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Posttranscriptional upregulation of HER3
by HER2 mRNA induces trastuzumab
resistance in breast cancer
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Abstract
Background: HER2 gene amplification generates an enormous number of HER2 transcripts, but the global effects
on endogenous miRNA targets including HER family members in breast cancer are unexplored.

Methods: We generated a HER2-3'UTR expressing vector to test the tumor-promoting properties in HER2 low
expressing T47D and MCF7 cells. Through microarray analysis and real-time PCR analysis we identified genes

HER3 mRNAs correlate with each other.

that were regulated by HER2-3'UTR. Positive and negative manipulation of miRNA expression, response
element mutational studies and transcript reporter assays were performed to explore the mechanism of
competitive sequestration of miR125a/miRNA125b by HER2 3'UTR.

To investigate if trastuzumab-induced upregulation of HER3 is also mediated through miRNA de-repression,
we used the CRISPR/cas9 to mutate the endogenous HER2 mRNA in HER2 over-expressing Au565 cells.
Finally, we looked at cohorts of breast cancer samples of our own and the TCGA to show if HER2 and

Results: The HER2 3'UTR pronouncedly promoted cell proliferation, colony formation, and breast tumor
growth. High-throughput sequencing revealed a significant increase in HER3 mRNA and protein levels by
the HER2 3’untranslated region (3'UTR). The HER2 3'UTR harboring a shared miR-125a/b response element
induced miR-125a/b sequestration and thus resulted in HER3 mRNA derepression. Trastuzumab treatment
upregulated HER3 via elevated HER2 mRNA expression, leading to trastuzumab resistance. Depletion of miR-125a/b
enhanced the antitumor activity of trastuzumab. Microarray data from HER2-overexpressing primary breast cancer
showed significant elevation of mMRNAs for predicted miR-125a/b targets compared to non-targets.

Conclusions: These results suggest that HER2 3'UTR-mediated HER3 upregulation is involved in breast cell
transformation, increased tumor growth, and resistance to anti-HER2 therapy. The combinatorial targeting
of HER3 mRNA or miR-125a/b may offer an effective tool for breast cancer therapy.
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Background

The HER-2/neu oncogene is amplified two-fold to > 20-fold
in approximately 25% of breast cancers. Overexpression or
gene amplification of HER2 is associated with poor progno-
sis and an aggressive course of the disease, such as onco-
genic transformation, tumorigenesis, and metastasis [1].
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HER?2 belongs to the Type I receptor tyrosine kinase family,
which includes four family members: EGFR (HER1), HER2
(neu or ERBB2), HER3, and HER4 [2]. In spite of posses-
sing no known ligand, HER?2 is the preferred heterodimeri-
zation partner within the family and can form heterodimers
with HER1 and HER3, leading to phosphorylation of tyro-
sine residues within the cytoplasmic domain [3, 4]. Under
certain circumstances, HER2 interacts with its binding part-
ners, including MUC4, HSP90 or gp96, which may stabilize
HER?2 and make it endocytosis defective [5-8]. As a conse-
quence HER?2 heterodimerization with other HER members
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is resistant to downregulation, and induces a variety of sig-
nal transduction pathways, such as the PIBK/AKT, Ras/
MAPK, and JAK/STAT pathways, leading to cell transform-
ation and cancer [9, 10].

Due to its central role in aggressive tumor growth and
metastases, HER2 serves as an ideal target for monoclonal
antibody therapy, including the HER2 signaling inhibitor
trastuzumab and pertuzumab, which can effectively treat
tumors with HER2 gene amplification in 25% of patients
as monotherapy and 50% when given with chemotherapy
[11]. The application of HER2-targeted therapy dramatic-
ally changes the clinical outcome for HER2-positive breast
cancer patients, even providing a superior prognosis com-
pared to HER2-negative cases. However, acquired and in-
herent resistance to anti-HER2 therapy in these patients
poses a serious challenge, and a better knowledge of the
underlying mechanisms of sensitivity to anti-HER2 ther-
apies is of extreme importance for the development of
effective strategies to overcome resistance [12].

HER3 is overexpressed in 10-30% of breast cancer
and is also associated with poor prognosis and worse
survival [13]. The most important and well-understood
signaling activity of HER3 is its unique and potent ability
to activate downstream PI3K and AKT pathway
signaling, which subsequently controls many biological
processes critical for tumorigenesis, including transla-
tion, survival, anti-apoptosis, metabolic regulation, and
cell cycle control [14]. In addition, HER3 is frequently
co-expressed with HER2 in breast cancer, and high levels
of HER2/HER3 dimerization are associated with poor
survival prognosis in HER2-overexpressing breast cancer
[15]. Of note, inhibition of HER2 or the PI3K-AKT path-
way in HER2-overexpressing cells is followed by feed-
back upregulation of HER3, leading to attenuation of the
response to inhibition [16, 17]. In HER2-positive meta-
static breast cancer, high HER3 expression is linked to
poor survival prognosis after anti-HER2 treatment
[18, 19]. All of these studies indicate that there exists
crosstalk and co-operativity between HER2 and HER3
expression, and thus, simultaneously targeting HER2
and HER3 may provide a more efficient therapy for
breast cancer.

MicroRNAs (miRNAs) are a large family of small non-
coding RNA molecules of approximately 22 nt in length
that inhibit target gene expression by affecting mRNA
stability or/and translational efficacy [20]. Mature
miRNA duplexes are loaded onto the RNA-induced si-
lencing complex (RISC), which contains a member of
the RNA binding protein Argonaute family (Ago). They
then pair with target sites (miRNA response elements,
MREs) within the 3’untranslated regions (3’'UTRs) of
mRNAs to direct posttranscriptional downregulation
[21]. Long noncoding RNAs (IncRNAs), pseudogenes,
and even viral RNAs have been demonstrated to
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function as competitive endogenous RNAs (ceRNAs)
that elevate the expression of the corresponding
protein-coding genes with shared miRNA binding sites
via competing with miRNA binding and derepressing
the expression of these genes [22-24]. The relative
abundance of ceRNAs vs. corresponding RNAs, levels of
common miRNAs, and the number of MREs may all
contribute to ceRNA interactions, according to a math-
ematical mass-action model for ceRNA networks [25].
The mechanism is of particular relevance to HER2-posi-
tive breast cancer, where amplification of the HER2 gene
leads to an enormous number of HER2 mRNA tran-
scripts [26].

Considering that HER2 gene amplification generates
highly redundant mRNAs that harbor multiple miRNA
binding sites, we speculate that HER2 mRNA acts as
ceRNA and can sequester endogenous miRNAs within
HER2 positive breast cancer cells, thus cross-regulating
the stability and translational efficiency of other host
mRNAs with shared miRNA response elements. In this
study, we investigated the role of HER2 mRNA in breast
cancer by analyzing potential HER2 mRNA-regulated
miRNAs and the corresponding mRNA profiles. We fur-
ther explored the impact of the interactions between
HER2 and its corresponding mRNA on breast cancer
growth and tumorigenesis. Our results provide valuable
insights into the functional implications of HER2
mRNAs in anti-HER?2 resistance.

Methods

Cell line

Human breast cancer cell lines AU565, BT474, T47D,
and MCF7 and the human kidney 293 T cell line were
obtained from Cell Resource Center, IBMS, CAMS/
PUMC, China. Cell lines were passaged for <6 months
after receipt. Cell lines which were passed for > 6 months
were identified by STR Classification. All cell lines were
regularly tested negative for Mycoplasma. BT474.TtzmR
and AU565.TtzmR sublines with acquired trastuzumab
resistance were generated by continuous exposure of
parental cells to increasing doses of trastuzumab (up to
10 pg/ml) for more than 6 months.

sgRNA-CRISPR/Cas9 system design and construction

Potential target sites were predicted using “crispr.mit.edu”
in the human genome, and two to three target sequences
with low predicted scores for off-targets were chosen.
Two complementary 20-bp oligonucleotides were
annealed and cloned this into BbsI-digested pSpCas9(B-
B)-2A-Puro (PX459). Then, cells were transfected with
CRISPR/Cas9 sgRNA. Transfected cells were treated with
puromycin at a concentration of 1 pg/ml. Surviving cells
were sorted into 96-well plates by FACS. The genomic
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region encompassing the CRISPR/Cas9 target site was
amplified and sequenced.

Antibodies and reagents

Trastuzumab (Herceptin) was purchased from a phar-
macy. PE-anti-HER2, APC-anti-HER3 antibody was
from BioLegend (San Diego, California). Ago2-antibody
was purchased from Abcam. All other antibodies were
purchased from Cell Signaling Technology. The chem-
ically synthesized specific siRNA, miRNA mimics,
miRNA inhibitors, and non-specific control, as well as
cholesterol-conjugated siRNA and miRNA mimics and
control mimics, were purchased from RiboBio Co., Ltd.
(Guangzhou, China).

Real-time PCR

Total RNA was extracted with Trizol Reagent and quan-
tified by real-time PCR using the SYBR Green Premix
Reagent (Takara Bio Inc., Shiga, Japan) with an internal
control for normalization.

TagMan miRNA analysis

Real-time PCR analysis for miR-125a/b was performed
using a TagMan miRNA Kit (Applied Biosystems). The
U6 endogenous control was used for normalization.
Relative expression was quantified using the comparative
threshold cycle (Ct) method.

Luciferase assay

To validate miRNA targeting, the 3’'UTRs of HER2 and
HER3 were cloned into the pGL3 firefly luciferase re-
porter plasmid. Cells were transfected in 48-well plates
with 20 ng of pGL3 reporter, 2 ng of pRL-TK as the con-
trol, and 100 nM miRNA mimic. Firefly luciferase and
Renilla luciferase activities were measured consecutively
with the dual luciferase reporter system (Promega), and
the firefly luciferase activity was normalized to that of
Renilla luciferase after 48 h. To test the ceRNA activity
of the HER2 3'UTR, 5x 10* 293 T cells were transfected
in 48-well plates with 20 ng of pGL3-HER3 3'UTR and
250 ng of pCDNA3.1-HER2 3'UTR or pCDNA3.1 as a
control, as well as 1-10 nM miRNA mimic. Firefly lucif-
erase and Renilla luciferase activities were measured
consecutively with the dual luciferase reporter system
(Promega), and the firefly luciferase activity was normal-
ized to that of Renilla luciferase after 48 h.

Transcriptional profiling by microarray

Comparative microarray analysis of mRNAs from T47D
cells transfected with pCDNA3.1-HER2 3'UTR and
pCDNA3.1 as a control was performed on an Agilent
Whole Human Genome Microarray at the Shanghai
Biotechnology Corporation according to manufacturer’s
instructions.
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RNA immunoprecipitation

Cells were washed and lysed. Ago2-antibody or control
IgG was incubated with ProteinG Sepharose beads (GE
Healthcare). The beads were pelleted and washed and
then subsequently incubated with cell lysate. After incu-
bation, the beads were washed. RNA was isolated from
the immunoprecipitated pellet by adding Trizol reagent.
Total RNA was used for reverse transcription and
real-time PCR analysis. The following primers were
used: Ago-HER2 forward, 5-AGCCGCGAGCACCC
AAGT-3" and reverse, 5-TTGGTG GGCAGGTAG
GTGAGTT’; and Ago-HER3 forward, 5-GGGTTAGAG
GAAGAGGATGTCAAC-3" and reverse, 5- GGGA
GGAGGGAGTACCTTTGAG'.

Transcript copy-number analysis

RNA was extracted from 1 x 10° cells using Trizol Re-
agent. Absolute quantification of total HER2 and HER3
mRNAs and miR-125a/b was performed by real-time
PCR. For a standardized evaluation, threshold cycle (CT)
values were compared to a 10-fold serial dilution of ei-
ther in vitro-transcribed HER2 or HER3 mRNAs or syn-
thetic miR-125a/b mimics (RiboBio Co., Ltd). Then, the
copies of transcript per cell were calculated with stand-
ard stoichiometric methods.

Animal studies

Tumors were established by orthotopic injection of 1 x
107 cells/mouse in 200 pl of PBS into the flanks of
six-week-old female nude mice. The mice were ran-
domly divided into groups at 15 d after inoculation.
Tumor growth was measured every 3 days. Trastuzumab
(10 mg/kg) was given intraperitoneally (i.p.) once a week.
For delivery of cholesterol-conjugated siRNA, 10 nM
siRNA in 0.1 ml PBS was locally injected into the tumor
mass every 3 days for 2 weeks. Tumor growth was mea-
sured twice weekly, and the volume of the tumors was
calculated as volume = lengthx width? / 2.

Immunohistochemistry analysis

Tissues were fixed in 4% paraformaldehyde overnight
and embedded in paraffin according to standard proce-
dures. Tissue sections were stained with the following
procedures. Briefly, after deparaffinization and rehydra-
tion, antigen retrieval was performed using antigen re-
trieval butter in an autoclave at 121 °C for 100 s. Slides
were then incubated with primary antibodies at room
temperature for 40 min. Slides were washed with PBS
and stained with fluorescence-conjugated secondary
antibodies. Images were acquired using a Leica TCS SP8
confocal laser-scanning microscope (Leica Microsys-
tems, Heidelberg, Germany).
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Breast primary tumor cells isolation and transfection
Informed written consents were obtained from breast
cancer patients according to the General Hospital of
People’s Liberation Army. Tumor biopsy was washed
with PBS containing 100 U/ml penicillin and 100 pg/ml
streptomycin, and was cut up into small pieces. Small
tissues were minced in RPMI1640 medium. To obtain
single cell suspensions, samples were treated with 1 mg/
ml collagenase type IV and 1 mg/ml hyaluronidase
followed by digestion with trypsin-EDTA at 37 °C for
about 4 h with periodic agitation. After digestion, cells
were centrifuged and cultured in RPMI1640. Fibroblast
like elongated cells were visible firstly. Later, epithelial
like cells started to make colonies in dome like shapes.
These cell colonies were isolated and transferred to cell
plates. These cells were passaged and expanded for
transfection experiments.

Transfections were carried out using electroporation
with Bio-rad transfection system according to the manu-
facturer’s instructions. Briefly, 1 x 10°cells were trans-
fected with 10 pg plasmids using a BioRad Gene Pulser
IT at 250 V and 950 pF. Each treatment was performed
for at least three times.

Expression data from the cancer genome atlas

The transcriptome expression profiles of breast cancer
were downloaded from The Cancer Genome Atlas
(TCGA) data portal (https://cancergenome.nih.gov). In
this study, the transcriptome profiles of 887 cases and
101 HER2-positive breast tumors were included in the
coexpression analysis. Level 3 Illumina miRNASeq was
used to analyze miRNA expression. For the miRNASeq
data, “reads_per_million_miRNA_mapped” values were
used to calculate miRNAs.

Statistical analyses

Data are expressed as the mean+ SD (standard devi-
ation) from three independent experiments. The statis-
tical significance between two and more than two
groups was measured using the two-tailed Student’s
t-test. P values < 0.05 were considered significant.

Results

The HER2 3’UTR enhances breast cancer cell malignancy
We first tested the effects of ectopic expression of the
HER2 3'UTR in human breast cancer cells. Similar to cells
transfected with the HER2 coding sequence (CDS), cells
transfected with the HER2 3'UTR displayed increased cell
proliferation compared to control vector-transfected cells
(Fig. 1a). In addition, HER2 3'UTR-transfected cells formed
more colonies than control cells (Fig. 1b). We further tested
the tumor growth promoting ability of the HER2 3'UTR in
vivo. As shown in Figs. 1c-e, HER2 3'UTR-transfected cells
developed larger tumors compared to control cells
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(all P<0.05 or 0.01). Tumor sections were stained for
Ki67, a marker of cell proliferation. As shown in
Fig. 1f, HER2 3'UTR-transfected tumors displayed a
significantly higher level of Ki67-positive cells than
that of the control cells.

The HER2 3'UTR modulates HER3 expression

To explore HER2 3’'UTR-dependent transcriptional pro-
grams, we analyzed gene-expression profiles of T47D
cells transfected with the HER2 3’'UTR. Compared to
control cells, HER2 3’'UTR-transfected cells showed up-
regulation of 4670 probes and downregulation of 4341
probes (Additional file 1: Table S1, logy(fold change)
>0.5). To define key pathways regulated by the HER2
3UTR, gene-set enrichment analysis was performed.
Among the top 50 enriched pathways, the Jak-STAT and
ErbB signaling pathway were affected by the HER2
3UTR (Additional file 2: Table S2). As the ErbB family
plays a key role in tumor growth and development in
breast cancer, we focused on the ErbB pathway in this
study. As shown by microarray heat mapping, HER2
(ErbB2), HER3 (ErbB3), HER4 (ErbB4), NRG2, and
NRG3 were up-regulated by expression of the HER2
3UTR (Fig. 2a). The microarray results were further
confirmed by real-time PCR analysis (Fig. 2b).

HER3 was selected for further study as the HER2-
HER3 heterodimer constitutes the most mitogenic re-
ceptor complex and the key oncogenic unit within the
HER family [14]. As represented in Fig. 2c and d, a sig-
nificant increase of HER3 mRNA and protein levels was
observed in HER2 3'UTR-transfected cells. Similar
results were observed in primary breast cancer cells
(Fig. 2e). Cell surface HER3 levels were elevated by
~ 1.6-fold and 1.5-fold for T47D and MCF?7, respectively,
as detected by flow cytometry (Fig. 2f). Furthermore, in-
creased HER3 protein levels were observed in xenograft
tumors stably transfected with the HER2 3'UTR, as de-
tected by immunostaining (Fig. 2g). The HER2 3'UTR
enhanced activation of AKT and PI3K signaling down-
stream of HER2/HER3 heterodimers (Fig. 2h). We fur-
ther compared the effects of the HER2 3'UTR and HER2
CDS on HER2/HER3 expression. As can be seen in Fig.
2i, both the HER2 3'UTR and CDS increased HER2 and
HERS3 protein levels. However, only the HER2 3'UTR el-
evated HER3 mRNA levels (Fig. 2j), indicating that the
HER2 3’'UTR-induced increase in HER3 protein levels
may be due to its elevated mRNA levels. HER2 CDS in-
creased HER3 protein levels likely by forming heterodi-
mers and reducing HER3 endocytosis and subsequent
degradation [27]. In contrast, no obvious change in
EGER levels was observed by the HER2 3'UTR (Fig. 2k).
The HER-2 3'UTR also elevated HER4 protein levels
possibly through ceRNA crosstalk as the HER2 and
HER4 3UTRs have shared miRNA binding sites
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Fig. 1 The HER2 3'UTR promotes cell proliferation, colony formation, and tumor growth of breast cancer. a, b Breast cancer cells were transfected
with the HER2 3'UTR, HER2 CDS, or the empty vector as a control. Cell proliferationwas assessed by CCK-8 assays at the indicated times (a), and
colony formation was determined 7 d post transfection (b). All quantitative data were generated from a minimum of three replicates. c-f T47D
or MCF7 cells stably transfected with the HER2 3'UTR or control vector were s.c. injected into female BALB/c-nude mice. Tumor diameters were
measured every 3 d for 21 d (¢, d). Weight of xenograft tumors at 30 d post inoculation (e). Representative immunostaining of Ki67 in T47D and
MCF7 xenograft tumors (f). Green, Ki67; Blue, DAPI. Scale bar, 40 um. The results are presented as means+SD from five mice. Data are representative of
two independent experiments

(Additional file 3: Table S3). Altogether, these data sug-
gested that there is cross-talk between HER3 mRNA and
the HER2 3'UTR.

The HER2 3’UTR promotes cell malignancy in a miR-125a/
b response element-dependent manner

As shown in Fig. 3a, the HER2 3'UTR elevated the activity
of a HER3 3'UTR luciferase reporter. In addition, HER3
mRNA was recruited to RISCs at much lower levels in
HER2 3'UTR-transfected cells compared to control cells
(Fig. 3b). MiRNA prediction indicated that 61 miRNAs
have binding sites in both human HER2 and HER3
3'UTRs (Additional file 4: Table S4), among which
miR-125-5p, miR-27a-5p, and miR-378 ranked in the top

100 in miRNA abundance in breast invasive carcinoma
(TCGA). We then tested if these shared miRNAs are in-
volved in regulation of HER3 expression via the HER2
3UTR. miR-125a and miR-125b, which target the HER2
3JUTR at nucleotides 17-44 and 19-44, respectively
[28, 29], significantly repressed HER2 and HER3 3'UTR
luciferase reporters (Fig. 3c). Transfection of moderate
amounts of miR-125a or miR-125b endowed the
HER2 3'UTR with the capacity to regulate HER3 ex-
pression in miR-125a/b low expressing 293 T cells
(Fig. 3d). No effect on HER3 luciferase reporter by
HER2 3'UTR was observed in 293 T cells that were
not transfected with miR-125a/b. This is due to low
expression of miR-125a/b in 293 T cells, and a
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minimum amount of miR-125a/b is required for regu-
lation of HER3 expression by HER2 3'UTR. In con-
trast, depletion of miR-125a and miR-125b with
inhibitors blocked HER2 3’'UTR-mediated elevation of
HER3 expression in miR-125a/b-rich T47D cells
(Fig. 3e).

To investigate the effect of miR-125a/b response ele-
ments on HER3 expression, mutations were introduced
into the HER2 3'UTR within the miR-125a/b binding
sites as shown in Fig. 3f. Up-regulation of the luciferase
activity of the HER3 3'UTR (Fig. 3g), HER3 mRNA (Fig.
3h), and protein (Fig. 3I) levels was significantly attenu-
ated by the mutated HER2 3'UTR, compared to wild
type HER2 3'UTR. In addition, mutated HER2 3’'UTR
also significantly attenuated the ability to enhance cell
proliferation (Fig. 3j) and colony formation (Fig. 3k).

Finally, the effect of the HER2 3'UTR on cell prolifera-
tion was largely abolished by miR-125a and miR-125b
depletion (Fig. 31). Taken together, these results demon-
strate that the miR-125a/b response element is essential
for HER2 3'UTR regulation of HER3 and cell
malignancy.

Both the CDS and 3'UTR contribute to HER2 oncogenic
potential

We dissected the roles of the HER2 CDS and 3'UTR on
HER2-mediated tumor growth. We constructed HER2
CDS, 3'UTR, and full-length HER2 (including both the
CDS and 3'UTR) expression vector (Fig. 4a). The HER2
3UTR and full-length HER2, but not the HER2 CDS,
elicited a significant increase in HER3 mRNA levels
(Fig. 4b), whereas all of the constructs increased HER3
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protein levels, with full-length HER?2 yielding the largest
increase (Fig. 4c). Accordingly, transfection of the HER2
3UTR, CDS, or the full-length construct all significantly
increased cell growth and colony formation (Fig. 4d and
e). Moreover, cells stably transfected with the HER2
3UTR and CDS developed larger tumors compared to

controls (Fig. 4f). Full-length HER?2 led to the largest in-
crease in cell proliferation, colony formation, and tumor
growth. Increased HER3 expression was also observed
in HER2 3'UTR-, CDS-, or full-length-overexpressing
tumors (Fig. 4g). We further mutated the start codon
of the

HER2 CDS to prevent HER2 protein
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expression (Fig. 4h). As seen in Fig. 4i, transfection of
this HER2 construct that ablates protein expression
but preserves 3'UTR mRNA expression still stimu-
lated cell proliferation.

HER2 3'UTR-induced HER3 upregulation confers
trastuzumab resistance

An important consideration in the HER2 mRNA-miR-
125a/b-HER3 mRNA interaction is their absolute levels
in cells, so we measured the copy numbers of their tran-
scripts by real-time PCR calibrated with an internal
standard curve of a HER2 or HER3 expression vector or
synthetic miR-125a/b mimics. As shown in Fig. 5a, there
were ~ 10,000-20,000 HER2 mRNA transcripts per cell
in HER2 over-expressing cells. miR-125a/b was
expressed at ~100—-200 molecules per cell. In contrast,
HER3 mRNA was expressed at only ~ 30 molecules per
cell. A low ratio of miR-125a/b:HER2 mRNAs and high

ratios of miR-125a/b:HER3 and HER2:HER3 mRNAs
were found in HER2 over-expressing cells, which further
indicates that the interaction between HER2 and HER3
mRNAs occurs under such a circumstance. Of note,
trastuzumab treatment led to upregulation of HER2 and
HER3 mRNA levels in both dose-dependent and
time-dependent manners (Fig. 5b-c). Trastuzumab had
no obvious effect on miR-125a expression levels and
only slightly decreased miR-125b levels (Additional file 5:
Figure S1). Only a moderate decrease in HER3 pro-
tein levels was observed by transient treatment with
trastuzumab (Additional file 6: Figure S2), which may
be because the amount of increased HER3 by HER2
mRNAs could not totally compensate for the loss of
HER3 by decreased HER2 protein. The enhancement
of trastuzumab on HER3 mRNA expression was
largely abrogated in cells treated with miR-125a and
miR-125b  inhibitors (Fig. 5d), validating that
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images at day 20 are shown (j, right). The results are presented as means + SD from five mice

upregulation of HER3 mRNA by trastuzumab was
dependent on miR125a/b.

AU565 cells were then treated with increasing doses of
trastuzumab for more than 6 months to obtain a
trastuzumab-resistant clone, TtzmR. Both HER2 and
HER3 mRNA levels were increased in TtzmR cells com-
pared to parental cells (Additional file 7: Figure S3A). In
addition, a substantial downregulation of HER2 protein
levels and an obvious upregulation of HER3 were ob-
served in the trastuzumab-resistant cells (Additional file
7: Figure S3B, S3C). We then investigated whether com-
binatory treatment with HER3 siRNA and trastuzumab
could be a useful strategy for overcoming trastuzumab
resistance. As shown in Figures (Additional file 7: Figure
S3D and S3E, knocking down HER3 significantly re-
stored the sensitivity of the trastuzumab-resistant cells
to trastuzumab treatment, both in vitro and in vivo. The
efficiency of HER3 knock down by RNAi was deter-
mined by IF staining (Additional file 7: Figure S3F). To
further determine the role of the HER2 3'UTR on

trastuzumab resistance, we generated a mutant AU565
cell line lacking the seed sequence within the miR-125a/
b responsive element (AMRE) by CRISPR/Cas9. Two
clones were selected after sequencing (Fig. 5e). Com-
pared to wild type cells, AMRE cells displayed decreased
levels of HER3 mRNA (Fig. 5f) and protein (Fig. 5g), as
well as decreased cell proliferation (Fig. 5h). In addition,
greater inhibition by trastuzumab was observed in mu-
tant cells (Fig. 5i). Finally, cells stably expressing the
HER2 3'UTR displayed increased tumor resistance to
trastuzumab treatment (Fig. 5j). Together, these data in-
dicate that the HER2 3’'UTR is involved in trastuzumab
resistance in breast cancer.

Correlation between HER2 and HER3 levels in primary
breast cancer

We further assessed HER2 and HER3 mRNA levels in
breast cancer patients. Quantitative real-time PCR ana-
lysis revealed a significant positive correlation between
HER2 and HER3 mRNA levels in 80 breast cancer
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tumors (Fig. 6a). Sequencing of the HER2 3’'UTR showed
that there was strict sequence conservation among tu-
mors (data not shown). We next interrogated The Can-
cer Genome Atlas’s data for HER2 and HER3
expression. As shown in Fig. 6b, there is a significant
correlation between HER2 and HER3 mRNA levels in
breast cancer. Importantly, a positive correlation be-
tween HER2 mRNA and HER3 protein levels was ob-
served in patients with medium amounts of miR-125a/b
(Fig. 6¢), which is consistent with the observation in cell
experiments (Fig. 3d). However, no such correlation was
seen between HER2 and HER3 gene copy numbers (Fig.
6d). There is no correlation between miR-125a/b and
protein levels of HER1 and HER2 in HER2 positive pa-
tients (Additional file 8: Figure S4), which may be due to
a high ratio of HER2 mRNAs:miR-125a/b. In addition,
no correlation between miR-125a and HER3 protein and
only a weak correlation between miR-125b and HER3
protein level were observed, indicating that highly abun-
dant HER2 mRNAs may sequester most miR-125a/b.
Taken together, these data suggest that HER2 mRNA
upregulates HER3 expression through miR-125a/b in
primary breast cancer. We further performed a meta-

analysis using TCGA data. By comparing expression
levels of predicted miR-125a/b targets to those of all
genes in the microarray data, we found a significant ele-
vation in predicted miR-125a/b targets compared to all
genes or to non-miR-125a/b targets (Fig. 6e). Aside from
HER3, HER2 mRNA may act as a sponge to absorb
other shared miRNAs and up-regulate the correspond-
ing oncogenes, such as MYC, mucin 1/4 (MUC1 and
MUC4), semaphorin 4D (Sema4D), and HRAS (Fig. 6f).

Discussion

HER2 heterodimerization with other HER members
leads to the most potent of receptor combinations for
causing continual downstream PI3K/Akt, Ras/MAPK,
and JAK/STAT signaling, which drives oncogenic trans-
formation and breast tumor growth. In the present
study, we investigated whether highly expressed HER2
mRNAs in HER2 gene-amplified breast cancer could dir-
ectly affect the expression of other HER members via
shared MREs. We focused on HER3 because, as a spe-
cialized allosteric activator, it has a unique and potent
ability to activate the downstream PI3K and AKT path-
ways. We showed herein that the HER2 3'UTR
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derepresses HER3 by sequestering cellular miR-125a/b
in breast cancer cells and tumors. The tumor growth
promotion effect of the HER2 3’'UTR was nearly compar-
able to the HER2 CDS (Fig. 4). Our study establishes the
HER2 3'UTR as a potent oncogenic transcript that ele-
vates the expression of HER3 and activates downstream
AKT and PI3K pathways in a MRE-dependent and
coding-independent manner. These results are consistent
with the observation of the positive correlation between
HER2 and HER3 mRNA levels in breast cancer patients.
Remarkably, we demonstrated that inhibition of HER2
with trastuzumab results in time- and dose-dependent up-
regulation of HER3 mRNA and protein by the HER2
3'UTR, which confers trastuzumab resistance. Our results
may therefore provide further dissection of the impact of
HER2 overexpression on both HER3 mRNA regulation
and anti-HER?2 resistance, as shown in Fig. 6g. In this
model, HER2 mRNA-mediated HER3 up-regulation plays
an important role in breast cell transformation, tumor
growth, and resistance to anti-HER2 therapy. These data
imply that targeting HER2/HER3 mRNAs may provide an
effective strategy for the treatment of HER2-positive
breast cancer.

In HER2-amplified cancer, activation of HER3 may
occur through high-level expression of heterodimerization
with HER2 [30]. HER3 is classified as a pseudokinase
which lacks intrinsic kinase activity. HER2 has no known
ligands but can dimerize with other HER family members,
especially HER3. HER3 can be phosphorylated and acti-
vated by residual HER2 activity. Phosphorylated HER3 in
turn activates PI3K via its six docking sites for the p85
adaptor subunit of PI3K. Due to HER3-mediated compen-
sation, current clinical therapy against HER2 will not
block PI3K pathway completely, resulting in unrestrained
PIBK-AKT-mTOR signaling that is essential for tumori-
genesis and drug resistance [14, 31, 32]. In breast carcin-
oma, HER3 levels can significantly increase due to
overexpression instigated via gene amplification [33], tran-
scription, and protein translation [15, 17, 34] or via en-
hanced molecular stability by dimerization [27]. miRNAs
affect HER3 expression at the post-transcription level
[29, 35-38]. Both HER2 and HERS3 are validated targets of
miR-125a and miR-125b [28].

HER2/HER3 co-overexpression is significantly associated
with metastasis and shorter survival in breast cancer
[13, 39]. All of these studies indicate that there may be
crosstalk and cooperativity between HER2 and HER3. Our
current work suggests that besides by HER2 protein hetero-
dimerization, HER2 overexpression in breast cancer
up-regulates HER3 via the HER2 3'UTR, which acts as a
sponge to bind and sequester endogenous miR-125a/b. The
HER2 3'UTR increases HER3 mRNA levels in a miR-125a/
b response element- and miR-125a/b-dependent manner.
HER2 3'UTR-induced miR-125a/b sequestration results in
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reduced Ago2 binding and HER3 mRNA derepression. In
addition, a low ratio of miR-125a/b: HER2mRNAs and high
ratios of miR-125a/b: HER3 mRNA and HER2:HER3
mRNAs were displayed in HER2 gene-amplified and
protein-overexpressing breast cancer cells (Fig. 5a), which
further indicates that the interaction between HER2 and
HER3 mRNA may occur under such a circumstance. We
consider that HER2 3'UTR preferentially regulates HER3
mRNA level but not vice versa, as the binding affinity be-
tween HER2 3'UTR and miR-125a/b was relatively higher
than that between HER3 3'UTR and miR-125a/b by the
maximum free energy predicted hybridization configura-
tions (data not shown) and luciferase reporter assay (Fig. 3a
and Additional file 9: Figure S5), and a high ratio of HER2:-
HER3 mRNAs were found in HER2 gene amplified cells
(Fig. 5a). Besides HER3, expression levels of HER4 in HER2
3'UTR-transfected cells were also increased (Fig. 2a, k).
MiRNA prediction indicated that 46 miRNAs have binding
sites in both human HER2 and HER4 3'UTRs (Additional
file 3: Table S3). These data suggested that HER2 may also
regulate HER4 expression through ceRNA crosstalk.
Trastuzumab and pertuzumab, monoclonal antibodies
targeting HER2 homodimerization and heterodimerization,
as well as the HER2 tyrosine kinase inhibitor (TKI), display
considerable clinical efficiency. However, the high preva-
lence of drug resistance after continuous treatment is a
major concern [40, 41]. Several lines of evidence demon-
strate that upregulation of HER3 is one of the main roads
to resistance to anti-HER2 therapies [42, 43]. In current
study we found that trastuzumab treatment upregulated
HER3 expression via elevated HER2 3'UTR. Although
anti-HER2 therapies lead to substantially decreased HER2
level, upregulated HER3 may form dimmers with other kin-
ase including EGFR, FGFR, Met, Src that could also phos-
phorylate and activate HER3 [16, 44—46]. In addition, even
the maximal doses of trastuzumab did not totally deplete
HER?2 expression (see Additional file 10: Figure S6), it is
possible that the residual HER2 kinase activity was enough
to partly maintain HER3 phosphorylation. All these could
lead to resistance to HER2-targeted therapies. Breast cancer
patients with high levels of HER2/HER3 dimerization have
poor survival prognosis under treatment with adjuvant tras-
tuzumab [15]. Moreover, a phase II clinical trial study
shows that that low HER3 mRNA may represent a
pertuzumab-sensitive phenotype in an enriched ovarian
cancer patient [47]. Besides, elevated expression of HER3
and MUC4 and their interactions that possibly induced by
increased phosphorylation of ERK and expression of PI3K
and c-Myc were observed in HER2 knockdown pancreatic
cancer cells, leading to increased cell proliferation, motility
and tumorigenicity [48]. The feedback mechanisms of in-
hibition of HER2 or the PI3K/AKT pathway lead to a re-
bound in HER3 expression and signaling, which provides a
rationale for the combination of targeted-therapies and
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drugs targeting HER2 and HER3. Indeed, dual targeting of
HER2 and HER2/HER3 dimerization with trastuzumab and
pertuzumab results in enhanced tumor inhibitory effects in
mouse xenograft models, and significantly prolongs
progression-free survival in HER2-overexpressing breast
cancer [11, 49, 50].

Consistent with these previous studies, our findings
show that continuous treatment with trastuzumab leads
to a substantial down-regulation of HER2 protein levels
but a compensatory upregulation of HER2 mRNA,
thereby leading to increased HER3 mRNA levels through
ceRNA crosstalk. Trastuzumab upregulated HER3 in a
miR125a/b-dependent manner as elevated HER2 mRNA
by trastuzumab treatment sequestered endogenous
miR-125a/b by its 3UTR and subsequently derepressed
HER3 mRNA. Targeting of HER3 with siRNA and/or
mutation of the miR-125a/b responsive element within
the HER2 3’'UTR sensitized HER2-overexpressing breast
cancer cells and xenografts to trastuzumab. Our study
therefore presents an effort to address the mechanism of
regulation of HER3 mediated under anti-HER2 treat-
ment, which further supports the notion that inhibition
of HER3, especially targeting HER2 mRNA might pro-
vide a novel therapeutic approach for HER2-targeted
therapies in breast cancer.

The sensitivity of breast cancer to trastuzumab is directly
related to HER2 expression levels, and elevated HER3 is in-
volved in trastuzumab resistance. Although transfection of
HER2 CDS and full-length gene both led to increased
HER3 expression, they highly elevated HER2 expression in
the meantime (see Fig. 4c and g), transforming T47D cells
into HER2-positive cells and therefore making these cells
more sensitive to trastuzumab. In contrast, HER2 3'UTR
only moderately increased HER2 level. This may explain
why cells stably expressing the HER2 3'UTR displayed
more resistance to trastuzumab treatment than those ex-
pressing HER2 CDS or full-length gene (see Fig. 5j). As
trastuzumab-induced upregulation of HER3 mRNA was
largely dependent on miR125a/b and the HER2 3'UTR (see
Fig. 5), we believe that HER2 3'UTR-mediated HER3 up-
regulation plays an important role in the increased HER3
expression under trastuzumab treatment. In addition, it is
worthwhile to fully dissect the cross-regulatory function of
HER2 mRNAs on other pathways and their casual role in
breast cancer development and drug resistance.

Conclusion

Our study demonstrates that HER2 mRNAs posttran-
scriptionally up-regulate HER3 via the sequestration of
miR-125a/b, contributing to enhanced breast cancer
growth and acquired anti-HER2 resistance. Given that
HER2 amplification in breast cancer usually generates
highly redundant transcripts, our study therefore supports
the notion that the inhibition of HER2 mRNA and/or
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miR-125a/b activity might provide a novel therapeutic ap-
proach for combined targeted drug administration.
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