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Although smoking and diabetes have been established as the only two risk factors for periodontitis,
their individual and synergistic impacts on the periodontal microbiome are not well studied. The
present investigation analyzed 2.7 million 16S sequences from 175 non-smoking normoglycemic
individuals (controls), smokers, diabetics and diabetic smokers with periodontitis as well as
periodontally healthy controls, smokers and diabetics to assess subgingival bacterial biodiversity
and co-occurrence patterns. The microbial signatures of periodontally healthy smokers, but not
diabetics, were highly aligned with the disease-associated microbiomes of their respective cohorts.
Diabetics were dominated by species belonging to Fusobacterium, Parvimonas, Peptostreptococcus,
Gemella, Streptococcus, Leptotrichia, Filifactor, Veillonella, TM7 and Terrahemophilus. These
microbiomes exhibited significant clustering based on HbA1c levels (pre-diabetic (o6.5%), diabetic
(6.5–9.9%), diabetics 410%). Smokers with periodontitis evidenced a robust core microbiome
(species identified in at least 80% of individuals) dominated by anaerobes, with inter-individual
differences attributable largely to the ‘rare biosphere’. Diabetics and diabetic smokers, on the other
hand, were microbially heterogeneous and enriched for facultative species. In smokers, microbial
co-occurrence networks were sparse and predominantly congeneric, while robust inter-generic
networks were observed in diabetics and diabetic smokers. Smoking and hyperglycemia impact the
subgingival microbiome in distinct ways, and when these perturbations intersect, their synergistic
effect is greater than what would be expected from the sum of each effect separately. Thus, this study
underscores the importance of early intervention strategies in maintaining health-compatible
microbiomes in high-risk individuals, as well as the need to personalize these interventions based
on the environmental perturbation.
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Introduction

Periodontitis, a polymicrobial disease that causes
destruction of the structures that anchor the tooth to
the jawbone, is the sixth most prevalent disease in
the world, affecting over 750 million people (Eke
et al., 2012; Kassebaum et al., 2014). Smoking and
diabetes are the only known risk factors for this
disease, increasing the extent and severity of period-
ontitis by 3–10-fold and hastening periodontal
destruction exponentially (1996; Bergstrom et al.,

2000; Tomar and Asma, 2000). Periodontitis has
been called the sixth complication of diabetes (Loe,
1993), with one-third of diabetics suffering from
severe periodontitis (CDC, 2014). Nearly 42% of
periodontitis cases can be attributed to smoking
(Tomar and Asma, 2000), and critically, 24% of
diabetics smoke (Ford et al., 2004), thus creating
three high-risk groups for periodontal diseases:
smokers, diabetics and diabetic smokers. With nearly
30 million Americans suffering from adult-onset
diabetes (CDC, 2014) and over 1 billion smokers
worldwide (Ng et al., 2014), preventing periodontitis
in these high-risk populations will be a highly cost
effective healthcare strategy.

Although it is established that dysbiosis of
the indigenous periodontal microbiome is
the primary etiological trigger for periodontitis
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(Griffen et al., 2012), the events that lead to this
dysbiosis are not well understood. A central
characteristic of any ecosystem is its response to
environmental perturbations, which plays a critical
role in altering both community structure and
membership. Smoking and diabetes are two envir-
onmental presses that affect the subgingival envir-
onment in unique ways. While smoking leads to
peripheral vasoconstriction (Clarke et al., 1981),
decreased vascular permeability and hyperemia
(Mavropoulos et al., 2003), decreased flow of
gingival crevicular fluid (Gomes et al., 2009) and
lower oxygen tension (Hanioka et al., 2000),
hyperglycemia affects this environment by increas-
ing glucose levels (Yamaguchi et al., 2005), vascular
permeability, and levels of matrix metallo-protei-
nases, cytokines and adhesion molecules (reviewed
by Taylor et al., 2013). Thus, the subgingival milieu
in smokers is anaerobic, acidic, reducing, nutrition-
ally deprived and immune-impaired. In diabetics,
this environment is glucose-rich, pro-oxidant,
protein-rich and anaerobic.

The effects of smoking on the oral microbiome
have been extensively studied in recent years and
several investigations have established that the oral
microbiome shifts in response to this environmental
press (Fullmer et al., 2009; Delima et al., 2010;
Shchipkova et al., 2010a; Kumar, 2012; Wu et al.,
2016). Smoking creates pathogen-rich, commensal-
poor microbial ecosystems even in clinically
healthy individuals that closely resemble disease-
associated communities (Kumar et al., 2011a;
Mason et al., 2015). Although it is known that
uncontrolled hyperglycemia similarly increases the
risk for periodontitis, very few studies have exam-
ined the effects of diabetes on the subgingival
microbiome (Zambon et al., 1988; Ciantar et al.,
2005; Larsen et al., 2010; Ohlrich et al., 2010;
Casarin et al., 2013; Zhou et al., 2013). Furthermore,
there are no studies that examine the effects of
intersecting environmental presses on periodontal
microbiota.

Hence, the goal of the present investigation was to
examine the effects of each environmental press on
the structure and membership of the subgingival
microbial communities using an open-ended deep
sequencing approach. To the best of our knowledge,
we present the first available evidence on the
combined effects of these two environmental presses
on the subgingival microbiome.

Materials and methods

Ethics statement
Approval for this study was obtained from the Office
of Responsible Research Practices at The Ohio State
University and the Ethics Committee of Rajiv Gandhi
University and carried out according to the approved
guidelines. All participants gave written informed
consent prior to enrollment.

Subject selection
Subjects with generalized moderate to severe
chronic periodontitis (attachment loss ⩾ 5mm, prob-
ing pocket depths ⩾5mm, mean gingival index (Loe
and Silness, 1963) 41 in 30% of more of sites
(Armitage, 1999)) were recruited from two centers in
India and the United States, and informed consent
obtained. A total of 25 subjects were recruited into
each of the following groups: normoglycemic non-
smokers, hyperglycemic nonsmokers, normoglyce-
mic smokers and hyperglycemic smokers.
Additionally, 75 periodontally healthy individuals
were recruited and distributed equally among the
three groups: normoglycemic nonsmoker, hypergly-
cemic nonsmoker and normoglycemic smoker. Per-
iodontal health was defined as attachment loss
⩽1mm, probing pocket depths ⩽ 3mm, mean gingi-
val index o1. Smokers were defined as⩾ 10 pack-
year histories and currently smoking more than 3
times a week, nonsmokers were defined as those
who smoked o100 cigarettes in their lifetime and
were not currently smoking (CDC guidelines). Type 2
diabetes was defined as untreated adult-onset hyper-
glycemia with a glycated hemoglobin (HbA1c) level
of ⩾6.5 and normoglycemia as HbA1c of ⩽ 6
(American Diabetes Association, 2015). Exclusion
criteria included conditions that required the use of
prophylactic antibiotics, current or planned preg-
nancy, HIV infection, long-term (43 months) use of
medications known to cause gingival changes, (for
example, immunosuppressants, phenytoin, calcium
channel blockers, aspirin, NSAIDS, bisphosphonates
or steroids), antibiotic therapy or oral prophylactic
procedures within the last 3 months and less than 20
teeth in the dentition. The groups were frequency
matched for age, gender, BMI and extent and severity
of periodontal destruction.

Sample collection
Samples were collected from both deep and shallow
sites of subjects with periodontitis. Prior to sample
collection, selected sites were isolated and supra-
gingival plaque was removed. Subgingival plaque
was collected and pooled from four non-adjacent
proximal sites with probe depths of ⩾ 6mm, BOP,
and GI 41 (disease or deep-site samples) by
inserting 15 sterile endodontic paper-points (Caulk-
Dentsply, Milford, DE, USA). Samples were similarly
acquired from four sites with probe depths of ⩽3, no
BOP and GI ⩽ 1 and separately pooled (healthy or
shallow-site samples). A total of 15 randomly
selected interproximal sites were sampled from
periodontally healthy subjects. Samples were placed
in 1.5-ml microcentrifuge tubes and frozen at −20 °C
until further analysis.

Sequencing and analysis pipeline
DNA was isolated as previously described (Kumar
et al., 2011b) and multiplexed bacterial tag-encoded
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FLX 16S pyrosequencing was performed using the
Titanium platform (Roche Applied Science, India-
napolis, IN, USA). Two regions of the 16S rRNA
genes were sequenced: V1–V3 (spanning E.coli 16S
gene regions 8–27 and 519–536) and V7–V9
(spanning E.coli 16S gene regions 1099–1114 and
1528–1541). The primers used for sequencing have
been previously described (Kumar et al., 2011b).
Each primer is capable of detecting a range of genera
that the other fails to recover. Together they allow
the recovery of a wider range of the microbiome than
is possible with a single primer alone. However,
some genera are picked up by both primers. Thus, to
prevent over counting, the number of sequences
assigned to an OTU by both primers was reduced by
half. Primer averaging was carried out as previously
described (Kumar et al., 2011b) using the implemen-
tation in the PhyloTOAST software suite (Dabdoub
et al., 2016). Sequences with an average quality score
of 30 over a sliding window of 50 bp and length
4200 bp were assigned a taxonomic identity by
alignment to the HOMD database (Chen et al., 2010)
using the Blastn algorithm. Analyses were conducted
using the QIIME (Caporaso et al., 2010) and
PhyloToAST (Dabdoub et al., 2016) pipelines.

Statistical analysis
Principal coordinate analysis (PCoA) of UniFrac
distances was used to interrogate the robustness of
group-wise clustering and Adonis test was used to
estimate statistical significance of group-wise beta-
diversity (McArdle and Anderson, 2001). Linear
discriminant analysis (LDA) was performed using
the MASS package for R. The input for LDA was a
matrix of variance-stabilized (arc-sin square root
transformed) relative abundances of species-level
OTUs (Shchipkova et al., 2010b). MASS:lda pro-
vided singular value decomposition (svd) values,
which were used to calculate the percent variance
explained in each dimension. MANOVA/Wilks
lambda was used to test for significance of LDA
clustering. Alpha diversity of s-OTUs was estimated
using Abundance Coverage Estimator (ACE) Index
and the Wilcoxon and Kruskal–Wallis tests were
used for significance testing of two and multi-group
comparisons respectively. Differential abundance
analysis of OTUs was carried out using DESeq2
(Love et al., 2014) and P-values adjusted for multiple
testing (FDRo0.1, FDR-adjusted Wald Test). Results
were visualized using PhyloToAST (Dabdoub et al.,
2016; PCoA plots, diversity curves), and the Inter-
active Tree Of Life webserver (phylogenetic tree)
(Letunic and Bork, 2011). Species-level co-occur-
rence networks for each group were created using
JMP (SAS Institute Inc., Cary, NC, USA) to calculate
pairwise correlations; significant co-occurrences
(defined as Spearman’s rho 40.75 and Po0.05 (t-
test of rho)) were imported into Networkx (Hagberg
et al., 2008) to create the graph structures, and Gephi
(Bastian et al., 2009) to visualize and label the

graphs. A core microbiome was computed for each
group as the suite of species identified in ⩾80% of
individuals in that group. Robustness of clustering
was examined using an algorithm incorporating
betweenness centrality, differential abundances,
and frequency of occurrence in a group as described
before (Paropkari et al., 2016). Betweenness central-
ity was calculated using Python package ‘Networkx’
and s-OTUs were ranked based on this metric. For
each group, significantly different (Po0.05, Tukey-
HSD) species were identified using JMP (SAS
Institute Inc.) and species that were present in at
least 75% of the subjects were identified using
QIIME’s core_microbiome.py script. Species that
demonstrated a high betweenness centrality (top
20% in each network), and were either part of the
group’s core microbiome or showed significant
differences between the groups were identified as
network anchors. A relative risk model was used to
investigate whether the effects of smoking and
diabetes were additive or multiplicative (Hammond
et al., 1979). Contingency tables were created using
smoking and diabetes as conditions and alpha
diversity, relative abundances of gram-positive and
gram-negative organisms and the number of species
in the core microbiome as response variables.
Relative risk was calculated for each response
variable in diabetics and smokers and summed to
compute the expected relative risk when both factors
intersect. This was compared to the observed relative
risk in diabetic smokers.

Results

Table 1 shows the demographic, clinical and
biometric characteristics of the groups. A total of
2.7 million high quality, classifiable sequences from
275 samples were used for analysis. The sequences
have been deposited in the Sequence Read Archive
of the NCBI (Accession number: SRP090878). These
sequences represented 564 species-level operational
taxonomic units (s-OTUs) with an average of 168± 54
s-OTUs in each sample. The samples did not
demonstrate any clustering based on geographic
location (India versus United States, data not
shown).

Periodontitis is associated with a global dysbiosis of the
subgingival microbial ecosystem
Chronic periodontitis is a site-specific disease, that
is, at any point in time certain teeth demonstrate
destruction of tooth-supporting structures and
inflammation (deep sites) and others are disease-
free (shallow sites; Goodson et al., 1982). Principal
coordinate analysis (PCoA) of unweighted UniFrac
distances did not show significant clustering of sites
(P=0.76) based on this clinical phenotype
(Figures 1a–d). The ACE index was not significantly
different between the clinical sites (P=0.192,
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Figures 1e–h). Thus, in a subject with disease,
differences in community structure or membership
were not apparent based on severity of periodontal
destruction.

Distinct subgingival microbial assemblages are
associated with uncontrolled chronic hyperglycemia
75% of the microbiome of type 2 diabetics with
periodontitis was composed of gram-positive facul-
tatives and gram-negative anaerobes (Figure 2d). The
community was dominated by species belonging to
the genera Fusobacterium, Parvimonas, Peptostrep-
tococcus, Gemella, Streptococcus, Leptotrichia, Fili-
factor, Veillonella, TM7 and Terrahemophilus.

When this community was compared to normo-
glycemic individuals with periodontitis, both PCoA
(P=0.001, Adonis test of UniFrac distances) and
LDA (P=0.001, MANOVA Wilks test) revealed a
significant clustering of microbiomes based on
glycemic status (Figure 2a). Moreover, within the
diabetic group, significant clustering was observed
based on HbA1c levels (pre-diabetic (o6.5%),
diabetic (6.5–9.9%), diabetics410% (American
Diabetes Association, 2015), Figure 2b). Diabetics
exhibited significantly lower species richness
(P=0.0008, Wilcoxon test Figure 2c), and lower
levels of anaerobes and higher levels of facultatives
(both gram-positive and gram-negative) when com-
pared to normoglycemic individuals with period-
ontitis (Po0.05, Wilcoxon test Figure 2d), a finding
that corroborates earlier research using a similar
methodology (Casarin et al., 2013; Zhou et al., 2013).

A total of 81 species comprised the core micro-
biome of normoglycemic controls, 46 of these were
not identified in hyperglycemic cores (Figure 3a).
Also, only 42 species formed the core microbiome of
periodontitis in diabetics and seven of these were not
detected in normoglycemics with periodontitis.

Higher levels of species belonging to Lactobacil-
lus, Corynebacterium, Pseudomonas and lower
levels belonging to Treponema, Porphyromonas,
Prevotella, and Parvimonas were observed in dia-
betics (Po0.05, FDR-adjusted Wald test, Figure 4a).

Network analysis revealed significant co-
occurrence patterns between the core species
(Figure 5). In the normorglycemic state, co-
occurrence was mainly congeneric and sparse, with
species belonging to Streptococcus, Neisseria, Sele-
nomonas and Treponema driving the clusters. On
the other hand, diabetics with periodontitis dis-
played two robust microbial hubs with several inter-
generic networks, one that consisted of uncultivated
phylotypes belonging to TM7, Treponema, Micro-
bacterium and Sphingomonas and the other com-
prising Fretibacterium and Peptostreptococcaceae
[XI] [G4] and [XII] [G5], and Filifactor alocis.

To examine the ecological shifts from health to
disease in hyperglycemics, the microbiomes of
diabetics with and without periodontitis were ana-
lyzed and compared to periodontally healthyT
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Figure 1 Similarity in microbial community configuration between deep and shallow sites. (a–d) show the principal coordinate analysis
(PCoA) of UniFrac distances between deep and shallow sites in normoglycemic nonsmokers, normoglycemic smokers, hyperglycemic
nonsmokers and hyperglycemic smokers. (e–h) show the kernel density plots of alpha diversity (ACE) between the same sites in the same
individuals. The peak indicates the median values for each group, and the x axis shows the data range. Neither the PCoA nor the ACE
values differed significantly between deep and shallow sites.
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normoglycemics. PCoA and LDA revealed signifi-
cant clustering of groups based on both glycemic
status and periodontal health (P=0.01, Figure 6a).
Periodontally healthy diabetics exhibited signifi-
cantly lower species richness than both diabetics
with periodontitis and periodontally healthy
controls (P=0.0019, Figure 6b). Lower levels of
gram-positive facultatives and higher levels of
gram-positive and gram-negative anaerobes were
seen in periodontally healthy hyperglycemics when
compared to periodontally healthy normoglycemics
(Figure 6c). When the data were analyzed at the level
of the core species, further differences between
periodontal health and periodontitis in diabetics
could be observed (Figure 3b). Ten percent (7 out of
71 species) of the overall core microbiome (Campy-
lobacter gracilis, Corynebacterium matruchotii,
Fusobacterium nucleatum, Gemella sanguinis, Gran-
ulicatella adiacens, Streptococcus oralis and Strep-
tococcus sanguinis) was shared by all the three
groups. Forty-three percent (13 out of 30) of the
species identified in periodontally healthy normo-
glycemics were not detected in periodontally healthy
diabetics. In addition, 30 species were identified

only in the core microbiome of periodontally healthy
diabetics; however, none of these were detectable in
diabetics with periodontitis (Figure 3b). Thus, it
appears that a disease-associated community frame-
work (with decreases in relative abundances of
health-compatible species, and increases in levels
of species belonging to the genera Porphyromonas,
Prevotella, Campylobacter and Fusobacterium), is
established in states of periodontal health in dia-
betics; and during progression to disease, commu-
nity membership undergoes further shifts.

Distinct patterns of microbial assembly observed in
smokers and hyperglycemics
PCoA and LDA revealed a significantly distinct
clustering of periodontitis-associated microbiomes
based on glycemic status and tobacco exposure
(P=0.001, Figure 2a). Diabetics and smokers exhib-
ited similar species richness (P=0.3130, Figure 2c).
However, diabetics demonstrated lower levels of
anaerobes and microaerophiles (belonging to
the genera Parvimonas, Prevotella, Tannerella,
Lachnoanaerobaculum, Lactobacillus, Fretibacterium,

Figure 2 Differences in alpha and beta diversity metrics between the four groups. Linear discriminant analysis (LDA) of relative
abundances of species-level operational taxonomic units (s-OTUs) in normoglycemic nonsmokers, normoglycemic smokers,
hyperglycemic nonsmokers and hyperglycemic smokers with periodontitis is shown in (a) (P=0.008, MANOVA Wilks test). LDA of
diabetics clustered by glycemic control is shown in (b) (P=0.001). Density curves of alpha diversity (ACE) are shown in (c) (The peak
indicates the median values for each group, and the x axis shows the data range) and distribution of s-OTUs by gram staining
characteristics and oxygen requirements in (d). Groups that share the same symbol are significantly different from each other (Po0.05,
Kruskal–Wallis test).
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Figure 3 Core microbiome of normoglycemic nonsmokers, normoglycemic smokers, hyperglycemic nonsmokers and hyperglycemic
smokers. (a) s-OTUs that were identified in the core microbiome of the four groups with periodontitis. (b) core microbiomes of
periodontally healthy normoglycemics, periodontally healthy hyperglycemics and hyperglycemics with periodontitis. (c) core
microbiomes of periodontally healthy nonsmokers, periodontally healthy smokers and smokers with periodontitis.
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Figure 4 Species that were uniquely identified in normoglycemic nonsmokers, normoglycemic smokers, hyperglycemic nonsmokers and
hyperglycemic smokers with periodontitis, as well as those that were significantly different between groups (Po0.05, FDR-adjusted Wald
Test, DE-Seq2). Species are arranged by phylogeny and the fold differences (log2 scale) are shown.
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Dialister, Eubacterium, Fusobacterium, Atopobium,
Alloprevotella and Porphyromonas and higher levels
of facultatives (for example, Hemophilus, Pseudo-
monas, Neisseria) when compared to smokers
(Po0.05, Figure 4b). While smokers demonstrated
lower levels of facultatives and higher abundances of
anaerobes when compared to normoglycemics, dia-
betics exhibited the exact opposite distributions
(Figure 2d). The core microbiome of periodontitis
in smokers was larger than that of diabetics (22%
of s-OTUs in smokers and 17% in diabetics,
Figure 3a). Moreover, the core species in smokers

accounted for 85% of the overall abundance. By
contrast, only 32% of the overall abundance
in diabetics was contributed by the core species.
Co-occurrence was sparse and congeneric in smo-
kers, and robust inter-generic microbial hubs were
seen in diabetics (Figure 5).

To compare the ecological shift from health to
disease between smokers and diabetics, the micro-
biomes of smokers with and without periodontitis
were analyzed and compared to periodontally
healthy nonsmokers (controls). In contrast to dia-
betics, PCoA and LDA revealed distinct clustering of

Figure 5 Co-occurrence networks in each group. Normoglycemic nonsmokers are shown in (a), hyperglycemic nonsmokers in
(b), normoglycemic smokers in (c) and hyperglycemic smokers in (d). Each network graph contains nodes (circles sized by relative
abundance per group) and edges (lines). Nodes represent species-level OTU's and edges represent Spearman’s ρ. Edges are colored green
for positive correlation and red for negative correlation. Only significant correlations (Po0.05, t-test) with a coefficient of at least 0.75 are
shown. Network anchors are highlighted in red font.
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groups (P=0.01) based on smoking status but
not disease status (Figure 7a). Smokers with period-
ontitis exhibited significantly lower species richness
than both periodontally healthy smokers and non-
smokers (P=0.00003, Figure 7b). Both periodontally
healthy smokers and smokers with periodontitis
exhibited significantly lower levels of facultatives
and higher levels of anaerobes when compared
to periodontally healthy nonsmokers (P=0.005,
Figure 7c). Similar to diabetics, periodontally
healthy smokers shared only a small fraction (29%)
of their core microbiome with healthy nonsmokers
(Figure 3c). However, unlike diabetics, smokers with
periodontitis shared 86% of their microbiome with
periodontally healthy smokers.

In summary, while certain community trends (low
inventory diversity, periodontitis-associated signa-
tures in periodontal health) were similar between
smoking and diabetes, these communities demon-
strated significant differences based on the environ-
mental perturbation. For instance, the microbial

profile was significantly more homogenous among
smokers than diabetics, as evidenced by the larger
core microbiome and the inclusion of numerically
dominant species in the core in the former. Thus,
while differences among individuals who smoke
were due to species that together accounted for
o15% of the overall abundance (the ‘rare bio-
sphere’), in diabetics, numerically dominant species
varied significantly among individuals, contributing
to significant inter-individual variation or hetero-
geneity. Smokers demonstrated lower levels of
anaerobes and higher levels of aerobes when com-
pared to normoglycemics, on the other hand,
diabetics demonstrated the exact opposite trend.
Co-occurrence appeared to be driven by interbacter-
ial interactions in smokers, and by the microenvir-
onment in diabetics. Moreover, transition from
health to disease was not accompanied by microbial
shifts in smokers; in diabetics, transition from health
to disease was associated with introduction of new
members and loss of others.

Figure 6 Ecological shifts from health to disease in hyperglycemics. (a) shows the LDA plot of periodontally healthy normoglycemics,
periodontally healthy hyperglycemics and hyperglycemic individuals with periodontitis (P=0.01, Manova Wilks test). Kernel density
curves of alpha diversity (ACE) are shown in (b) (The peak indicates the median values for each group, and the x axis shows the data range)
and distribution of s-OTUs by gram staining characteristics and oxygen requirements in (c). Groups that share the same symbol are
significantly different from each other (Po0.05, Kruskal–Wallis test).
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A tale of two risks—the combined effect of smoking and
diabetes is greater than the sum of the parts
To investigate the combined effects of diabetes and
smoking on the subgingival microbiome, we com-
pared the microbial assemblages of uncontrolled
hyperglycemics with a 10 pack-year smoking history
to normoglycemic smokers and hyperglycemic non-
smokers. All these individuals had periodontitis;
unlike the smokers, diabetics and controls, we were
unable to identify periodontally healthy diabetic
smokers. PCoA as well as LDA revealed a significant
clustering of the three groups (P=0.001, Figure 2a).
Diabetic-smokers also demonstrated significantly
lower alpha diversity (median of 150, P=0.0001), a
bimodal distribution of the density plot and a
significantly greater range in the ACE index when
compared to diabetics or smokers (Figure 2b). Addi-
tionally, the relative risk for diabetic smokers to
demonstrate an ACE index o150 was 11, while it
was 2.1 for smokers and 4.7 for diabetics. Diabetic-

smokers exhibited lower levels of gram-negative
anaerobes and higher levels of gram-negative facul-
tatives when compared to both smokers and dia-
betics (Po0.05, Figure 2c). The microbiomes of 23
diabetic smokers contained gram-negative faculta-
tives at 10% or more of the total microbiota (and
gram-negative anaerobes at 15% or less), while six
diabetics and two smokers had the same numbers.
These species belonged to Leptotrichia, Pseudomo-
nas, Acinetobacter, Brevundimonas, Enterobacter,
Alloprevotella, Bergeyella, Terrahemophilus and
Stenotophomonas (Po0.05, Figures 4c and d). The
core microbiome in diabetic smokers was the
smallest (4% of s-OTUs in diabetic smokers when
compared to 30% in controls, 23% in smokers, and
18% in diabetics, Figure 3a). However, microbial
species in diabetic smokers demonstrated the most
robust co-occurrence patterns, with over 150 s-OTUs
contributing to the creation of microbial hubs
(Figure 5d). Taken together, the relative risk of

Figure 7 Ecological shifts from health to disease in smokers. (a) shows the LDA plot of periodontally healthy nonsmokers, periodontally
healthy smokers and smokers with periodontitis (P=0.008, Manova Wilks test). Kernel density curves of alpha diversity (ACE) are shown
in (b) (The peak indicates the median values for each group, and the x axis shows the data range) and distribution of s-OTUs by gram
staining characteristics and oxygen requirements in (c). Groups that share the same symbol are significantly different from each other
(Po0.05, Kruskal–Wallis test).
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having a lower diversity, higher levels of gram-
negative facultatives, lower levels of gram-negative
anaerobes and a smaller core are much higher in
diabetic smokers than would be expected by adding
the odds of smokers and diabetics, suggesting that
when these presses intersect, their effect is multi-
plicative, not additive.

Discussion

The association between type 2 diabetes and the
subgingival microbiome has previously been studied
using cultivation-based or targeted molecular
approaches (Zambon et al., 1988; Hintao et al.,
2007; Ebersole et al., 2008). These investigations
concluded that hyperglycemia does not influence the
subgingival microbiome (Taylor et al., 2013). How-
ever, when we examined this ecosystem by combin-
ing a rigorous case-control clinical study design with
a comprehensive microbiomics approach for com-
munity characterization, we found evidence to
support the hypothesis that specific environmental
presses influence both community structure and
membership in the subgingival ecosystem in
distinctive ways.

In the present investigation, the biggest differences
in both smokers and diabetics were between healthy
and diseased subjects, not between healthy and
diseased sites in the same individual. Although early
investigations suggested that shallow sites might be
more closely aligned to health rather than with
disease (Kumar et al., 2005), recent investigations
using deep sequencing methodology suggest that
periodontitis may result from a whole-mouth dys-
biosis rather than site-specific changes (Abusleme
et al., 2013). The data presented here thus corrobo-
rate newly emerging evidence.

Periodontitis is a chronic disease, and the
immuno-inflammatory effects of a dysbiotic micro-
biome take several years to manifest as clinically
measurable disease. Therefore, it is challenging to
establish cause and effect using a traditional pro-
spective study design. In an effort to overcome this,
we have used a case-control study design with both
environmental drivers (diabetes and smoking) as
well as periodontal health status (periodontal health
and periodontitis) as variables. However, the oral
cavity is an open microbial ecosystem with
allochthonous and autochthonous members, and
one of the greatest limitations of a cross sectional
study design is the inability to distinguish between
these two constituents. We have used two comple-
mentary strategies to surmount this issue. We
defined the core microbiome of each group as the
suite of species identified in ⩾80% of subjects and
compared groups based on species that have been
selected for by environmental drivers; a strategy that
allows for comparisons of stable associations
between groups. This approach was first delineated
by the Human Microbiome Project (Human

Microbiome Project C, 2012) and is now widely
used in ecological investigations (Backhed et al.,
2012; Shade and Handelsman, 2012; D Ainsworth
et al., 2015). Diabetic smokers, however, demon-
strated extreme microbial heterogeneity, with only
4% of the microbial suite common to the majority of
the cohort. Hence, as a second strategy, we used
network analysis of co-occurrence patterns to
identify species that are niche-partners in each
environment; drawing on similar methods used in
other ecosystems (Barberan et al., 2012; Faust et al.,
2012).

An interesting finding was that, in contrast to the
sparse congeneric clusters seen in normoglycemics
and smokers with periodontitis, both diabetic non-
smokers and smokers demonstrated dense hubs
made up of both congeneric and inter-generic
networks. Congeneric species have a smaller evolu-
tionary divergence and therefore, share similar
morphological and ecological characteristics
(Sfenthourakis et al., 2006). Hence, congeneric
clusters are the norm in most niches. Inter-generic
clusters, on the other hand, may be driven by two
factors: (i) the inherent characteristics of the micro-
environment to support organisms with similar
lifestyle requirements (namely, oxygen tension,
pH, redox potential and nutrient supply) and (ii)
metabolic, structural and nutritional interbacterial
partnerships. Taken together with the finding
that diabetics demonstrated significant microbial
heterogeneity, the data suggest that the hyperglyce-
mic microenvironment enforces habitat filtering,
favoring organisms that thrive under glucose-
rich, pro-oxidant, protein-rich and anaerobic
conditions.

This hypothesis finds further support in the
significantly elevated levels of Capnocytophaga,
Pseudomonas, Bergeyella, Sphingomonas, Coryne-
bacterium, Propionibacterium, and Neisseria in
hyperglycemic individuals. Capnocytophaga have
been previously identified in high numbers in
periodontitis in diabetics (Ciantar et al., 2005), and
these individuals demonstrate depressed IgG anti-
body profiles to these species (Dyer et al., 1997).
Capnocytophaga also exhibit profuse growth in the
presence of glucose (Spratt et al., 1996). Pseudomo-
nads have been implicated in the etiology of diabetic
foot infections (Muthu et al., 2006) and otitis media
(Zaky et al., 1976); and glycemic levels are a critical
determinant of bacterial burden in such infections
(Gill et al., 2016). Similar lines of evidence implicate
Corynebacterium, Propionibacterium and Sphingo-
monas as causative organisms in polymicrobial skin
and mucosal infections in diabetics (Pozzilli and
Leslie, 1994). Neisseria are well known for iron-
piracy (Noinaj et al., 2012); they extract it directly
from human transferrin, an iron transport protein
that is pathologically elevated in diabetics
(Memisogullari and Bakan, 2004). Pseudomonas,
Neisseria and Propionibacterium are well-known
stimulators of matrix metallo-proteinases (MMPs)
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(Leppert et al., 2000; Miyajima et al., 2001; Lee et al.,
2010), an enzyme that plays a critical role in
periodontal destruction. An important finding was
that this shift in community membership and
structure was evident even in the absence of clinical
inflammation and periodontal destruction in dia-
betics, suggesting that these species may play a role
in increasing susceptibility to periodontitis in these
individuals.

Periodontitis is a significant public health concern,
not only because the costs of treating this disease and
its sequelae are comparable to outpatient treatment of
cardiac and metabolic diseases (Gjermo and Grytten,
2009; Fardal et al., 2012; Mohd-Dom et al., 2014), but
also because of its role in the pathogenesis of several
life-threatening diseases, including cerebrovascular
accidents and atherosclerosis (Darveau et al., 1997;
D'Aiuto et al., 2005). Hence, risk assessment is a
critical element in disease prevention and successful
therapeutic intervention. Our findings that smoking
and diabetes affect the microbiome in distinct ways
and that the synergistic impact of these two factors
varies significantly from either in isolation under-
scores the need for developing a personalized risk
assessment strategy that assigns differential weightage
to each risk factor. It also underscores the importance
of integrating microbial community-level metrics into
periodontal risk assessments, rather than targeting
individual species.
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