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Abstract 

Background:  Diabetic retinopathy (DR) has become a leading cause of global blindness as a microvascular compli‑
cation of diabetes. Regular screening of diabetic retinopathy is strongly recommended for people with diabetes so 
that timely treatment can be provided to reduce the incidence of visual impairment. However, DR screening is not 
well carried out due to lack of eye care facilities, especially in the rural areas of China. Artificial intelligence (AI) based 
DR screening has emerged as a novel strategy and show promising diagnostic performance in sensitivity and specific‑
ity, relieving the pressure of the shortage of facilities and ophthalmologists because of its quick and accurate diag‑
nosis. In this study, we estimated the cost-effectiveness of AI screening for DR in rural China based on Markov model, 
providing evidence for extending use of AI screening for DR.

Methods:  We estimated the cost-effectiveness of AI screening and compared it with ophthalmologist screening in 
which fundus images are evaluated by ophthalmologists. We developed a Markov model-based hybrid decision tree 
to analyze the costs, effectiveness and incremental cost-effectiveness ratio (ICER) of AI screening strategies relative to 
no screening strategies and ophthalmologist screening strategies (dominated) over 35 years (mean life expectancy 
of diabetes patients in rural China). The analysis was conducted from the health system perspective (included direct 
medical costs) and societal perspective (included medical and nonmedical costs). Effectiveness was analyzed with 
quality-adjusted life years (QALYs). The robustness of results was estimated by performing one-way sensitivity analysis 
and probabilistic analysis.

Results:  From the health system perspective, AI screening and ophthalmologist screening had incremental costs of 
$180.19 and $215.05 but more quality-adjusted life years (QALYs) compared with no screening. AI screening had an 
ICER of $1,107.63. From the societal perspective which considers all direct and indirect costs, AI screening had an ICER 
of $10,347.12 compared with no screening, below the cost-effective threshold (1–3 times per capita GDP of Chinese 
in 2019).

Conclusions:  Our analysis demonstrates that AI-based screening is more cost-effective compared with conventional 
ophthalmologist screening and holds great promise to be an alternative approach for DR screening in the rural area of 
China.
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Background
Diabetic retinopathy (DR) is one of the most important 
microvascular complications of diabetes, which is dif-
ficult to be detected until irreversible damage or even 
blindness occurs [1–3]. DR was ranked fifth among the 

Open Access

*Correspondence:  panhongwei@hotmail.com
†Xiao-Mei Huang and Bo-Fan Yang contributed equally to this work.
2 Institute of Ophthalmology, School of Medicine, Jinan University, 
Guangzhou, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12913-022-07655-6&domain=pdf


Page 2 of 12Huang et al. BMC Health Services Research          (2022) 22:260 

major causes of global blindness [4]. The number of dia-
betic patients is projected to increase to 600 million by 
2040, with one third expected to have diabetic retinopa-
thy [5–7], presenting a huge medical and economic bur-
den worldwide, especially in developing countries such 
as China. As reported by International Diabetes Federa-
tion diabetes atlas, there are 113.9 million adults with 
diabetes in China, which accounts for about 24% of all 
diabetic patients worldwide. Presently about half of the 
population, approximately 700 million people, are liv-
ing in the rural areas of China, where the prevalence of 
diabetic retinopathy is higher than that of urban areas 
[8]. However, DR screening is not well performed in the 
rural areas of China due to unaffordability of medical 
cost, lack of medical facilities and limited access to con-
ventional screening programs. Considering the impor-
tance of regular screening of people with diabetes for 
timely intervention and reduction of vision impairment 
[9], it is urgent to take measures to make DR screen-
ing more available and affordable in the rural areas of 
China. In this aspect, a new kind of screening strategy 
for DR incorporating artificial intelligence technol-
ogy has great potential, especially in low- and middle-
income countries [10].

Artificial intelligence (AI) using deep learning sys-
tems (DLS) emerges as a promising alternative approach 
in medical diagnosis of a variety of diseases, including 
diabetic retinopathy. It can provide instant DR diagno-
sis and reduce the burden of health system [11]. A DLS 
developed in Singapore has shown comparable diagnos-
tic performance to human assessors and the savings to 
Singapore health system associated with switching the 
human assessment model to the semi-automated model 
are estimated to be $489,000, only 20% of the current 
annual screening cost [12, 13]. In India, an AI algorithm 
for DR and vision-threatening DR (VTDR) detection, 
using Remidio Fundus, produced a sensitivity of 96% and 
a specificity of 80% in detecting any diabetic retinopathy 
as well as a sensitivity of 99% and a specificity of 80% in 
detecting VTDR [14]. In China, the performance of a 
DLS model was evaluated for screening pre-proliferative 
diabetic retinopathy and diabetic macular edema, and 
the results showed a sensitivity of 97% and a specificity of 
91% based on 19,900 images [14]. It has been found feasi-
ble to carry out AI based screening for DR in community 
hospitals [15]. As the study conducted in Xinjiang, China 
showed, AI had the same specificity (100%) and higher 
sensitivity (100% vs 79.1%) for referral DR screening, 
compared with manual screening [16]. It has been shown 
AI had relatively good consistency with ophthalmologist 
in DR grading, high specificity and acceptable sensitivity 
for the diagnosis of referral DR and any DR in commu-
nity of China [17]. In Spain, AI system showed acceptable 

sensitivity (100% for referral DR and VTDR) and specific-
ity (81.82% for referral DR and 94.64% for VTDR) against 
manual grading as well [18]. Compared with the con-
ventional screening programs, AI screening can address 
several barriers including availability of human assessors, 
long-term financial sustainability and the growing need 
for DR screening and monitoring [13, 19].

To date, good diagnostic consistency in DR has been 
demonstrated between AI and manual grading. But lit-
tle is known about the cost-effectiveness for AI based DR 
screening in rural China or other countries [20]. In order 
to provide economic evidence for medical and healthcare 
decision making, we assessed the cost-effectiveness of AI 
screening for DR relative to the conventional screening 
strategies using a Markov model, from the health system 
and societal perspectives.

Methods
Study Setting and description
The study was set in rural China. We conducted the 
analysis with a hypothetic cohort of 1000 patients in 
rural China. All patients were newly diagnosed with 
diabetes but without diabetic retinopathy, whose 
mean starting age was 44  years, representing the 
actual age distribution of patients with diabetes in 
rural China [21]. They were allowed to enter in one of 
the three screening groups: no screening group (the 
baseline group), AI screening group or ophthalmolo-
gist screening group, which meant they would take 
the DR screening and follow-up examinations later in 
the corresponding way. It was simulated in 35 yearly 
cycles. Rural China is defined as an area inhabited 
mainly by agricultural population engaged in agricul-
tural production in China. According to the "Regula-
tions for the Compilation of Statistical Division Codes 
and Urban–Rural Division Codes" formulated by the 
National Bureau of Statistics, the urban–rural division 
code is used to confirm whether the area is urban or 
rural (available at http://​www.​stats.​gov.​cn/​tjsj/​tjbz/​
tjyqh​dmhcx​hfdm/). The urban–rural division code 
starting with 1 indicates that it is urban while the code 
starting with 2 indicates that it is rural. The ophthal-
mologists, the staff and the patients in DR screen-
ing, were aware of the research program and we have 
given their written informed consent. For conven-
tional screening of DR in rural areas, medical teams 
with facilities and computational resources would go 
to the community health service stations in rural areas 
and perform screening. The medical staff would com-
plete fundus images capture and visual acuity  tests. 
The Ophthalmologists then would grade the fundus 
images combined with the results of the vision exami-
nation. Patients identified with vision-threatening DR 

http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/
http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/
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(VTDR), including severe non-proliferative diabetic 
retinopathy (NPDR) and proliferative diabetic retinop-
athy (PDR), would be referred to superior hospitals to 
get laser treatment. Those identified with no diabetic 
retinopathy (NO DR) and mild diabetic retinopathy 
(Mild DR) would be recalled for a follow-up examina-
tion every year in superior hospitals while those with 
moderate diabetic retinopathy (Moderate DR) would 
be recalled for a follow-up examination every half year 
in superior hospitals. All of the follow-up examina-
tion’s results would be graded by ophthalmologists. 
The follow-up examinations included taking fundus 
images, performing a screening visual acuity exam, 
an intraocular pressure examination and a slit lamp 
microscope examination [22]. For AI screening, medi-
cal teams with facilities and computational resources 
would go to the community health service stations 
in rural areas and perform screening as well. An AI-
based software would be used to grade fundus images 
instead of ophthalmologists. After the fundus images 
are obtained and vision examinations are performed, 
the AI-based software would be applied to grade the 
fundus images quickly and accurately, as well as giv-
ing management advice. The recommendations for 
patients in different DR progressions would be the 
same as ophthalmologist screening. What is differ-
ent is that all the results of the follow-up examina-
tions would be graded by the AI-based software. The 
AI-based software had very similar sensitivity and 

Fig. 1  Markov Model structure. DR=diabetic retinopathy; VTDR= vision-threatening diabetic retinopathy 

Table 1  Markov Model Parameter Estimates and Assumptions

DR Diabetic retinopathy, VTDR Vision-threatening diabetic retinopathy

Parameter Value Sensitivity 
Analysis 
Range

1. DR transition probabilities

  No to Mild [27] 0.07 0.01–0.10

  Mild to Moderate [27] 0.19 0.166–0.214

  Moderate to VTDR [27] 0.17 0.147–0.193

  VTDR to Stable [28] 0.90 0.881–0.919

  Stable to Blindness [29] 0.02 0.002–0.03

  VTDR to Blindness [29] 0.09 0.07–0.11

2. Utility

  No DR [30] 0.94 0.83–1.05

  Mild DR [30] 0.87 0.73–1.01

  Moderate DR [30] 0.87 0.73–1.01

  VTDR [30] 0.83 0.74–0.92

  Stable DR [31] 0.85 0.72–0.78

  Blindness [30] 0.81 0.73–0.89

3. Disutility of DR [32] 0.066 -

4. Mortality multipliers [26]

  Blindness 2.34 2.22–2.46

  Diabetes 1.90 1.04–2.7

5. Sensitivity, %

  AI Screening screening [23] 90.79 86.40-94.10

  Ophthalmologist screening [24] 96.00 94.79-97.21

6. Specificity, %

  AI screening [23] 98.50 97.80-99.00

  Ophthalmologist screening [24] 94.67 94.57-97.43

7. Compliance of screening [33], % 86.00 -
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specificity to ophthalmologists but with less cost and 
time for grading [23, 24].

Model design
We developed a hybrid decision tree based on Markov 
model to analyze the costs, effectiveness of each screen-
ing strategy. We also calculated the incremental cost-
effectiveness ratio (ICER) of AI screening strategies 
relative to no screening strategies over 35  years. The 
model was developed with Treeage pro 2021 (TreeAge 
Software Inc, Williamstown, MA, USA), running for 35 
cycles according to the mean life expectancy of patients 
diagnosed with diabetes in rural China [21].

The model simulated the progression of DR after being 
diagnosed with diabetes. The Markov model for diabetic 
retinopathy was based on the Early Treatment Diabetic 
Retinopathy Study (ETDRS) criteria [25], in which the 
patients were classified into seven health states: No DR, 
Mild DR, Moderate DR, VTDR, Stable DR, Blindness 
and death. In each cycle (every single year), the transition 
allowed between health states was as follows: No DR may 
remain or progress to mild DR. Mild DR may remain or 
progress to moderate DR. The Moderate DR may remain 
or progress to VTDR. Patients diagnosed with VTDR 
needed to receive laser treatment. If the treatment suc-
ceeded, the health state would stay at Stable DR, which 
was recalled for a follow-up examination every year. If 
failed, it would stay VTDR, which might progress to blind-
ness. Meanwhile, Stable DR may remain or progress to 

blindness as well. People with all health states were likely 
to die, which was related to their age instead of DR pro-
gression. The Markov model structure was shown in Fig. 1.

Model inputs
Utility values (effectiveness) and transition probabilities 
were derived from literature. Mortality risks were cal-
culated by multiplying the age-specific mortality risks 
by the mortality multipliers for diabetes and blindness, 
using linear interpolation. The natural age specific rates 
of mortality were derived from Chinese researchers [26]. 
Grading accuracy (sensitivity and specificity) of the two 
screening strategies was obtained from two published 
papers [23, 24], as shown in Table  1. Primary data was 
collected on the costs of ophthalmologist screening, 
AI screening and laser treatment, as shown in Table  2. 
Screening and treatment costs were collected from the 
Affiliated hospital of Weifang Medical University. AI 
software fee was obtained from the market quotation of 
the AI software supplier.

Costs
Costs were estimated from the health system perspec-
tive and societal perspective. Costs were collected in 
Chinese Yuan and then converted into US dollars at an 
exchange rate of 6.9129 yuan per dollar in 2020, as shown 
in Table 2.

From the societal perspective, the costs included 
direct costs (medical and nonmedical) and indirect costs 

Table 2  Health system and Societal Costs Per Person for DR Screening and Treatment in US Dollars

AI screening costs include cost of AI software and eye examination while ophthalmologist screening costs include salaries of ophthalmologist and eye examination. 
The costs of AI screening group’s follow-up visit include cost of AI software and follow-up examination. The costs of ophthalmologist screening group’s follow-up visit 
include cost of ophthalmologist salaries and follow-up examination

Cost Items Cost ($) Sensitivity Analysis Range

Health System costs
  1. Screening

    AI software 1.447 0.723–2.17

    Ophthalmologist salary 3.213 1.606–4.819

    Eye examination 1.63 0.815–2.445

  2. Follow-up visit

     Follow-up examination 2.199 1.099–3.298

  3. Laser treatment 347.177 173.589–520.766

Societal costs
 1. Income loss

   Blindness (for the first year) [34] 8,920 4,460–13,380

   Blindness (in the following years) [34] 3,600 1,800–5,400

   Screening 3.18 1.59–4.77

   Treatment 12.7 6.35–19.05

 2. Transportation [35]

   Screening 0.58 0.29–0.87

   Follow-up visit 2.30 1.15–3.45
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(i.e., work time lost). We estimated health system cost of 
only direct medical costs. Direct medical costs can be 
divided into three parts: (1) costs of screening, (2) costs 
of follow-up examinations, (3) costs of laser treatment. 
For AI screening, the costs of screening included AI soft-
ware fee, salaries of eye care professionals, maintenance 
of equipment, advertising and building rent. For oph-
thalmologist screening, the costs of screening included 
salaries of eye care professionals, maintenance of equip-
ment, advertising, building rent, as well as salaries of 
ophthalmologists. Direct nonmedical costs consisted of 

transportation fees related to visits to the community 
hospitals and superior hospitals. Indirect costs consisted 
of the monetary value of work time lost, which was spent 
on screening, follow-up examinations and laser treat-
ment. The costs caused by blindness were derived from 
a study by Tang et  al. [34], which consisted of 53.2% 
direct medical costs, 6.4% direct nonmedical costs, 
and 40.4% indirect costs. Indirect costs included loss of 
labour resources, loss of productivity among caregivers 
and modification costs. The total cost for the first year of 
blindness was $8,920 and only indirect costs (i.e., $3,600) 

Fig. 2  Cost-effectiveness curve showing dominated strategies and undominated strategies under the health system perspective

Table 3  Cost-effectiveness results from the health system and societal perspectives

QALY Quality-adjusted life year, ICER Incremental cost-effectiveness ratio

Cost ($) Incremental Cost 
( �$)

Effectiveness 
(QALYs)

Incremental 
Effectiveness ( � QALY)

ICER ( �$/� QALY)

1. Health system perspective

  No screening 0 - 16.59 - -

  AI screening 180.19 180.19 16.76 0.16 1,107.63

  Ophthalmologist screening 215.05 34.86 16.71 -0.04 Dominated

2. Societal perspective

  No screening 0 - 16.59 - -

  AI screening 1,683.23 1,683.23 16.76 0.16 10,347.12

  Ophthalmologist screening 1,775.48 92.25 16.71 -0.04 Dominated



Page 6 of 12Huang et al. BMC Health Services Research          (2022) 22:260 

are incurred in subsequent years until death. Costs were 
discounted at an annual rate of 3%.

Effectiveness
Effectiveness was measured with quality-adjusted life years 
(QALYs) gained. Utility weights of different DR states were 
obtained from the published literature, using time trade-off 
method [30]. The QALYs were calculated by multiplying the 
utility values and the time spend in this health state [36]. 
The QALYs were also discounted at an annual rate of 3%.

Cost‑effectiveness analysis
We analyzed the cost-effectiveness of the two screening 
strategies by using the Markov model. If the cost of AI 
screening was less expensive but provided more effec-
tiveness than ophthalmologist screening, the ophthal-
mologist screening was dominated. Compared with no 
screening, we estimated the ICER of AI screening as 
the difference between the costs divided by the differ-
ence between the total QALYs gained. We determined 
whether AI screening was cost-effective by comparing 
the ICER with the threshold suggested by World Health 
Organization, 1–3 times the per capita gross domestic 
product (GDP), which was considered cost-effective [37]. 
The per capita GDP of China in 2019 was $10,255.03.

Sensitivity analysis
We performed a one-way sensitivity analysis in which 
parameters varied once at a time over the estimated 
ranges presented, to evaluate the impact of the uncer-
tainty of some key model parameters on ICER. The mini-
mum and maximum values were estimated from 95% 
confidence intervals for mortality multipliers, transition 
probabilities, utility values. For costs, a range of ± 50% 
was applied. The discount rate range we used was rec-
ommended by WHO, 0%-6% [38]. Additionally, we 
performed a probabilistic sensitivity analysis in which 
variables varied simultaneously. It took repeated 10,000 
samples across the ranges of the parameters. The results 
were presented graphically as cost-effectiveness curve, 
which was used to show the proportion of iterations in 
which AI screening was cost-effective at different willing-
ness-to-pay thresholds.

Results
Cost‑effectiveness analysis
The model estimated the cost and health outcomes of 
the two screening groups. The cost-effectiveness results, 
from the health system perspective in the 35 cycles, are 
shown in Fig. 2 and Table 3. Relative to no screening, AI 
screening was more expensive with an incremental cost of 

Fig. 3  Cost-effectiveness curve showing dominated strategies and undominated strategies under the societal perspective
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$180.19, but more effective with an incremental QALYs of 
0.16. The ophthalmologist screening was more expensive 
(incremental costs of $34.86) and less effective (incremen-
tal QALYs of -0.04) compared with the AI screening. The 
ICER of AI screening compared with no screening group 
was $1,107.63/QALY gained, less than the threshold of 
$30,765.09, which was three times Chinese per capita 
GDP in 2019. AI screening was considered cost-effec-
tive. Figure 2 showed that the ophthalmologist screening 
group was dominated by AI screening.

The ophthalmologist screening was still dominated by 
AI screening, from the societal perspective, as shown in 
Fig. 3 and Table 3. AI screening costs less than ophthal-
mologist screening ($1,683.23 versus $1,775.48). Relative 
to no screening, the ICER of AI screening was $10,347.12, 
below the cost-effective threshold ($10,255.03-
$30,765.09). The ophthalmologist screening was more 
expensive (incremental costs of $92.25) and less effec-
tive (incremental QALYs of -0.04) compared with the 
AI screening. So AI screening was more cost-effective 
compared with ophthalmologist screening from both 
health system perspective and societal perspective.

Sensitivity analysis
One‑way sensitivity analysis
The results of the one-way sensitivity analysis in the Tor-
nado diagram from the health system perspective and 
societal perspective  are shown in Fig. 4 and Fig. 5. The 
one-way sensitivity analyses revealed the effect which 
the model variables had on the results when other model 
variables remained unchanged. From the health system 
perspective, the most influential parameter was the util-
ity of NO DR, followed by the costs of ophthalmologist 
salaries. From the societal perspective, the most influen-
tial parameter was still the utility of NO DR, followed by 
the costs of follow-up visit of ophthalmologist screening.

Probabilistic sensitivity analysis
The cost-effectiveness acceptability curve from the 
probabilistic sensitivity analysis (PSA) under the health 
system perspective was shown in Fig. 6. The ophthalmol-
ogist screening was considered cost-effective in 0 itera-
tions at any given willingness-to-pay value. It showed 
AI screening was cost-effective versus no screening and 
ophthalmologist screening in 100% of the iterations at 

Fig. 4  One-way sensitivity analysis (Tornado diagram) under the health system perspective. Legend: c=cost; AI=AI screening; o=ophthalmologist 
screening; p=transition probabilities; u=utility; ICER=incremental cost-effectiveness ratio; DR=diabetic retinopathy; VTDR=vision-threatening 
diabetic retinopathy; DM=diabetes mellitus
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the willingness-to-pay threshold of $30,765.09/QALY, 
3 times Chinese per capita GDP in 2019, under the 
health system perspective. The mean costs of non-
dominated strategies, no screening and AI screening, 
were $0 and $180.19, respectively. The mean QALY of 
no screening was 16.59 QALYs and that of AI screen-
ing was 16.76 QALYs. The PSA results showed that 
the ICER between non-dominated strategies would 
be $1,107.63/QALY gained, which was below the 
threshold.

From the societal perspective, the ophthalmologist 
screening was considered cost-effective in 0 itera-
tions at any given willingness-to-pay value as shown 
in Fig. 7. It showed AI screening was more cost-effec-
tive compared with no screening and ophthalmologist 
screening in 100% of the iterations at the willingness-
to-pay threshold. The mean costs for AI screening 
and ophthalmologist screening were $1,683.23 and 
$1,775.48 respectively. The mean QALY of ophthal-
mologist screening was 16.71 QALYs and that of 
AI screening was 16.76 QALYs. Compared with no 
screening group, the ICER of AI screening, the domi-
nant strategy, was $10,347.12, below the cost-effective 
threshold.

Discussion
This model-based economic evaluation compared two 
DR screening strategies from the health system perspec-
tive and societal perspective. The results suggested that 
AI screening would be the most cost-effective compared 
with no screening and ophthalmologist screening based 
on the threshold, 1–3 times per capita GDP of Chinese 
in 2019. Base-case results indicated that AI screening 
generated a cost saving of $34.86 while generating more 
QALYs (incremental QALYs of 0.04) relative to ophthal-
mologist screening from the health system perspective. 
From the societal perspective, AI screening generated 
a cost saving of $92.25. Promotion across the country 
can save labor costs and resources, as well as reduce the 
occurrence of DR. Our results suggested that the adop-
tion of AI screening at the community health service sta-
tions was economically sound.

The lower cost of AI screening relative to ophthalmolo-
gist screening is attributed to the difference in the cost 
of grading fundus images. In our study, the costs of AI 
screening and ophthalmologist screening were basically 
the same except for the costs of grading. It costs less to 
grade a fundus image by AI screening relative to oph-
thalmologist screening ($1.447 per patient versus $3.213 

Fig. 5  One-way sensitivity analysis (Tornado diagram) under the societal perspective. Legend: c=cost; AI=AI screening; o=ophthalmologist 
screening; p=transition probabilities; u=utility; ICER=incremental cost-effectiveness ratio; DR=diabetic retinopathy; VTDR=vision-threatening 
diabetic retinopathy; DM=diabetes mellitus
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per patient). This is the main reason causing the differ-
ence between the cost-effectiveness of the two screening 
strategies.

Our results consist with the findings in previous lit-
eratures although the research settings are different 
[39–42]. The study of Tufail et  al.  reported the cost 
saving to be 12% to 21% for DR screening in the United 
Kingdom using ML (an AI-based technology) in com-
parison with human assessors [39]. A Scottish study 
showed a 46.7% cost-reduction by replacing first-
level human assessment with automated grading in a 
national DR screening program [40]. The study by Xie 
et  al. from Singapore reported fully automated DLS 
(deep learning systems) had a  cost savings of 14.3% 
compared with human assessment system [41]. The 
study of Fuller et  al. reported the primary care-based 
ARIAS screening among low-income patients with 
diabetes is substantially less costly [42].

Our study applied a more comprehensive system 
of prognosis after people were diagnosed with dia-
betes, based on Markov model. In our study, health 
states included DR states, blindness, death and the 
stable state after laser treatment, which reflect the 
natural progression of DR. We took more factors into 
consideration in our cost estimation. We calculate 

age-dependent mortality by using linear interpolation 
in order to obtain an accurate outcome.

We also perform a one-way sensitivity analysis and 
probabilistic sensitivity analysis to assess the uncer-
tainty of cost and effectiveness. In our study, the 
results of cost-effectiveness analysis from two per-
spectives helped to provide more convincing and well-
rounded evidence about the cost-effectiveness of AI 
based DR screening for the decision-making agency.

Study limitations
First, the transition probabilities and the utility values 
were partly derived  from the results in other countries, 
which might be not exactly consistent with  those  in 
China, resulting in potential uncertainty in our study. 
We think the data we used were best available for our 
analysis. Second, we assumed that the patients’ compli-
ance in AI screening and ophthalmologist screening were 
the same. Actually, as a cost- and time-saving strategy, AI 
screening is supposed to be more acceptable compared 
with ophthalmologist screening. Moreover, we assumed 
the compliance of follow-up examination and laser 
treatment were 100% to simplify the calculation. Third, 
we didn’t consider the rate of fundus images that could 
not be graded accurately, and just from one study to 

Fig. 6  Cost-effectiveness acceptability curve under the health system perspective
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determine the sensitivity and specificity of the AI screen-
ing. Fourth, in our study, we compared the ICER with 
the per capita GDP of the whole country instead of rural 
China. Fifth, we assumed all patients with newly diag-
nosed diabetes had no DR. In fact, some patients have a 
relative long duration of diabetes before definite diagno-
sis were established and early-stage diabetic retinopathy 
might occur.

Our analysis highlights the great need for further 
research in the areas of AI screening for DR. The distri-
bution of different DR stages in rural China as well as DR 
progression rates between different stages should be sur-
veyed analyzed. Additionally, the data on detailed costs 
for AI screening conducted in rural China, especially 
indirect costs (i.e., the income loss of patients’ family 
associated with their blindness) and the compliance of 
screening and follow-up examination should be investi-
gated. Moreover, screening intervals have been found to 
have influence on cost-effectiveness in many countries 
[43–47]. Since we used screening intervals recommended 
by ICO guidelines for diabetic eye care, individualized 
screening intervals suitable for Chinese patients should 
be investigated.

To the best of our knowledge, this is the first economic 
evaluation of AI-based screening for DR in rural China. 

The results that AI screening is cost-effective compared 
with conventional screening indicate that AI might be a 
promising strategy in the future. Considering the lack of 
medical resource and high incidence of DR in rural area 
of China, we think that wide application of AI screen-
ing might improve the current situation. The findings by 
Lian et al. showed that free DR screening was more cost-
effective for a healthcare provider than paying screen-
ing. Charging a small co-payment will decrease the 
willingness of the potential DR patients to participate 
in screening, especially the low-income subjects [48]. 
Due to the large amount of the population in the rural 
China and limited healthcare budget, free DR screen-
ing is not a practical and feasible approach at present. 
With the rapid development in AI technology, the cost 
of AI-based DR screening is expected to decrease dra-
matically and the performance will be further improved. 
Additionally, the AI screening will greatly alleviate the 
issue of ophthalmologists’ shortage in rural China. 
Meanwhile, since many oversea countries are faced 
with similar problems, such as lack of medical facilities, 
expensive manual screening costs and limited access to 
conventional screening programs for DR screening, AI 
screening for diabetic retinopathy may also be a feasible 
solution.

Fig. 7  Cost-effectiveness acceptability curve under the societal perspective
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Conclusions
The results of our study show that AI screening saves 
costs in comparison with ophthalmologist screening for 
DR, which provide evidence for extending the application 
of AI-based DR screening across rural China.
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