
1Scientific RepoRts | 6:35600 | DOI: 10.1038/srep35600

www.nature.com/scientificreports

Parallel evolution of passive and 
active defence in land snails
Yuta Morii1,2, Larisa Prozorova3 & Satoshi Chiba2

Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains 
unclear how predation causes morphological and behavioural diversity in prey species and how it might 
lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species 
has occurred among closely related land snails as a result of adaptation to predator attacks. This caused 
the divergence of defensive strategies into two alternatives: passive defence and active defence. 
Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, 
and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented 
two alternative defence behaviours against predation by malacophagous beetles. Furthermore, 
the behaviours are potentially associated with differences in shell morphology. In addition, 
molecular phylogenetic analyses indicated that these alternative strategies against predation arose 
independently on the islands and on the continent suggesting that anti-predator adaptation is a major 
cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix 
snails as a result of the divergence of defensive strategies into passive and active behaviours and the 
possibility of species radiation due to anti-predatory adaptations.

How does phenotypic divergence and radiation occur in nature? This has been a major question of evolutionary 
biology since Darwin’s work with finches1–6. Phenotypic radiation can be classified into two main categories—
ecological radiation (i.e., adaptive)3 and non-ecological radiation (i.e., non-adaptive)3—although the mechanisms 
and patterns underlying these categories are still not fully understood4,6,7. According to Schluter4, ecological radi-
ation is the evolution of ecological and phenotypic diversity within a rapidly multiplying lineage. Cases of radi-
ation that do not show a clear correlation between phenotypic divergence and environmental interactions are 
considered to be non-ecological2,4. Many examples of ecological radiation have been demonstrated4,8–18, although 
the mechanisms of this radiation still remain unclear4,6,7.

The “ecological theory” of ecological radiation has been the major synthesis of ideas that explains the pro-
cesses driving the ecological divergence of lineages1,4,19–22. In this theory, ecological radiation is ultimately the 
outcome of divergent natural selection stemming from environmental pressures and resource competition. In 
other words, this theory essentially follows the ideas behind the concept of niches3,4,23.

However, predator-prey interactions can be a major selective force along with resource competition in affect-
ing morphological and behavioural traits24, habitat use25 and speciation26. Based on fossil records, Vermeij27 sug-
gested that coevolution between prey and predators is a significant cause of the evolution in phenotypic diversity 
and radiation. However, it remains unclear how divergence of the phenotypes and speciation of prey or predators 
occurs under specific predator-prey interactions.

Land snails are an excellent system to investigate phenotypic evolution because of their high shell shape and 
colour variability, low mobility and strict habitat requirements26,28–33. Indeed, a number of examples of both eco-
logical29,34 and non-ecological radiation35,36 have been reported in land snails.

Here, we focused on the subarctic land snails of the genus Karaftohelix in northeast Asia. Specifically, we 
examined snails on two northeastern islands in the Japanese Archipelago (Hokkaido and Honshu islands) and 
in southern far-east Russia (Figs 1 and 2). This group of land snails provides an excellent system to investigate 
phenotypic divergence via speciation because these snails have many divergent phenotypic traits (shell colour 
and pattern, shell surface sculpture including periostracal hairs or scales, shell shape and size, and behaviour) 
that differ in their levels of inter- and intra-species variation, and these variations usually indicate a sympatric 

1Forest Ecosystem Management Group, Department of forest Science, Graduate School of Agriculture, Hokkaido 
University, Sapporo 0608589, Japan. 2Graduate School of Life Sciences & Center for Northeast Asian Studies, 
Tohoku University, Sendai 9808576, Japan. 3Institute of Biology and Soil Science, Far East Branch, Russian Academy 
of Sciences, Vladivostok 690022, Russia. Correspondence and requests for materials should be addressed to Y.M. 
(email: yutamorii@gmail.com)

Received: 05 April 2016

Accepted: 04 October 2016

Published: 11 November 2016

OPEN

mailto:yutamorii@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:35600 | DOI: 10.1038/srep35600

Figure 1. Species of land snails from the genus Karaftohelix in northeast Asia. (A) Karaftohelix (Ainohelix) 
editha, -a. from Horokanai (site no. 11 in Supplementary Table 1 and Fig. 2, Hokkaido), -b. from Urakawa 
(no. 28, Hokkaido), -c. from Bibai (no. 19-1, Hokkaido), -d. from Kitami (no. 12, Hokkaido); (B) Karaftohelix 
(Ezohelix) gainesi, -a. from Bibai (no. 19-1, Hokkaido), -b. from Sapporo (no. 24, Hokkaido), -c. from Yagishiri 
(no. 9, Hokkaido); (C) Karaftohelix blakeana, -a. from Soya (no. 4, Hokkaido), -b. from Rebun (no. 5-1,  
Hokkaido); (D) Karaftohelix (Paraegista) apoiensis from Samani (no. 30-1, Hokkaido); (E) Karaftohelix 
(Paraegista) takahidei, -a. from Sapporo (no. 24, Hokkaido), -b. from Shakotan (no. 20, Hokkaido); (F)-a,b. 
Karaftohelix middendorffi from Bikin (no. 2, Russia); (G) Karaftohelix selskii, -a. from Bikin (no. 2, Russia),  
-b. from Krasny Yar village (no. 1, Russia); (H) Karaftohelix maackii from Bikin (no. 2, Russia); and (I) 
Karaftohelix ussuriensis, -a. from Krasny Yar village (no. 1, Russia), -b. from Russky Island (no. 3, Russia).

Figure 2. A map of the sampling localities of the snails used in this study. The numerals correspond to the 
locality numbers in Supplementary Table 1. The maps were created using the software “Adobe Illustrator, [CS5, 
Macintosh version], (https://www.adobe.com/jp/support/downloads/ilmac.html)” and “Map data: Google, 
DigitalGlobe”.

https://www.adobe.com/jp/support/downloads/ilmac.html
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distribution pattern37,38. Two of these snail species—Karaftohelix (Ainohelix) editha and Karaftohelix (Ezohelix) 
gainesi—on Hokkaido Island illustrate the extreme inter- and intra-specific levels of phenotypic variation of 
this group38. K. editha and K. gainesi have very different shell morphologies; therefore, these species previously 
belonged to different genera. However, these two species are current nearly indistinguishable both genetically and 
anatomically38. Because frequent hybridization has occurred between these two species, it is likely that divergence 
of the phenotypic traits of K. editha and K. gainesi evolved relatively rapidly due to natural selection38.

However, the factors driving this natural selection are not clear because K. editha and K. gainesi often inhabit 
the same region without divergence in habitat use38. Therefore, differences in habitat may not be the main selec-
tive pressure38. On the other hand, it is plausible that the phenotypic differences between land snails in this region 
have evolved in part due to predation pressure because predators that specialize on land snails, including some 
types of carabid beetles, are distributed throughout northeastern Asia39. Some species of carabid beetles were well 
known as the specialist predators of land snails40,41. For example, Damaster blaptoides and Acoptolabrus gehinii are 
distributed throughout most of Hokkaido Island as are K. editha and K. gainesi. It is likely that these carabid bee-
tles prey on K. editha and K. gainesi because there are a few other large snail species on Hokkaido, but no species 
other than K. editha and K. gainesi are distributed throughout all of Hokkaido42.

Although a number of land snail predators are known40,41, there are not many malacophagous species on 
Hokkaido and southern far-east Russia. In addition, all of the malacophagous species other than carabid beetles 
are rare in these regions. Mammals and birds can also be predators of these land snails, but there is no evidence 
of such predation except by a chipmunk, Tamias sibiricus, in these areas. However, T. siviricus is omnivorous, and 
they prey on relatively low numbers of snails43; therefore, this species may not be an important snail predator.

Malacophagous flat worms and a burying beetle, Phosphuga atrata, were also distributed in these regions 
but also relatively rare. In contrast, carabid beetles, especially D. blaptoides and A. gehinii, are very abundant on 
Hokkaido, and Coptolabrus smaragdinus and Acoptolabrus schrencki on southern far-east Russia. Thus, it is likely 
that the phenotypic divergence and speciation of land snails in northeast Asia have been driven by predation 
pressure from carabid beetles.

To test this hypothesis, we examined the morphology of several land snail species in northeastern Asia, 
exposed them to natural predators, and observed their defensive responses. Second, we estimated the evolution-
ary relationships among the different species and morphotypes using molecular phylogenetic approaches. Finally, 
we discussed the distinctive defence behaviours that Karaftohelix snails display and how these behaviour and 
defence-related morphologies have evolved and resulted in species radiation.

Materials and Methods
Samples. Nine genetically related bradybaenid species were collected and analysed. Five species of 
Karaftohelix, K. (Ainohelix) editha, K. (Ezohelix) gainesi, K. blakeana, K. (Paraegista) apoiensis and K. (P.) taka-
hidei, endemic to Japan (mainly on Hokkaido; Fig. 1; Supplementary Table 1)42,44 were collected. Four conti-
nental species of the genus Karaftohelix, K. maackii, K. middendorffi, K. selskii and K. ussuriensis (Fig. 1) were 
also collected from three populations of two regions in southern far-east Russia (Fig. 2; Supplementary Table 1).  
All bradybaenid land snails used in this study are large species (larger than 8 mm). We found that several con-
generic species coexisted in locations on Hokkaido Island and in far-east Russia. Acusta despecta (Pulmonata: 
Bradybaenidae) was used as an outgroup for phylogenetic analyses because it has been shown that the genus 
Acusta is the sister genus of Karaftohelix45,46.

Behavioural observations. In total, 55 adult snails from eight species (four island species and four con-
tinental species; Supplementary Table 1) were used for behavioural observations. The foot of each snail was 
given an artificial external stimulus by pushing on it with fine-tip tweezers, and the response behaviour of the 
snail was observed. All snails used for behavioural observations were cultured individually in plastic cases 
(15.5 cm ×  11.0 cm ×  4.5 cm) with wet tissue paper at the bottom in room temperature (20~25 °C) for three to 
seven days before observations. Some trials were recorded with a video camera (HDR-XR500 V; SONY, Japan).

In addition, ten adult K. editha and K. gainesi snails from Bibai (locality no. 19-3 in Fig. 2 and Supplementary 
Table 1) were placed with two species of malacophagous carabid beetles, Damaster blaptoides and Acoptolabrus 
gehinii, collected primarily from Bibai (one beetle was from Furano, no. 18; Fig. 2; Supplementary Table 1). In 
each experiment, one beetle and one snail were put into a plastic case (15.5 cm ×  11.0 cm ×  4.5 cm) with horti-
cultural soil at the bottom for 15 minutes under low-intensity light, and the behaviour of the snail in avoiding 
predatory attacks by the beetles was observed. All beetles were fed sufficient amounts of fish meat sausage three 
days before trials. Some trials were recorded with a video camera (HDR-XR500 V; SONY, Japan).

Morphological analyses. Shell morphological analyses were conducted for 165 individuals of nine species 
(Supplementary Table 1). Nine shell morphological traits were measured from pictures of the shell (Fig. 3). Traits 
included: aperture height (AH), aperture width (AW), shell diameter (D), total shell height (H), shell height above 
the aperture (SH), spire width (SW), number of coils (NC), aperture area (AA) and total area in the shell (AT). 
The shell shape and size were analysed separately. A principal component analysis (PCA) was used for the analysis 
of shell shape; this was conducted with JMP software (SAS Institute, North Carolina) using mean values of the five 
lengths relative to the shell diameter (AH/D, AW/D, H/D, SH/D, SW/D and NC/D) from each species and from 
each locality. In addition, the mean relative aperture area (AA/AT) of each species from each locality was com-
pared among the different behavioural traits. The shell diameter (D) of each species was also compared among the 
different behavioural traits for the size analysis. All measurements are shown in Supplementary Table 2.

Molecular methods. Foot tissue was homogenized in 300 μ L cetyltrimethylammonium bromide (CTAB) 
solution [2% CTAB (w/v), 100 mM Tris (pH 8.0), 20 mM EDTA (pH 8.0), 1.4 M NaCl] and 20 μ L of 10 mg/mL 
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proteinase K, incubated at 60 °C for approximately 1 hour, extracted once with phenol/chloroform and precipi-
tated with two volumes of ethanol. The DNA pellet was then rinsed with 70% ethanol, vacuum-dried for approx-
imately 1 hour and dissolved in 50 μ L of distilled water.

To estimate the phylogenetic relationships among the collected snails, sequenced fragments were sampled 
from two mitochondrial DNA regions (cytochrome oxidase subunit 1 (CO1) gene (~530 bp) and 16S riboso-
mal DNA (16S; ~700 bp)) and from two nuclear DNA regions (ribosomal internal transcribed spacer regions 
1 and 2 (ITS; ~1200 bp) and external transcribed spacer region (ETS; ~380 bp)). Polymerase chain reaction 
(PCR) conditions and the primers used are shown in Supplementary Table 3. The PCR products were purified 
using Exo-SAP-IT (Amersham Biosciences, Little Chalfont, Buckinghamshire, UK). The sequencing cycle was 
carried out with both forward and reverse primers using ~80–100 ng of PCR product in the reaction and the 
BigDyeTM Terminator v3.0 Cycle Sequencing Ready Reaction Kit (Applied Biosystems, California). The DNA 
sequences were electrophoresed on a 310 Genetic Analyser or a 3130 Genetic Analyser (both Applied Biosystems, 
California).

Phylogenetic analyses. Sequences were aligned using MUSCLE v3.847, and the results were cleaned of 
problematic alignment blocks using GBLOCKS v0.9148 with the default parameters. Gene trees were constructed 
using Bayesian inference (BI), maximum likelihood (ML), maximum parsimony (MP) and neighbour joining 
(NJ) models based on the combined dataset with all sequences (16S, CO1, ITS and ETS).

Prior to the ML and BI analyses, the appropriate models of sequence evolution were selected with Kakusan 
software version 4–4.0.2011.05.28 49,50, and all the sequences were combined. BI analysis used MrBayes v3.1.251. 
Tree spaces were explored using two concurrent runs with four simultaneous Markov chain Monte Carlo 
(MCMC) simulations for 10 million generations with sampling every 100 generations for the combined data set 
of all sequences (16S, CO1, ITS and ETS). The number of generations before stationarity of likelihood values was 
obtained and was estimated with TRACER v1.5 software52 such that the effective sample sizes of all parameters 
were more than 190 after the burn-in. The heating parameters were set to 0.15. After discarding the first 10001 
trees as the burn-in, the 50% majority rule consensus tree and the posterior probabilities of nodes in the tree were 
obtained.

The ML analysis was performed with TREEFINDER v2008 53 under the maximum likelihood criterion. The 
MP and NJ trees were reconstructed using MEGA v6.054. Prior to the MP and NJ analyses, the 16S, CO1, ITS, and 
ETS sequences were combined using MEGA. Nodal support for the ML, MP and NJ analyses were assessed using 
bootstrap analyses55 with 1000 replications.

Results
Behavioural observations. The observed behaviours were classified into two main categories—passive 
defence and active defence. Almost all individuals from all six species (K. editha, K. blakeana, K. takahidei, K. 
maackii, K. middendorffi and K. ussuriensis) retracted their soft body into their shells very quickly, which is a 
passive defence behaviour (Table 1; Fig. 4a; Supplementary Movie 1, 3, 4, 5). In contrast, no individuals from 
the other two species (K. gainesi and K. selskii) retracted their soft body into the shell. Rather, they became 
even more active than before the external stimulus and vigorously swung their shells. This motion was usually 
repeated several times at the same frequency (approximately one swing every three seconds; Table 1; Fig. 4b; 
Supplementary Movie 2, 6). Two individuals of K. blakeana did not show a quick response and finally retracted 
their soft body into the shell, and one individual of K. gainesi and two individuals of K. selskii showed a differ-
ent behaviour in which they created bubbles around their soft body (indicated as “other behaviours” in Table 1; 

Figure 3. Characteristics measured for the morphological analysis of the shell. AH, aperture height; AW, 
aperture width; D, shell diameter; H, total shell height; SH, shell height above the aperture; SW, spire width; AA, 
aperture area; AT, total area including AA; NC, Number of coils.
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Supplementary Movie 7). The behaviour of K. editha, K. blakeana and K. gainesi was also observed tentatively in 
the wild, and the same behaviour observed in the laboratory was seen in the wild.

These extremely different behaviours were clearly associated with snail species. All species were separated 
into two groups: “passive defence species” (K. editha, K. blakeana, K. takahidei, K. maackii, K. middendorffi and  
K. ussuriensis) and “active defence species” (K. gainesi and K. selskii). When the snails received external stimulus, 
the passive defence species retracted their soft body into the shell, and the active defence species showed aggressive  
behaviours.

These behaviours were also observed when the malacophagous carabid beetles attacked the snails (n =  10 for 
each of two snail species, K. editha and K. gainesi; Supplementary Table 1). The K. editha eventually escaped from 
the predator by retracting deep inside the shell (Supplementary Movie 8). In contrast, K. gainesi escaped from the 
predator by flipping away or even knocking the predator over with its shell (Supplementary Movie 9, 10).

Morphological analyses. More than 91% of the variation in shell morphology among the individual snails was 
explained by two principal components (PC1 and PC2; Table 2; Fig. 5a). The AW/D, AH/D, SW/D and NC/D had large 
loading values (more than 0.8 or less than − 0.8). These four traits are related to the relative aperture size; thus, PC1 
can be interpreted as a factor explaining the relative aperture size. Two other factors, H/D and SH/D, had high loading 
values on PC2 (more than 0.8). Therefore, PC2 can be interpreted as a factor explaining the relative shell height.

Morphologically, passive and active defence species were clearly separated from each other based on 
PC1 scores (Steel-Dwass test, P <  0.001). In contrast, PC2 scores were not significantly different between the 

Locality no. Locality name

Bihevioral type (supplementary movie)

Defense Offense Others In total

Karaftohelix (Ainohelix) editha 21

4 Wakkanai, Hokkaido, Japan 1 (Movie 1) 1

5-2 Rebun, Hokkaido, Japan 1 1

7 Nakatonbetsu, Hokkaido, Japan 2 2

13 Tomamae, Hokkaido, Japan 3 3

17 Kitami, Hokkaido, Japan 1 1

18 Furano, Hokkaido, Japan 1 1

19-1 Bibai, Hokkaido, Japan 1 1

22 Yubari, Hokkaido, Japan 3 3

25 Shimamaki, Hokkaido, Japan 2 2

28 Urakawa, Hokkaido, Japan 4 4

30-2 Samani, Hokkaido, Japan 2 2

Karaftohelix (Ezohelix) gainesi 12

7 Nakatonbetsu, Hokkaido, Japan 1 1

18 Furano, Hokkaido, Japan 1 1

19-1 Bibai, Hokkaido, Japan 2 1 3

24 Sapporo, Hokkaido, Japan 5 (Movie 2) 5

29 Okushiri, Hokkaido, Japan 1 1

31 Matsumae, Hokkaido, Japan 1 1

Karaftohelix (Paraegista) takahidei 1

20 Shakotan, Hokkaido, Japan 1 1

Karaftohelix blakeana 6

4 Wakkanai, Hokkaido, Japan 1 (Movie 3) 1 2

5-1 Funadomari, Rebun, Hokkaido, Japan 2 1 3

5-2 Rebun, Hokkaido, Japan 1 1

Karaftohelix maackii 4

2 Krasny Yar, Primorsky Krai, Russia 1 1

3 Russky, Primorsky Krai, Russia 3 (Movie 4) 3

Karaftohelix middendorffi 4

1 Bikin, Primorsky Krai, Russia 2 2

2 Krasny Yar, Primorsky Krai, Russia 2 (Movie 5) 2

Karaftohelix selskii 4

1 Bikin, Primorsky Krai, Russia 1 (Movie 6) 1 2

2 Krasny Yar, Primorsky Krai, Russia 1 1 (Movie 7) 2

Karaftohelix ussuriensis 3

2 Krasny Yar, Primorsky Krai, Russia 1 1

3 Russky, Primorsky Krai, Russia 2 2

Table 1.  Types of Behavior when the snails were given external stimulus.
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behavioural groups (Steel-Dwass test, P >  0.05). These results clearly indicated that the relative aperture size was 
much larger in active defence species than in passive defence species. The PCA results were confirmed more 
directly by comparing the relative aperture area (AA/AT) between passive and active defence species (Fig. 5b; 
Steel-Dwass test, P <  0.001).

In addition, the shell diameter (D) was significantly larger in active defence species than in passive defence 
species (Fig. 5c; Steel-Dwass test, P <  0.001). This might indicate that the two different defensive behaviours were 
associated with different shell sizes, although the shell size of K. selskii was barely larger than the passive defence 
species.

Phylogenetic analyses. In the molecular phylogenetic analyses, 74 individuals of the nine species as well 
as the outgroup taxa were analysed, and 60 haplotypes were detected. All analyses (BI, ML, MP and NJ) resulted 
in nearly identical topologies. The inferred phylogenetic relationships among the haplotypes are shown in Fig. 6.

Two major clades were identified, and these clades corresponded to island and continental species. The mono-
phyly of the island clade was strongly supported (Bayesian posterior probability (BPP) =  1.00, bootstrap support 
value (BV) for ML, MP and NJ analyses =  65, 88 and 94%, respectively). The monophyly of the continental clade 
was also well supported in all trees except for the ML tree (BPP =  0.90, BV for MP and NJ =  98 and 99%, respec-
tively). In the ML analyses, the relationships among the continental species and populations were unclear.

The island clade was further subdivided into approximately four groups (subclades I-a, I-b, I-c and I-d; Fig. 6). 
Each subclade was represented by only a single species except for subclade I-a, which included K. editha and K. 
gainesi. Only one individual of K. editha from Yubari (Ke-22–1) was not included in subclade I-a.

In the continental clade, individuals collected from the different regions tended to have very distinctive gen-
otypes even within the same species (e.g., K. maackii and K. middendorffi). However, obvious subclades were not 

Figure 4. The sequences of response behaviour to external stimulus of two genetically related species, 
Karaftohelix editha and Karaftohelix gainesi. The numbers under each picture indicate elapsed time (seconds) 
from the applied stimulus. (a) i–vi. The behaviour of K. editha from Wakkanai (no. 4, Hokkaido). K. editha 
pulled their soft body into their shell. (b) i–vi. The behaviour of K. gainesi from Sapporo (no. 24, Hokkaido). K. 
gainesi shows a unique behaviour by swinging their shell around instead of pulling their body into their shell. 
The time from the start of the swing (iii) to the end (vi) was less than one second.

Measurement PC1 PC2

Eigenvalue 3.655 1.832

% of total variation 60.92 30.54

Coefficient

 H/D 0.581 0.808

 AW/D 0.963 0.058

 AH/D 0.948 0.158

 SW/D − 0.882 0.359

 SH/D − 0.137 0.974

 NC/D − 0.833 0.271

Table 2.  Summary of principal component analysis for the morphological analysis of shells.
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recognized, and the relationships among haplotypes were not clearly resolved due to incongruence of the topolo-
gies among the BI, ML, MP and NJ models.

The passive and active defence species were both separated into islands and continental clades indicating that 
the divergence of passive and active defence species occurred independently on the island and on the continent 
(Fig. 6).

Discussion
Two alternative anti-predator behaviours, passive and active defence, were documented among closely related 
Karaftohelix snails. Although further studies are needed, the results of feeding experiments suggest that these 
two alternative behaviours have the same function—avoiding predation by malacophagous carabid beetles. The 
passive defence snails use their shell as a “shield” to defend their soft body from the predator’s attack, whereas the 
active defence snails use their shell as a “club” to hit the predators and knock them over. This study is one of only 
a few to report on land snails using their shell for active defence by swinging it against a predator. One example of 
a similar but more obscure behaviour in a Japanese bradybaenid land snail, Acusta despecta, has been described 
when these snails are attacked by the larvae of fireflies56–58.

The hypothesis that predation pressure led to morphological divergence in these snails seems to be reasonable 
because the alternative behaviours demonstrated by the different taxa are associated with differences in shell 
shape and size. The shell morphology analyses indicated that the relative aperture size of the shell was strongly 
associated with behavioural differences (Fig. 5a,b). In addition, the shell diameter might be larger in the active 
defence species than in the passive defence species when coexisting species are compared (Fig. 5c). For the passive 
defence snails, which retract as an anti-predatory behaviour, a shell with a narrower relative aperture prevents the 
predator from inserting its head in the shell41,57,58. The outer lip of the adult shell of all the passive defence species 
is also markedly thickened, suggesting that this characteristic is effective in protecting the shell from being broken 
by the predator when the soft body is deeply retracted into the shell41,57,58.

In contrast, active defence snails swing their shell as an anti-predatory behaviour, and a larger relative aperture 
might allow development of strong muscle to swing the shell around the soft body. In addition, a large relative 
aperture size relates to a relatively large body size—this can help shake off the predator and can even damage 
the predator. Aperture size is positively correlated with foot size59 and thus with muscle mass. Thus, these two 
different defensive strategies are incompatible because there is a fundamental functional trade-off between those 
that use the shell as a “shield” versus a “club”. The morphological analyses support this idea because there were no 
intermediate morphotypes between species with both passive and active defence strategies.

The phylogenetic analyses clearly suggested that the passive and active defence species and the morphotypes 
related to these defensive strategies arose independently on the islands and the continent, although the diver-
gence pattern of the island clade was more complex than continental clades (Fig. 6). This may suggest that the 
divergence of passive and active defence strategies and island speciation has been ongoing. This pattern—parallel 
evolution of similar adaptive traits in several independent regions—strongly implicates natural selection against 
predation pressure as the cause of the evolution of these traits4–7,12. It is unlikely that the morphological differ-
ences among the several species are due to major differences in habitat because there were no obvious differences 
in the local microhabitats occupied by species when they coexisted. The hypothesis that predation pressure led to 
speciation is a uncommon explanation of morphological divergence because adaptation to different microhabitats 
is a major factor underlying phenotypic divergence among species4,6,8,14,15,60.

The divergence in body size between coexisting passive and active defence species may promote the evolution 
of reproductive isolation between these species—especially between K. editha and K. gainesi on Hokkaido Island. 

Figure 5. The results of morphological analyses. (a) Scatter plots of the principal component scores for shell 
morphologies. Passive and active defence species were clearly separated; red and blue coloured clusters indicate 
passive and active defence species, respectively. (b) Box plots of relative aperture size for passive and active 
defence species. (c) Box plots of shell diameter for passive and active defence species.
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Although the shell diameter of K. selskii is only slightly larger than the sympatric K. middendorffi, the size of the 
soft body is larger in the former than the latter because of the larger relative aperture size of the former. In brady-
baenid snails, differences in body size cause reproductive isolation because of the presence of size-assortative 
mating61. Although further experimental approaches are needed, this study implies that divergence in defence 
strategies against the same predator can cause speciation in Karaftohelix.

Figure 6. The Bayesian phylogenetic tree inferred from a combined data set of nDNA and mtDNA 
sequences (16S, CO1, ITS and ETS; approximately 2600 bp). Numbers on each branch represent the Bayesian 
posterior probability (BPP; values < 0.90 are not shown), and the bootstrap support for clades resolved in the 
ML, MP and NJ analyses (ML, MP and NJ; values < 70% are not shown).
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The patterns of Karaftohelix diversification indicates that an ecological radiation occurred among 
these land snails because they clearly share a common ancestry (Fig. 6)45,46. Although the exact ages of 
speciation of each species are difficult to estimate, divergence of passive and active defence species appears 
to have started 1–3 Ma within the islands and continent based on the evolutionary rate of bradybaenid 
16SrRNA62. This suggests that there has been enough time for the populations to diverge into highly dis-
tinctive phenotypes.

The active defence species K. gainesi coexists with one or two congeneric passive defence species on the 
islands, and another active defence species K. selskii coexists with two or three congeneric passive defence species 
on the continent. However, no clear relationship is found between morphology and number of coexisting conge-
neric species. A large overlap of habitat and/or resource use among these snail species suggests that interspecific 
competition among sympatric species is weak. Differences in shell size among the sympatric passive defence 
species are unlikely to be caused by interspecific competition because of no difference in habitat use among 
these species. Although further analyses are needed, we speculate that the larger passive defence species is more 
advantageous to protect the shell from being broken by the beetle and the smaller passive defence species is more 
advantageous to prevent the beetle from inserting its head in the shell.

Therefore, predation is shaping the evolutionary change among these land snails. Morphological changes in 
relative aperture size represent an ecological trade-off and only one strategy can be employed.

This type of radiation does not follow the existing ecological models of radiation. The evolutionary pattern 
of the bradybaenid land snails observed here seems to follow the model of prey species divergence by “apparent 
competition”63. Similar examples of phenotypic divergence of prey driven by a small number of predator species 
have been shown in some previous studies on freshwater and land snails64,65. Although further studies are needed 
to clarify the genetic patterns of speciation, morphological variations and behavioural traits in these snail, the 
present findings shed light on ecological factors other than resource competition that are important forces to 
drive phenotypic divergence and species radiation.
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