized the gene with the highest PoPS score. For each splenic phenotype, 232 
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we filtered genes prioritized by at least two of the three methods. We then compiled all genes 233 

prioritized in this manner for any of the ten splenic phenotypes.  234 

From the genes prioritized for the splenic phenotypes, we used OpenTargets to identify 235 

genes associated with CAD. Associations with CAD are based on a combination of scores based 236 

on data from Open Targets Genetics, ClinVar, an NIH public archive of the relationship between 237 

human genetic variants and phenotypes, and other genetic sources (https://platform-238 

docs.opentargets.org/evidence#open-targets-genetics). We included all genes as associated with 239 

CAD if the overall association was greater than 0. For the genes with non-zero associations with 240 

CAD, we then searched for the mouse phenotypes in mice where the gene was knocked out using 241 

the International Mouse Phenotyping Consortium, a collaboration between 21 research 242 

institutions where approximately 20,000 genes are systemically knocked out one by one in mice 243 

to understand the resulting phenotypes.
27,28

  244 

 245 

Overlap of SNPs and genetic correlation between splenic phenotypes and CAD 246 

We used GWAS results from a previous meta analysis for CAD for determining overlap and to 247 

identify genetic correlation.
29

 We identified SNPs that were significantly associated with both 248 

CAD and at least one of the six splenic phenotypes. We used a p-value threshold of <5✕10
-8

 to 249 

define significant SNPs for both the CAD and splenic phenotype GWAS results. For each 250 

splenic phenotype, we clumped the significant SNPs overlapping with CAD using 1000 251 

Genomes reference panel of European participants to identify lead SNPs.
23,30

 After filtering to 252 

SNPs meeting the genome-wide significance threshold, clumping of SNPs was performed using 253 

the default settings of 0.0001 as the significance threshold for index SNPs, 0.01 as the threshold 254 

for clumped SNPs, 0.50 as the LD threshold, 250 kb as the distance threshold, and 1000 255 
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Genomes patient cohort as the reference population. Next, we investigated the phenotype 256 

associations of the lead SNPs using PhenoScanner, a database that contains over 65 billion 257 

phenotype associations and 150 million unique variants.
31,32

 To compute genetic correlation, we 258 

used existing heritability estimation software and 1000 Genomes European LD score data.
23,30,33

  259 

 260 

Results 261 

Study population 262 

Our study included 42,059 participants in the UK Biobank study who had abdominal MRIs 263 

without known hematological cancer at the time of MRI (Supplemental Figure 1). The study 264 

population at enrollment had a mean age of 55.1 years (standard deviation [SD] 7.5), body-mass 265 

index (BMI) of 26.1 kg/m
2
 (SD 4.2), comprised 52.1% females (N=21,895), and was 266 

predominantly of British White ancestry by self-report (96.7%, N=40,675). At MRI 267 

ascertainment, the prevalence of CAD, hypertension, hyperlipidemia, and type 2 diabetes was 268 

4.7% (N=1,987), 24.0% (N=10,082), 16.7% (N=7,010), and 3.0% (N=1,243), respectively. The 269 

median time from UK Biobank enrollment to MRI was 9.4 years [IQR: 6.8-12.0], and the 270 

median follow-up time after MRI was 5.00 years [IQR: 3.85-6.63]. Key hematologic parameters 271 

measured at enrollment showed a mean white blood cell count of 6.6✕10
9
 cells/L (SD: 1.6), 272 

hemoglobin concentration of 14.2 g/dL (SD: 1.2), platelet count of 249.9✕10
9
 cells/L (SD: 56.3), 273 

and hsCRP levels at 2.1 mg/L (SD: 3.6) (Table 1).  274 

 275 

Deep learning-extracted radiomic characteristics of the spleen 276 
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In our study population, splenic volume was previously annotated by the UK Biobank centrally 277 

for 15,215 participants with a mean of 0.17 liters (SD 0.07). Splenic volume varied with age and 278 

sex. It decreased modestly with age in this middle-aged cohort, from 0.18 mg/g (SD: 0.07) 279 

among individuals aged 40-48 years to 0.16 mg/g (SD: 0.07) among those aged 62-70 years. 280 

Splenic volumes on average were lower in women (mean 0.14 mg/g, SD 0.05) compared to men 281 

(mean 0.19 mg/g, SD 0.07).  282 

 We generated spleen images from the first MRI for all 42,059 participants. We extracted 283 

107 radiomic features using the pyradiomics software (version 3.0.1).
21

 Features are grouped into 284 

first order statistics, 3D shape-based features, and five categories of gray level information 285 

(Figure 2 and Supplemental Table 1).  286 

We extracted 18 first-order statistics that indicate the distribution of voxel intensities 287 

within the masks of the image region. These features capture the magnitude, randomness, 288 

uniformity, and asymmetry of the voxel values, as well as standard descriptors such as mean, 289 

median, and range.  290 

We derived 14 shape-based 3D metrics gleaned from the approximated shape defined by 291 

the triangle mesh independent of gray-level intensities using a ‘marching cubes’ algorithm.
35

 292 

These features are readily interpretable. As expected, several volume-related features, including 293 

mesh volume, voxel volume, major and minor axis lengths, and surface area are highly 294 

correlated with the annotated volume which was measured by the UK Biobank as part of the 295 

imaging exam (Pearson correlation coefficients [ρ] ranging from 0.70 to 0.99; all P<0.001). In 296 

contrast, morphologic measures such as sphericity, elongation, and flatness exhibited relatively 297 

lower or no correlation with the annotated volume (ρ < 0.25), indicating their orthogonal 298 

informational value (Supplemental Table 2). 299 
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 The remaining 75 features focused on texture metrics relating to gray levels. We 300 

extracted gray level co-occurrence matrix (GLCM) to measure pixel intensity pairings within a 301 

spatial context, the gray level size zone matrix (GLSZM) to count interconnected voxels zones of 302 

similar grayness, and the gray level run length matrix (GLRLM) to assess the spatial 303 

distributions of these zones, reflecting graininess. 16 features were generated using each of these 304 

matrices. The neighboring gray tone difference matrix (NGTDM) estimates the variations in gray 305 

value over a specified distance for 5 features, and the gray level dependence matrix (GLDM) 306 

gauges the connectivity of voxels relative to a center voxel across 14 features. Supplemental 307 

Figure 2 shows Pearson correlation coefficients between features, and further details are in 308 

https://pyradiomics.readthedocs.io/en/latest/features.html and Supplemental Table 1.  309 

 310 

Splenic radiomics with other variables 311 

Given the known influences of age, sex, and obesity on splenic function, we examined 312 

the association of age, sex, and BMI (after adjustment for the others) with each splenic feature 313 

using multivariable linear regression and observed many significant associations. In particular, 314 

sex showed the strongest associations with splenic size including minor axis length (0.7 SD 315 

lower in females vs males, 95% CI [0.68,0.72]) and surface area (0.70 [0.68,0.72]). BMI was 316 

most significantly associated with several texture features: one unit increase in BMI was 317 

associated with 0.11 [95% CI: 0.10, 0.11], 0.09 [0.09, 0.10], 0.09 [0.09, 0.09] SD increase in 318 

GLSZM gray level non-uniformity, run length non-uniformity, and GLRLM gray level non-319 

uniformity, respectively (Figure 3 and Supplemental Figure 3).  320 

We then examined the associations between splenic features and hematologic biomarkers, 321 

adjusting for age, sex, and BMI. The strongest associations were of energy and GLSZM size 322 
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zone non-uniformity exhibited with high light scatter reticulocyte count, with an increase of 0.21 323 

[95% CI: 0.21, 0.21] per 1 SD of each radiomics feature. Many splenic features were negatively 324 

associated with mean spherical cell volume, including surface area (Supplemental Figure 4).  325 

The strongest association for white blood cell (WBC) count was a 0.10 [0.09, 0.11] increase for 1 326 

SD increase of GLCM informational measure of correlation 1. For red blood cell count, a 0.16 327 

[0.15, 0.17] increase was associated with 1 SD increase of GLSZM size zone non-uniformity. 328 

For C-reactive protein, a 0.05 [0.03, 0.06] increase was associated with 1 SD increase of median. 329 

Supplemental Table 3 contains the top splenic radiomic features associated with each 330 

hematological parameter.  331 

 332 

Prioritizing CAD-associated splenic radiomics 333 

For prevalent CAD, the optimized regression model achieved an AUROC of 0.77 (95% 334 

CI 0.75-0.78) in the held-out test set (N=12755), and the Cox model for incident CAD yielded a 335 

concordance index of 0.68 (95% CI 0.65-0.71) in the test set (N=12022). Notably, 9 and 5 336 

splenic radiomic features were retained in the prevalent and incident CAD models, respectively, 337 

achieving statistical significance (P<0.05) after adjustment for other covariates.
36

 There is no 338 

overlap in significant splenic features between prevalent and incident CAD. For prevalent CAD, 339 

associated features included GLSZM gray level non-uniformity (OR per 1 SD increase: 1.59 [95% 340 

CI: 1.38, 1.82], P<0.001, FDR<0.001) and sphericity (OR: 1.16 [95% CI: 1.09, 1.23], P<0.001, 341 

FDR<0.001), among others. GLCM correlation, energy, GLDM metrics of small dependence 342 

high gray level emphasis and gray level variance, GLSZM large area low gray level emphasis, 343 

GLRLM run length non-uniformity, and GLCM inverse difference also showed significant 344 

associations with prevalent CAD. For incident CAD, associated features included GLRLM run 345 
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length non-uniformity (HR: 1.17 [95% CI: 1.09, 1.25], FDR<0.001), which was also associated 346 

with prevalent CAD,  and GLCM inverse difference normalized (HR: 0.90 [95% CI: 0.85, 0.95], 347 

FDR<0.001) (Supplemental Table 4, Figure 4A-B). All features significantly associated with 348 

prevalent or incident CAD met the FDR threshold of 0.05 for significance for genetic discovery 349 

and were used for subsequent analyses.  350 

To examine the relationships between these CAD-associated splenic features and 351 

conventional CAD risk factors, including age, sex, race, smoking, BMI, diabetes, hypertension, 352 

and total, HDL, and LDL cholesterol levels, we calculated their pairwise Pearson correlations. 353 

Gray level-uniformity, energy, and run-length non-uniformity are moderately positively 354 

correlated with BMI and triglyceride levels, and all three features negatively correlate with HDL 355 

cholesterol. Overall, most features exhibit only weak correlations with all conventional CAD risk 356 

factors (Figure 4C). Supplemental Figure 5 shows representative MRI images for the 357 

prioritized splenic features.  358 

 359 

219 genome-wide significant regions associated with CAD-associated splenic features  360 

In the GWAS for the fourteen splenic radiomics features, there was no significant inflation of 361 

association statistics (λGC ranges from 1.03 to 1.15; LD score intercept ranges from 1.03 to 1.17. 362 

Supplemental Table 5). The genetic signals varied across the 14 traits. Using P < 5*10
-8

 and r
2
 363 

< 0.1 as thresholds to identify significant and independent variants, we discovered 95 364 

independent significant SNPs for sphericity, 72 for energy, 41 for GLRLM run length non-365 

uniformity, 21 for GLSZM gray level non-uniformity, and 16, 9, 7, 4, 2, and 0 for GLSZM large 366 

area low gray level emphasis, GLCM inverse difference, GLCM inverse difference normalized, 367 

GLCM correlation, GLDM small dependence high gray level emphasis, and GLDM gray level 368 
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variance, respectively. At the locus level, chr9:91392686, chr12:112037450, chr12:112007756, 369 

and 12:113165247 were all associated with 4 splenic features respectively; a few other 370 

discovered loci also associated with more than one feature, but more were associated with unique 371 

traits (Figure 5, Supplemental Figures 6-14).  372 

Utilizing GWAS results of CAD-associated splenic features, we assessed their genetic 373 

correlations with CAD, observing varying degrees of correlations. The features with the 374 

strongest correlations that had the same direction of effect on CAD as in the regression models 375 

were GLCM correlation (rg=0.17, P=0.002) and energy (rg=-0.12, P=0.01), indicating shared 376 

genetic basis with CAD. A few features had more modest genetic correlations with CAD, 377 

suggesting the need for studying the non-genetic pathways linking them with CAD 378 

(Supplemental Table 15).  379 

 380 

THBS1, PDE5A, and 35 more CAD-associated genes are likely to be causal genes for splenic 381 

features 382 

For GWAS of each CAD-associated splenic feature, we prioritized genes likely to be causal 383 

using three methods: 1) gene annotation based on distance (i.e., nearest gene), 2) polygenic 384 

priority score (PoPS), and 3) eQTL mapping based on cis-eQTLs. These loci mapped to 83, 58, 385 

35, 21, 16, 9, 7, 4, 2, 0 respective genes based on proximity, by choosing the closest gene to each 386 

SNP within 10 Kb, for the splenic phenotypes listed in the order from the previous section 387 

(Supplemental Tables 6-14). The strongest signals for sphericity and GLDM small dependence 388 

high gray level emphasis were annotated to TLX1NB and LRRC37A2:ARL17A, and the signals 389 

for the other features were near ATXN2, a multi-functional gene linked to circadian rhythm and 390 

neurodegenerative diseases and prioritized in a previous GWAS for splenic volume.
22,37

 391 
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Using PoPS, we prioritized 0 to 48 genes per feature, with top putative causal genes 392 

including S1PR3, ARHGAP42, SMG6, 
38

IRS1, and THBS1, which were prioritized for 3 or more 393 

splenic features. S1PR3 encodes a lysophospholipid mediator that has been shown to have both 394 

protective effects against stroke and vasoconstrictor effects.
39

 We observed strong corroboration 395 

between prioritized genes by PoPS (similarity-based approach) and distance (locus-based), 396 

increasing confidence in the results (Supplemental Tables 16-24).
26

 Using eQTL data from 397 

GTEx v7,
40

 top genes prioritized by eQTL mapping prioritized include S1PR3, EGF, HECTD4, 398 

ARHGAP42, NAA25, and SMG6, which were all prioritized for at least 4 splenic features, and are 399 

similar to those prioritized by nearest genes and PoPS (Supplemental Tables 16-24). 400 

Collectively, 119 genes were prioritized by at least two gene prioritization methods across all 401 

phenotypes (Supplemental Table 25 and Figure 6). 402 

We explored the functional implications of genes prioritized for their links to CAD, 403 

leveraging OpenTargets to assess their CAD associations and the availability of targeted 404 

therapies. Among these, 37 genes, including EGF, HECTD4, ARHGAP42, NAA25, SMG6, RPL6, 405 

IRS1, THBS1, PDE5A, FTTO, PPARG, CUX2, have established CAD associations based on 406 

various genetic data sources (Supplemental Table 25, Methods).
31,32

 These genes are involved 407 

in multiple mechanisms, including inflammation (e.g., THBS1), smooth muscle cell regulation 408 

(e.g., TCF21, PDE5A), hypertension (e.g., HECTD4, ARHGAP42), heart tissue development 409 

(e.g., WNT5A, HAND2, TCF21), and adipogenesis (e.g., FTO, PPARG). We traced back the 37 410 

genes to our GWAS across splenic features and found many were discovered from energy, run-411 

length non-uniformity, and sphericity GWAS (Supplemental Table 25). For each gene, we 412 

identified mouse phenotypes resulting from gene knockout using the International Mouse 413 

Phenotyping Consortium.
27,28

 Knocking out SMG6, PDE5A, and TCF21 resulted in abnormal 414 
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spleen morphology, enlarged spleens for SMG6 and PDE5A, and small spleens for TCF21. 415 

TCF21 knockout led to abnormal blood vessels. THBS1 knockout led to abnormal and enlarged 416 

hearts (Supplemental Table 25).  417 

 418 

Overlap of SNPs and genetic correlation shed light on the link between splenic phenotypes and 419 

CAD 420 

Utilizing previously published CAD GWAS,
29

 we compiled SNPs associated with CAD and 421 

identified the ones associated with splenic features. 396 and 390 CAD-associated SNPs were 422 

associated with energy and run-length non-uniformity respectively, and the overall median [IQR] 423 

number of SNPs associated with CAD and the splenic features was 255.5 [18, 337].  After 424 

clumping of SNPs, 24 and 22 independent CAD-associated SNPs were significantly associated 425 

with energy and run-length non-uniformity, respectively. The overall median [IQR] number of 426 

SNPs associated with CAD and the splenic features was 9 [3, 17], with 39 unique ones across all 427 

splenic phenotypes (Supplemental Table 26). We filtered to 35 lead SNPs where the effect 428 

direction of the SNP on CAD was consistent with the effect of at least one radiomic feature on 429 

CAD risk.  430 

We interrogated the existing associations of lead SNPs using PhenoScanner
31,32

 to assess 431 

for pleiotropic associations (Supplemental Table 27). Of the 35 SNPs, 7 (20%) were not 432 

associated with any known cardiovascular risk factor, including hypertension, diabetes, systolic 433 

and diastolic blood pressure, smoking, total, HDL, and LDL cholesterol, triglycerides, or weight 434 

(Supplemental Figure 15). These SNPs were rs7036656 (chr9p21.3), rs56750693 435 

(chr12q24.12), rs11515 (chr9p21.3), rs4239427 (chr18q11.2), rs4098854 (chr12q24.12), 436 

rs1208250 (chr6q23.2), and rs1208258 (chr6q23.2). These SNPs were associated with GLSZM 437 
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gray non-uniformity, energy, GLSZM large area low gray level emphasis, GLRLM run length 438 

non-uniformity, GLCM inverse difference, sphericity, and GLDM large dependence high gray 439 

level emphasis.  440 

The top SNPs at two identified loci, rs7036656 and rs11515, are at the chr9p21 locus, the 441 

most strongly associated CAD locus but previously with limited mechanistic insight.
41

 The 442 

rs7036656 SNP is significantly associated with energy (P=1.5✕10
-20

), GLRLM run length non-443 

uniformity (P=1.6✕10
-16

), GLSZM large area low gray level emphasis (P=8.0✕10
-9

), GLSZM 444 

gray non-uniformity (P=3.4✕10
-9

), and GLCM inverse difference (P=3.2✕10
-8

). The rs11515 445 

SNP is significantly associated with energy (P=2.4✕10
-11

) and run length non-uniformity 446 

(P=3.3✕10
-9

). Both loci are associated with energy and run-length non-uniformity. The strongest 447 

signal in the GWAS for both energy and run-length non-uniformity was at the same locus, 448 

rs653178 (energy: P = 1.3✕10
-106

, Z score = 21.9; run_length non-uniformity: P = 9.2*10
-72

, Z 449 

score = 17.9; nearest gene: ATXN2), indicating further genetic overlap between the two 450 

radiomics features. This locus is associated with systolic and diastolic blood pressure.
42

  451 

Discussion 452 

In this study, we harnessed deep learning to extract splenic phenotypes not readily quantifiable 453 

through conventional methods, establishing the link between spleen and CAD. We discovered 454 

several radiomic features, such as heightened sphericity, increased texture variation, and reduced 455 

gray level intensity in the spleen, that were robustly associated with elevated CAD risk. We 456 

explored the genetic underpinnings of these CAD-associated splenic features, providing insight 457 

into the potential mechanism of the spleen's involvement in key processes related to CAD, such 458 

as inflammation, smooth muscle cell regulation, and hypertension. Notably, we mapped seven 459 
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genetic loci unlinked to known CAD risk factors to the splenic features, offering potential new 460 

targets for intervention and dissecting the splenic axis of CAD. 461 

 Our study has several implications. The first is that novel deep learning techniques to 462 

non-invasively extract radiomic features in the spleen at scale enable association study and 463 

genomic analysis of splenic variation in the population. This approach is particularly pertinent 464 

for the spleen, an organ with limited annotations even in clinical reports. Furthermore, in our 465 

study, the splenic radiomic features carry detailed information on shape, size, texture, and 466 

intensity much beyond known splenic markers - except for volume-related splenic features 467 

highly correlated with known splenic volume, other features provided orthogonal information 468 

about the spleen. Lastly, the pipeline we built offers a scalable framework for extracting features 469 

of other organs from imaging, facilitating the construction and testing of novel biomedical 470 

hypotheses.    471 

Second, we put the computer-learned features in a disease context and identified potential 472 

radiomic markers for CAD. For example, image-derived texture variation has been used to 473 

identify specific patterns within lymphoma, splenic infarction, and splenic cysts
43

 ; specific to 474 

splenic features, sphericity and flatness have previously been used to distinguish between 475 

lymphoma subtypes.
14

 Our work expanded their use to look across all splenic radiomic features, 476 

capturing several aspects of spleen, and comprehensively examined the potential markers of 477 

CAD. We also identified splenic features common to patients both before and after CAD 478 

diagnosis, specifically run-length non-uniformity, suggesting that increases in splenic texture 479 

variation occur before CAD diagnosis and persist after diagnosis. This finding provides evidence 480 

that splenic changes are present with early development of CAD and are not simply effects of 481 

later disease progression.  482 
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Third, we integrated genetics and yielded important discoveries on the potential 483 

mechanism linking the spleen to CAD. Through GWAS and subsequent gene prioritization and 484 

annotation, we identified causal genes of CAD-associated splenic features and found their strong 485 

relevance in inflammation, smooth muscle cell regulation, and hypertension. For example, a top 486 

prioritized gene THBS1 is implicated in angiogenesis and inflammation; PDE5A, essential for 487 

smooth muscle cell relaxation and linked to CAD through dysfunctional nitric oxide signaling 488 

and the second messenger cGMP in atherosclerosis, and TCF21, a regulator of coronary artery 489 

smooth muscle cell precursors, were prioritized.
44,45,46

 Both PDE5A and TCF21 knockouts in 490 

mice affect gross spleen morphology, highlighting their relevance to both CAD and splenic 491 

phenotypes and thus the validity of our findings.  492 

Also, we identified 35 pleiotropic loci associated with CAD and splenic features, where 493 

the effect of the locus on the radiomics feature and CAD was consistent. Among them, 7 were 494 

not linked to any conventional CAD risk factors, suggesting orthogonal information of the 495 

splenic axis of CAD; in particular, rs7036656 and rs11515 on the Chr9p21 locus, one of the 496 

strongest CAD loci whose mechanism remained unclear since its initial discovery in 2007, is 497 

identified in our study as associated with splenic texture changes, such as energy and run length 498 

non-uniformity.
47

 These findings, together, shed light on novel mechanisms linking the spleen to 499 

CAD, providing potential targets for therapeutic intervention to address this unexplored axis.  500 

Our study has limitations. Firstly, the UK Biobank cohort includes participants of mostly 501 

European ancestry, and the participants were recruited between the ages of 40 and 59, limiting 502 

the generalizability of our findings to other ancestries and younger patients. These results should 503 

be replicated for a more diverse cohort. Second, we included participants whose MRI were 504 

categorized as “high-quality” by the segmentation model and filtered out “low-quality” ones 505 
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where the spleen was not identified. However, those filtered images may contain unique 506 

information that resulted in the classification. Third, to increase discovery power, we used a 507 

more liberal CAD definition, and therefore some associated splenic features may not be directly 508 

relevant to the etiology of strictly defined CAD. 509 

 In conclusion, by extracting novel splenic radiomics features linked to CAD and 510 

uncovering their genetic underpinnings, our work examined the unaddressed splenic axis of 511 

CAD. We demonstrated significant associations of splenic sphericity and texture variation with 512 

CAD risk, alongside identifying genetic variants and prioritizing genes tied to these spleen-CAD 513 

links. Leveraging several databases, we explored the functions of these genes and demonstrated 514 

their relevance and potential mechanisms to CAD etiology. Notably, we highlighted several loci, 515 

such as Chr9p21, linked to both splenic alterations and CAD yet unassociated with conventional 516 

CAD risk factors, presenting them as potential novel targets for therapeutic intervention. 517 

Together, our work presents a new framework to uncover the underexplored splenic axis of CAD. 518 

  519 
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Table 1. Baseline characteristics. The number of incident and prevalent CAD cases in the 564 

cohort is shown below, and the gender and race breakdown of the population is also presented. 565 

For binary variables, metrics are represented as n (%). For continuous variables, age is 566 

represented as mean (SD), and all other continuous metrics are reported as median (IQR). All 567 

variables are measured at enrollment, unless an asterisk is included, indicating measurement at 568 

MRI date or, in the case of incident CAD, measurement at any point after MRI date. CAD, 569 

coronary artery disease. BMI, body-mass index. LDL, low-density lipoprotein. HDL, high-570 

density lipoprotein. CAD, coronary artery disease. BMI, body mass index. LDL, low-density 571 

lipoprotein. HDL, high-density lipoprotein. *measured at MRI date. 572 

Characteristic Count or Mean (N=42,059) 

Female 21895 (52.1%) 

Age, years 55.1 (7.5) 

British white ancestry 40675 (96.7%) 

BMI, kg/m
2
 26.1 (23.7, 28.9) 

Systolic blood pressure, mmHg 135.0 (124.0, 148.0) 

Diastolic blood pressure, mmHg 81.0 (74.0, 88.0) 

Smoked ever 12840 (30.5%) 

Alcohol intake frequency, drinks per week 2.0 (2.0, 3.0) 

Total cholesterol, mmol/L 4.58 (4.00, 5.17) 

LDL cholesterol, mmol/L 3.54 (3.00, 4.11) 

HDL cholesterol, mmol/L 1.43 (1.20, 1.70) 

Triglyceride, mmol/L 1.40 (0.99, 2.02) 

Hyperlipidemia* 7010 (16.7%) 
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Type 2 diabetes* 1243 (3.0%) 

Hypertension* 10082 (24.0%) 

Prevalent CAD* 1987 (4.7%) 

Incident CAD* 993 (2.4%) 

 573 
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Figure 1. Summary of the workflow to identify splenic features associated with CAD and 575 

discover genetic associations. First, radiomics features describing the spleen are extracted from 576 

42,543 abdominal MRIs from the UK Biobank. Second, predictive models of each splenic 577 

radiomic feature for CAD are implemented. Genome-wide association studies are then conducted 578 

to identify genetic variants significantly associated with CAD-associated splenic radiomic 579 

features. Based on the identified genetic variants, genes are then prioritized for further 580 

investigation based on three different prioritization techniques: nearest gene, PoPS, and eQTL. 581 

Finally, the genetic variants that were associated with splenic radiomics were investigated for 582 

association with CAD using summary-level CAD GWAS meta-analysis. PoPs, polygenic priority 583 

score. eQTL, expression quantitative trait loci. nnuNet, No New U-Net. CAD, coronary artery 584 

disease. SNP, single nucleotide polymorphism. Reproduced by kind permission of UK Biobank 585 

©. 586 
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 587 

Figure 2. Categorization of Extracted Splenic Radiomics Features. 7 categories of radiomic features with descriptions, numbers of 588 

quantified features, and visualizations of high and low values for a selected feature. Reproduced by kind permission of UK Biobank ©.589 
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 591 

Figure 3. Coefficients of BMI in a linear regression model for each splenic feature, 592 

adjusting for age and sex. Splenic radiomic features are grouped and colored by category using 593 

the color scheme from Figure 2. Features are grayed out if the Bonferroni corrected p-value for 594 

the coefficient of the BMI feature is greater than or equal to 0.05.   595 
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Figure 4. Splenic radiomics features selected by prediction models for prevalent and incident CAD. a) Splenic radiomics 597 

features that were nominally associated (p-value < 0.05) with the prevalent CAD in a logistic regression model. b) Splenic radiomic 598 

features that were also nominally associated with incident CAD in a Cox regression survival analysis model among those without 599 

prevalent CAD. Covariates for both models included age, race, sex, and a set of splenic features chosen by forward stepwise 600 

regression, to ensure that no splenic features in the model were significantly correlated with each other. c) Correlations of the fourteen 601 

nominally significant splenic features across both models with conventional CAD risk factors. The Pearson correlation coefficient is 602 

shown for correlations that are significant.  603 

Higher gray non-uniform, gray level variance, and run-length non-uniformities values are associated with increased texture variation. 604 

Correlation refers to the correlation between voxel locations and their gray level intensities. A higher energy value indicates higher 605 

gray intensities. Higher small dependence high gray level emphasis indicates increased variation of areas of high gray levels. Higher 606 

large low gray level emphasis indicate decreased variation of areas of low gray levels respectively. Higher inverse difference reflects 607 

decreased texture variation of the spleen.  608 

Feature abbreviations are as follows: Coronary Artery Disease, CAD. Energy, firstorder_Energy. Sphericity, shape_Sphericity.  609 
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Figure 5. Circular Manhattan plots from GWAS with 14 splenic phenotypes and CAD. a) 611 

The circular Manhattan plot portrays the features that were statistically significant for prevalent 612 

CAD. From outside to inside, the features are CAD, GLCM inverse difference, GLRLM run 613 

length non-uniformity, GLSZM large area low gray level emphasis, GLDM gray level variance, 614 

GLDM small dependence high gray level emphasis, energy, GLCM correlation, sphericity, and 615 

GLSZM gray level-non uniformity. Red dots indicate significant loci. The y-axis is the log10 of 616 

the p-value. b) The circular plot shows the features statistically significant for incident CAD. 617 

From outside to inside, the features are CAD, GLRLM run length non-uniformity, and GLCM 618 

inverse difference normalized. Feature abbreviations are as follows: CAD, Coronary Artery 619 

Disease. Correlation, glcm_Correlation. Energy, firstorder_Energy. Sphericity, shape_Sphericity.   620 
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Figure 6. Genes prioritized for CAD-associated splenic radiomics. Genes were only included 622 

if they were prioritized by at least two methods (out of nearest gene, eQTL, PoPS) for at least 623 

one of the fourteen CAD-associated splenic phenotypes. Genes are grouped by the most 624 

associated splenic phenotypes from left to right. In addition, genes prioritized by similar 625 

phenotypes are grouped together. 626 

Feature abbreviations are as follows: Correlation, glcm_Correlation. Energy, firstorder_Energy. 627 

Sphericity, shape_Sphericity.   628 
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