Song et al. BMC Genomics (2016) 17:297
DOI 10.1186/512864-016-2625-2

Temperature expression patterns of genes

BMC Genomics

@ CrossMark

and their coexpression with LncRNAs
revealed by RNA-Seq in non-heading

Chinese cabbage

Xiaoming Song'?, Gaofeng Liu', Zhinan Huang', Weike Duan', Huawei Tan', Ying Li' and Xilin Hou'"

Abstract

Background: Non-heading Chinese cabbage (NHCC, Brassica rapa ssp. chinensis) is an important leaf vegetable
grown worldwide. However, little is known about the molecular mechanisms underlying tolerance for extreme
temperature in NHCC. The limited availability of NHCC genomic information has greatly hindered functional analysis

and molecular breeding.

Results: Here, we conduct comprehensive analyses of cold and heat treatments in NHCC using RNA-seq.
Approximately 790 million paired-end reads representing 136,189 unigenes with N50 length of 1705 bp were
obtained. Totally, 14,329 differentially expressed genes (DEGs) were detected. Among which, 10 DEGs were
detected in all treatments, including 7 up-regulated and 3 down-regulated. The enrichment analyses showed 25
and 33 genes were enriched under cold and heat treatments, respectively. Additionally, 10,001 LncRNAs were
identified, and 9,687 belonged to novel LncRNAs. The expression of miRNAs were more than that of pri-miRNAs
and LncRNAs. Furthermore, we constructed a coexpression network for LncRNAs and miRNAs. It showed 67 and
192 genes were regulated by LncRNAs under cold and heat treatments, respectively. We constructed the flowchart
for identifying LncRNAs of NHCC using transcriptome. Except conducting the de novo transcriptome analyses, we
also compared these unigenes with the Chinese cabbage proteins. We identified several most important genes,
and discussed their regulatory networks and crosstalk in cold and heat stresses.

Conclusions: We presented the first comprehensive characterization for NHCC crops and constructed the flowchart
for identifying LncRNAs using transcriptome. Therefore, this study represents a fully characterized NHCC
transcriptome, and provides a valuable resource for genetic and genomic studies under abiotic stress.
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Background

Nowadays, frequent occurrences of abnormal weather
events have been observed all over the world, such as
drought and extreme temperature. These stresses ser-
iously impact plant growth and crops production [1, 2].
Recently, several progresses have been made about the
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identification of stress-related genes, which potentially
are able to increase the plant tolerance [3-5]. Under-
standing the molecular mechanism of the abiotic stresses
response is important to improve tolerance using mo-
lecular techniques.

Generally, these stress signals are converted into cellular
responses through two ways, including ABA-dependent
and ABA-independent signaling pathways [6, 7]. For the
former, ABA is accumulated under osmotic stress caused
by drought. It regulates the expression of gene under
osmotic stress conditions [6, 8]. The ABA-responsive
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element (ABRE) is the major cis-element for ABA-
responsive gene expression. ABRE-binding protein
(AREB) and ABRE-binding factor (ABF) control gene ex-
pression in ABA-dependent manner [1, 9-11]. The mo-
lecular studies have revealed that ABA-independent
pathway is also important for stress tolerance in plants.
Dehydration-responsive ~ element  binding  protein
1(DREB1)/C-repeat binding factor (CBF) and DREB2 are
mainly involved in cold and heat stresses, respectively
[12-15]. The DREB/CBF transcription factors (TFs) could
specific bind to DRE/CRT cis-elements in promoter of tar-
get genes [14, 16, 17]. Several proteins, such as ICEl,
ZAT12, CAMTA3, and MYBI15, have been identified as
regulators of DREB1/CBF genes [12, 18, 19]. In addition,
NAC and MYB/MYC also regulate abiotic stress-
responsive genes expression [20, 21]. The studies have
demonstrated that there are interactions between ABA
signaling pathway and other signaling factors in stress re-
sponses [1, 22, 23].

Until now, a large number of transcriptome sequen-
cing projects have been conducted in many species.
Genome-wide analyses have dramatically improved the
efficiency of gene identification [16]. In Arabidopsis,
about 30 % of the transcripts were related with abiotic
stresses, and 2,409 genes played important roles in cold,
salt, and drought stresses [24]. In chrysanthemum, 8,558
dehydration-responsive transcripts were detected using
RNA-seq [25]. In wheat, about 2 % of the wheat genes
were related with the cold stress [26]. In Populus and
switchgrass, heat responsive genes were also identified
by transcriptome sequencing [27, 28]. In A. mongolicus,
9,309 up-regulated and 23,419 down-regulated genes
were identified under cold stress [29].

Brassica rapa contains several subspecies, such as
Chinese cabbage (B. rapa ssp. pekinensis), NHCC, and
turnip (B. rapa ssp. rapa) [30, 31]. The genome of Chin-
ese cabbage had been sequenced, however, there is little
information about the NHCC genome and gene dataset.
Therefore, we conducted de novo assembly and gene an-
notation without prior genome information in this study.
NHCC is one of the most important vegetables in China,
and now is cultivated extensively worldwide. It is inevit-
able injured by low or heat stresses, which can directly
lead to the production decrease and affect edible quality.
The heat stress can affect the photosynthesis, and even
induce the occurrence of several diseases, such as downy
mildew, soft rot and virus diseases. The physiological
change of temperature response mediated by several
genes has been reported in model plants [32, 33]. How-
ever, little is known about the temperature-regulated
genes and the related pathways in NHCC.

In this study, we conducted the comprehensive
characterization for NHCC using RNA-seq, and ex-
plored the effect of low and heat temperature on global
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change. We identified several most important genes in
temperature response, and discussed their regulatory
networks and crosstalk in cold and heat stresses. Using
[llumina sequencing technology, we generated over 85
billion base of high quality sequence, and identified a
larger number of differentially and specifically expressed
transcripts. Furthermore, we also identified lots of
LncRNAs, and constructed the coexpression network of
LncRNAs and protein encoding genes using this tran-
scriptome dataset.

Results and discussion

RNA sequencing and de novo assembly of NHCC
transcriptome

To obtain a global overview of NHCC transcriptome
under different temperature treatments, we constructed
and sequenced 15 RNA-Seq libraries, including cold
treatments (4, 0 and -4 °C), heat treatment (44 °C), and
normal condition (25 °C). For each temperature, three
samples as the biological replications were sequenced
using Illumina HiSeq™ 2000. The base quality of reads
was checked using FastQC (Additional file 1: Figure S1).
We used relatively stringent criteria for quality control
by removing the reads with adaptors and the low quality.
Finally, 790,269,418 clean pair-end (PE) reads consisting
of 71.12 billion nucleotides (nt) were obtained with an
average GC content of 47.30 % (Table 1, Additional file
2: Table S1). After the first assembly, 1,596,012 contigs

Table 1 The summary of the sequencing and assembly

Samples NHCC
Total raw reads 857,423,614
Total clean reads 790,269,418
Total clean nucleotides (nt) 71,124,247 620
Q20 percentage 98.05 %

N percentage 0.00 %
GC percentage 4730 %

Contig
Total number 1,596,012
Total length (nt) 542,865,388
Mean length (nt) 343
N50 593

Unigene
Total number 136,189
Total length (nt) 153,124,745
Mean length (nt) 1124
N50 1705
Total consensus sequences 136,189
Distinct clusters 73,514
Distinct singletons 62,675
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were obtained for all libraries, and the total length over
542.8 Mb (Table 1). The contigs were further joined
into136,189 unigenes using paired-end information and
gap filling process. The total length of all unigenes was
153.1 Mb, and the mean length of unigene was 1124 bp
(Table 1, Additional file 2: Table S2). The PE sequencing
not only increases the depth, but also improves de novo
assembly efficiency. The N50 achieved 1705 bp, which
was larger than most plants de novo assembled by RNA-
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Seq, such as radish (1095 bp), wax gourd (1132 bp), and
celery (1088 bp) [34—36]. This phenomenon indicated
that the high quality and accuracy of our assembled
transcripts. Based on FRKM, we measured the correl-
ation of three repeats for each temperature. The results
showed that there was a good correlation among three
repeats. The pearson’s correlations of almost all com-
parisons were larger than 85 % (Fig. 1, Additional file 1:
Figure S2).

0C 4TC

Fig. 1 Pearson correlation coefficient analysis of all 15 libraries. The PCCs were calculated using Log2(FPKM), and the values in grid represent the
PCC of any two among 15 libraries. The dashed green boxes represent the PCCs of three duplications
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Functional annotation and classification of the assembled
unigenes

Among all 136,189 unigenes, 121,744 (89.39 %) unigenes
significantly matched a sequence in at least one of the
public databases, including NCBI non-redundant protein
(Nr), Gene Ontology (GO), Clusters of Orthologous
Group (COG), Swiss-Prot and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Additional file 2: Table
S3). The size distribution of BLAST-aligned coding se-
quence (89.31 %) and predicted proteins are analyzed
(Additional file 1: Figure S3a,b). The remaining unigenes
that did not match these databases were analyzed by
three programs to predict coding regions. Finally, 2793,
2491, and 3119 coding sequences were predicted by ESTS-
can, CPC, and CNCI programs, respectively (Additional
file 1: Figure S3c, Additional file 2: Table S4). The venn
diagram showed that there were 684 coding sequences
predicted by these three programs, so these genes were
relatively reliable as coding genes (Additional file 1: Figure
S3d). A total of 105,217 coding transcripts were predicted
in our study. Then we aligned these unigenes with
the proteins of Chinese cabbage (E-value <107'°,
identity >70 %). The results showed that 93,046 uni-
genes could align to the 3,2640 Chinese cabbage pro-
teins (Fig. 2a). In addition, we found that over 70 %
NHCC transcripts could match with more than 1
Chinese cabbage genes (Fig. 2b). This phenomenon
might be caused by the genome duplication of B.
rapa. The sequences without a homologous hit might
represent novel genes in the genome, and some of
them might be the specifically expressed in NHCC
for temperature treatments. In addition, they also
might be the non-coding, alternative transcription,
lineage-specific or high allelic variant unigenes.

For Nr annotations, 104,363 unigenes matched in this
database (Additional file 2: Table S3). The result indi-
cated that 89.20 % of the top hits showed strong hom-
ology with the E-value < 1E-15 (Additional file 1: Figure
S4a). The distribution pattern showed that 87.90 % of
unigenes had a similarity higher than 60 % (Additional
file 1: Figure S4b). The majority annotated unigenes
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were corresponded to the known plant genes, with 41.50
and 39.60 % matching with A. thaliana and A. lyrata, re-
spectively (Additional file 1: Figure S4c). A total of
96,314 unigenes were assigned at least one GO term,
and all GO terms were classified into three groups and
further divided into 55 functional subgroups (Additional
file 1: Figure S5). Overall, only 45,750 unigenes were
assigned to COG classification (Additional file 2: Table
S3). Among 25 COG categories, the cluster for ‘general
functions prediction only’ (36.84 %) represented the lar-
gest group, followed by ‘Transcription, and ‘Replication,
recombination and repair’ (Additional file 1: Figure S6).
To identify the biological pathways activated in NHCC,
the assembled unigenes were annotated with KEGG. A
total of 66,419 unigenes were significantly matched in
this database, and were assigned to 128 KEGG pathways
(Additional file 2: Table S3,5). The result showed that
three largest pathway groups were metabolic pathways
(ko01100, 21.12 %), biosynthesis of secondary metabo-
lites (ko01110, 9.72 %), and plant-pathogen interactions
(ko04626, 7.27 %). Following these three groups, the
plant hormone signal transduction (ko04075) was about
6.60 % of all annotated genes. The level 1 of this path-
way was ‘Environmental Information Processing, and the
level 2 of it was ‘Signal transduction’ in the KEGG
database.

Temperature-dependent gene expression patterns
identified by RNA-Seq in NHCC
To view the gene expression, all genes were divided into
three categories, including highly (FPKM >50), medium
(5 < FPKM <50), and lowly (FPKM <5) expressed in each
library. The results showed that most genes belonged to
lowly expressed, followed by medium, and highly
expressed (Additional file 1: Figure S7). The purple line
shows the cumulative expressed gene number as the li-
brary number increased, and 134,980 genes were de-
tected by all libraries.

To evaluate the temperature decrease course and
temperature-dependent transcriptomic activities during
cold-resistance process in NHCC, we performed a
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Fig. 2 The alignment analysis for NHCC RNA-Seq transcripts and Chinese cabbage (CC) proteins. a The summary of the aligned and un-aligned
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temperature decrease course differential gene expression
analysis by comparing any two adjacent cold treatments,
using the higher temperature treatment as the denomin-
ator. There were 27 (3°) possible patterns, including
those that increased across all treatment boundaries,
termed‘up-up-up’ (UUU); those that were similar across
all boundaries, termed ‘maintain-maintain-maintain’
(MMM); and those that decreased across all boundaries,
termed ‘decrease-decrease-decrease’ (DDD). The results
showed that genes were non-randomly represented
across all patterns, and the overall temperature-
dependent patterns are analyzed (Fig. 3, Additional file 2:
Table S6). Only few genes continuously decreased
(DDD) or increased (UUU) in expression accompanying
temperature decrease, and the number were 3 (0.002 %)
and 11 (0.008 %), respectively. However, majority genes
(79,852, 58.63 %) belonged to the MMM pattern, and
the expression almost unchanged over the temperature
decrease process. In addition to MMM, the MMU
(15,675) and DMM (13,999) were also contained more
genes than other expression patterns.

Differential expressed genes detection and compare them
among each treatment

To identify the temperature respond genes, 14,329 DEGs
were detected between each temperature-treated and
control library (FC >2 and q-value >0.8) (Fig. 4). All
DEGs were used for clustering analysis, and obtained a
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well cluster results (Fig. 5a). Three repeats for each
temperature got together, and 0, 4 and 25 °C formed one
group, while -4 and 44 °C formed another group. On the
whole, all DEGs were divided into three groups, and de-
fined as I, II, and III. Most DEGs in group I belonged to
up-regulated genes under -4 °C treatment, while similar
in other four temperatures. In group II, the expression
of most DEGs under 25 and -4 °C was lower than that
under other three temperatures. In group III, most
DEGs had relatively low expression, except a few genes
under 44 °C.

To further survey the interaction of these treatments
for DEGs, we constructed venn diagram using DEGs of
each treatment. There were 5445, 7430, 8056, and 488
DEGs under 4, 0, -4, and 44 °C, respectively. Among of
them, 1075, 2865, 5254, and 286 belonged to each
treatment-specific DEGs (Fig. 5b). Interestingly, we
found 10 DEGs were detected in all treatments, includ-
ing 7 up-regulated and 3 down-regulated genes (Add-
itional file 1: Figure S8). The functional annotation
showed that most of them belonged to the stresses re-
lated protein, such as LEA14 and KIN2 (Table 2). In
addition, we also conducted qRT-PCR experiment to
verify the accuracy of the RNA-Seq. The results showed
that the expression trends of all genes were consistent
with the RNA-Seq, and most genes were also significant
differently expressed (p-value <0.01) (Additional file 2:
Table S7, Additional file 1: Figure S9). Among all DEGs,
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Fig. 3 Cold stress dependent patterns of NHCC gene expression. DGEs were determined based on a combination of g-value >0.8 and FC > =2

(or < =0.5), the two sequential temperatures were compared, with the higher temperature used as the denominator. Genes were grouped into U
(Up, FC>=2), D (Down, FC <=0.5), or M (Maintain, 0.5 < FC <2). Shown here are the 27 possible expression patterns. The x axis represents the four
point during temperature decrease and the y axis represents the Log10 FPKM. The number shown in each box was derived based on the number
of genes for each expression pattern
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809 were up-regulated, and 1,743 were down-regulated
under 4 °C; 1,937 were up-regulated, 5,493 were down-
regulated under 0 °C; 4,988 were up-regulated, 3,068
were down-regulated under -4 °C. However, there were
fewer DEGs under 44 °C than cold treatment, with only
322 were up-regulated and 166 were down-regulated
genes (Additional file 1: Figure S10). Among these
DEGs, the most treatment-specific up-regulated genes
(4804) were detected under -4 °C, and the most

treatment-specific down-regulated genes (1377) were de-
tected under 0 °C (Additional file 1: Figure S8).

The enrichment analyses revealed most DEGs related with
cold and heat stresses

To understand the function of DEGs, we have con-
ducted the GO enrichment analyses using all unigenes
as background (Additional file 2: Table S8). Under 4 °C,
several cold related GO categories were significantly
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Fig. 5 Landscape of DEGs for NHCC RNA-Seq transcriptome. a Hierarchical clustering analysis of gene expression profiles from 15 libraries with
14,329 DEGs. b The venn diagram showed the overlapping and treatment-specific DGEs in four treatments

enriched, such as response to desiccation, response to
cold, response to temperature stimulus, and cold accli-
mation. The photosynthesis, light harvesting, and trans-
lation categories were the top enrichment under 0 °C.
Of course, the cold related categories were also enriched
at the top 10 categories. Under -4 °C, the mainly enrich-
ment categories were secondary metabolite biosynthetic
process, S-glycoside metabolic process, glycosinolate,
and glucosinolate metabolic process. However, we did
not detect directly cold related categories as 4 and 0 °C
at the top 10 categories. This phenomenon indicated the
regulatory mechanism might exit several differences be-
tween chilling (<7 °C) and freezing (<0 °C) temperatures,
which was also consistent with the previous report [37].
Under 44 °C, the mainly enrichment categories were
response to high light intensity, heat acclimation, photo-
synthesis, and response to heat. In addition, the photo-
synthesis was also enriched under heat stress, which
indicated that all temperature stresses could affect plant
photosynthesis. We also analyzed genes belonged to the
GO enrichment categories. Among all treatments, the
most specific genes (2713) were found under -4 °C,

followed by 0 °C (1115), 4 °C (528), and 44 °C (79). In
addition, 90 genes were identified under all three cold
treatments, and 5 genes were detected by all the cold
and heat treatments (Additional file 1: Figure S11a).

In addition, we mapped DEGs to terms in KEGG data-
base to identify significantly enriched pathways. Among
the mapped pathways, 20, 11, 22, and 5 pathways were
significantly enriched (Qvalue < 0.01) under 4, 0, -4, and
44 °C treatments, respectively (Additional file 1: Figure
S12, Table S9). Notably, common enrichments were ob-
served in photosynthesis pathway, metabolic pathway,
and photosynthesis-antenna proteins pathway in all
treatments. This results indicated that the cold and heat
stresses affected the expression of genes involved in
these pathways. Most enriched pathways were also de-
tected by the previous reports, which partly reflected the
accuracy of our results [24, 27, 29]. Interestingly, we
found transcripts involved in protein processing in endo-
plasmic reticulum pathway were significantly enriched
under 44 °C treatment, while it did not enrich in cold
treatment. This phenomenon indicated that this pathway
might only play roles in heat resistance. We also

Table 2 The expression and functional annotation of 10 DEGs identified by all the cold and heat treatments. The up/down-regulated
genes were identified by comparing the treatment (T4, TO, TM4, T44) and control (T25)

GenelD 125 T4 T0 ™4 T44 Regulation Annotation

CL4489.Contig2 0.02 24.17 2242 26.90 1141 Up Unknown protein

CL10212.Contig2 0.00 6.52 430 7.03 430 Up Glycosyl transferase family 1 protein

CL3727.Contig8 15331 6.14 26.06 2.08 2.71 Down Hypothetical protein ARALYDRAFT_910104
CL11270.Contig1 0.78 21.25 8151 1392 43.86 Up At1g01470,a late embryogenesis abundant protein LEA14
Unigene519 0.12 209.31 1750.16 67.05 157.31 Up BN28b, stress-induced protein KIN2 mRNA
CL8814.Contigl 139.12 12.75 2.07 1.84 327 Down BN28a gene

Unigene16735 0.00 5.36 2.14 8.70 329 Up Unknown protein

CL536.Contig12 0.00 3.12 7.09 10.66 8.15 Up Wound-induced protein 1

Unigene50726 11.94 0.00 0.00 0.12 0.00 Down ATP synthase CF1 epsilon chain DM1-3-516-R44 chloroplast
CL2980.Contig1 8.18 203.56 27271 191.73 31744 Up BN28a, stress-induced protein KIN2,Rapeseed KINT protein
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analyzed the genes belonged to the KEGG enrichment
categories. Among all treatments, the most specific
genes (1052) were found under -4 °C, followed by 0 °C
(461), 4 °C (160), and 44 °C (44). Forty-five genes were
identified under all three cold treatments, and 2 genes
were detected by all the cold and heat treatments
(Additional file 1: Figure S11b). Furthermore, we also
surveyed the enrichment genes identified by combing
the GO and KEGG databases. The results showed that
25 and 33 genes were enriched in the two databases
under cold and heat treatments, respectively (Additional
file 1: Figure S11c,d). These enriched genes will greatly en-
hance the potential utilization in cold and heat stresses of
NHCC.

Identification of abiotic stresses related transcription
factors from DEGs

Given that TFs have a major effect on the network of
temperature-responsive genes, we also identified the
temperature-inducible TFs. Overall, the number of
Dehydrin, Chloroa_b-bind, p450, AP2, PSI_PsaH, and
EF-hand was more than other TFs in three cold treat-
ments (Additional file 1: Figure S13a,b,c,d,e,f). However,
many GST were identified under -4 °C, while they were
absent under 0 and 4 °C. This phenomenon indicated
that GST might play roles in the cold resistance below
0 °C. Interestingly, HSP70 and HSP20 were identified
under 0 and 4 °C, indicating that there was a certain in-
herent association between cold and heat regulation.
Under 44 °C, HSP20 was significant enriched, which
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revealed that it played important roles in heat-resistance
regulation (Additional file 1: Figure S13g,h). In all treat-
ments, P450 and Chloroa_b-bind TFs were enriched,
which indicated that cold and heat stresses had great im-
pact on plant photosynthesis, and thus might affect crop
yields. This revealed that they were related with plant
photosynthesis, which was also consistent with previous
reports [38, 39].

Among all treatments, the most specific TFs were
identified under -4 °C (1781), followed by 0 °C (775),
and 4 °C (313) in GO enrichment (Additional file 1:
Figure S14a). In addition, 51 TFs were identified under
all three cold treatments, and 2 genes were detected by
all cold and heat treatments. Among all KEGG categor-
ies, the most specific TFs (819) were found under -4 °C,
followed by 0 °C (368), and 4 °C (128) (Additional file 1:
Figure S14b). Twenty-nine genes were identified under
all three cold treatments, and 1 genes were detected by
all cold and heat treatments. Combing GO and KEGG
enrichment analyses, 17 and 31 TFs were enriched only
under cold and heat treatments, respectively (Additional
file 1: Figure Sl4c,d, Table 3, Additional file 2: Table
S10).

AP2/ERF TFs mainly contained two subgroups, in-
cluding CBF and DREB2. They interacted with DRE/
CRT cis-element and regulated ABA-independent gene
expression. The CBF controlled many gene expression
under several stresses, such as drought, salinity and
freezing stresses. The DREB2 mainly affected gene
expression under osmotic and heat stresses, while it

Table 3 The intersection of differntially expressed transcription factors under cold stress in GO and KEGG enrichment categories

Unigene ID Pfam ID TF family E-value T4 vs T25 TO vs T25 TM4 vs T25

for Pfam log2 ratio Qvalue log2 ratio Qvalue log2 ratio Qvalue
CL10543.Contig2 PF00067.17 p450 8.90E-32 6.74 0.8445 6.32 0.8308 6.34 0.838
CL11270.Contig2 PF03168.8 LEA_2 2.10E-18 5.78 0.836 6.05 0.8397 324 0.8154
CL11755.Contig1 PF00295.12 Glyco_hydro_28 2.60E-09 -113 0.8584 -113 0.8635 -113 0.8281
CL13372.Contig2 PF00657.17 Lipase_GDSL 5.20E-28 =371 0.8189 -3.64 0818 -2.64 0.806
CL3153.Contigl PF00201.13 UDPGT 3.90E-26 332 0.82 333 0.8193 2.79 0.8159
CL6375.Contig2 PF00067.17 p450 1.90E-22 -3.79 0.8254 -2.98 0.8155 -4.06 0.8365
Unigene12001 PFO0764.14 Arginosuc_synth 6.50E-52 -11.6 0.8841 -11.6 0.8882 -11.6 0.8574
Unigene16263 PF00206.15 Lyase_1 1.40E-29 -11.32 0.8599 -11.32 0.865 -11.32 0.8298
Unigene20049 PFO0314.12 Thaumatin 1.50E-16 -4.95 0.8083 -3.92 0.8048 -3.35 0.8017
Unigene20728 PFO1676.13 Metalloenzyme 6.40E-21 -11.15 0.8443 -11.15 0.8502 -11.15 0.8126
Unigene22237 PFO0504.16 Chloroa_b-bind 2.00E-48 249 0.8025 3.69 0.8241 3.23 0.8285
Unigene2424 PFO0067.17 p450 6.80E-07 6.18 0.806 6.67 0.8301 7.3 0.8527
Unigene2446 PF00206.15 Lyase_1 3.00E-26 -11.94 0.9086 -11.94 09119 -11.94 0.8861
Unigene24606 PF02800.15 Gp_dh_C 4.60E-51 -12.68 0.9492 -12.68 09515 -12.68 0.9354
Unigene26264 PFO2775.16 TPP_enzyme_C 1.10E-10 -11.31 0.8594 -11.31 0.8645 -11.31 0.8292
Unigene42146 PF00006.20 ATP-synt_ab 230E-33 -11.43 0.8698 -1143 0.8745 -1143 0.841
Unigene50595 PFO0764.14 Arginosuc_synth 2.60E-26 -11.15 0.8443 -11.15 0.8502 -11.15 0.8126
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slightly played role in cold stress [1]. Although the func-
tions of these TFs were well explained, the interaction
among them was rarely reported, especially in B. rapa.
Therefore, we conducted correlation analysis for these
TFs, and constructed the interaction network of them
using expression values. A total of 38 unigenes were de-
tected using BLAST alignment with ABFs, CBFs, and
DREB2 of Arabidopsis (Additional file 2: Table S11). The
pearson correlations coefficient (PCC) between two of
these TFs were calculated using the expression value.
Then the interaction network was constructed using part
connections with the PCC larger than 80 %. Finally, this
network contained 95 connections, including 82 positive
and 13 negative connections (Fig. 6). This phenomenon
revealed that most connections belonged to positive re-
lationship among of these TFs. However, we noted that
CL258.Contigl6, a ABF TF, had negative connections
with two DREB2A (CL13726.Contigl, CL13726.Contig2),
CBF1 (CL1909.Contig9), and CBF3 (CL1909.Contig10).
To analyze the correlation of abiotic stresses and these
TFs, we collected mainly cold and heat stresses related
genes according to previous reports [1, 12]. Then the
candidate heat and cold related genes in NHCC were
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identified using BLAST alignment with the collected
genes. We calculated PCC of these candidate genes and
CBF or DREB2. The PCC values larger than 0.8 were se-
lected to construct interaction network (Additional file
1: Figure S15). This network showed that there were
more negative connections in DREB2 than that in CBF,
which only contained four negative connections. Among
all connections, we identified 228 transcripts, which had
high PCC (>90 %) with DREB2, such as HSF, LEA, and
MYB102. By CBFs, 96 transcripts were also identified,
such as COR6.6, WD40, and ABF4. Moreover, 91 tran-
scripts were detected by both DREB2 and CBE, including
GRP7, P450, PP2C, and SRK2E (Fig. 7, Additional file 2:
Table S12).

Identification and characterisation of NHCC LncRNA using
RNA-seq

To identify potential LncRNA in NHCC, all sequences
from NHCC transcriptome dataset were used. Based on
previous reports [40-42], we designed the pipeline for
LncRNA analyses. Finally, 10,001 LncRNAs were identi-
fied after a series filtering, including transcript length,
coding potential, ORF size, and the exclusion of other

) DREB24/DREB2B

— P O5itve

Negative

Fig. 6 The interaction network for DREB2, CBF, and ABF TFs, which was constructed based on PCCs. The expression value of TFs at each treatment
was used for calculating the PCCs. The blue lines represent the positive correlation, while the red lines represent the negative correlation
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were detected, which had high PCC (>90 %) with DREB2 or CBFs

_

ACCGACNT

DRE/CRT

228 Transcripts: 91 Transcripts: 96 Transcripts:
HSF, LEA, GRP7, P450,PP2C, COR®6.6, WD40),
MYBI02, et al. SRK2E, et al. ABF4, et al.

Fig. 7 Model for DREB2 and CBF signal regulation in response to heat and cold stresses. The overlapping or specific abiotic stresses related genes

A/GCCGACNT

ncRNA. Among these LncRNAs, 9,687 belonged to the
novel LncRNAs. In addition, we also identified 50 pri-
miRNA through comparing with Rfam and miRBase da-
tabases for comparative analyses.

LncRNA gene expression analyses and differently
expressed LncRNAs identification

LncRNA is a group of endogenous RNAs that function
as regulators of gene expression, which are involved in
developmental and physiological processes [43]. They
are longer than 200 bp, and several of them can also act
as primary transcripts for the production of short RNAs
[44]. We assessed the expression pattern under different
temperatures using the expressed LncRNA (FPKM >0).
A total of 2,236 LncRNAs were expressed in all the
treatments. We observed that 73, 14, 107, 468, and 244
LncRNAs belonged to the temperature specificity for
T25, T4, TO, TM4, and T44, respectively (Additional file
1: Figure S16). However, a hierarchical clustering of sam-
ples showed most LncRNA was low expression in each
temperature (Additional file 1: Figure S17). In this study,
50 pri-miRNA, 10,001 LncRNAs, and 121,744 protein
coding transcripts were identified. The average, maximum,

and median expression values of these three type tran-
scripts were calculated for comparative analyses. The re-
sults showed that the expression of protein coding
transcripts were more than that of pri-miRNA and
LncRNA (Fig. 8a,b,c, Additional file 2: Table S13). Most
pri-miRNA and LncRNA had relatively low expression,
which was consistent with the previous reports [45-47],
indicating it was a common property of LncRNA. We also
investigated the temperature specific expressed transcripts
(SETs) among these three types transcripts. The results
showed that 10.0 % pri-miRNA, 9.1 % LncRNA, and 2.6 %
protein coding transcripts were detected as SETs. For pri-
miRNA, 3 SETs were detected in 44 °C, while no SET was
found in 4 and 25 °C (Fig. 8d). For LncRNA, the most
SETs were identified in -4 °C (468), followed by 44 °C
(244), and 0 °C (107) (Fig. 8e). The similar trends were
also found in the protein-coding transcripts, except the in-
verse of 0 and 25 °C (Fig. 8f).

To further investigate the share or specific of these
treatments for differently expressed LncRNAs (DELs),
we conducted the venn diagram analyses. The results
showed that 91, 418, 441, and 34 specifically expressed
LncRNAs were identified under 4, 0, -4, and 44 °C,



Song et al. BMC Genomics (2016) 17:297

Page 11 of 15

a b ¢
— T L o
: = —— —_— -
E g ; . : _
E - : g °
= C : 5 .
= 2 ° : 2 da
g - = . E . ‘
= - ¥ = n
z & — 3 g: o
& [ ® e
o [ [ -
£ : ™ i - I
L] _ . = —
- —_— —— 1 — o =
LncRNA pri-miRNA  Protein-coding LneRNA pri-miRNA  Protein-coding LncRNA pri-miRNA  Protein-coding
d pri-mirNA € LncRNA f Protein-coding
m—specific expressed transcripts — specific expressed ranscripts — pecific expressed transeripts
T m— non-specific expressed transcripts 20 — ron-specific expressed transcripts 16 — non-specific expressed transcripts
-] T A8k b1
_3' 3 g 45 1 14 1661
e E w0 £
E z 3 535 12
2T e ¢ 30 22,
EES EE,, 204 LE
=8, S g0 sy
BE 5820 g 806
g H - £
o ' L] 0.0 ; . 00 . - .
T T4 ™ T2% T4 To T4 ™4 28 T44 O T4 ™4 25 Td4
Temperature (C) Temperature ( C) Temperature ( C)
Fig. 8 The comparative analyses of LncRNA, pri-miRNA, and protein-coding genes expression pattern. a, b, ¢ The average, maximum, and median
expression analysis of LncRNA, pri-miRNA, and protein coding transcripts in NHCC using boxplot. d, e, f The temperature specific expressed
transcripts of LncRNA, pri-miRNA, and protein coding transcripts in NHCC

respectively (Additional file 1: Figure S18a). However, we
not detected the share LncRNAs among all these treat-
ments. Among of these DELs, most of them were down-
regulated, and there were the most down-regulated
LncRNAs under 0 °C (1103) than other three treatments
(9 ~934) (Additional file 1: Figure S18b). Interestingly,
the DEL number under three cold stresses (964 ~ 1327)
was more than that of 44 °C, which only contained 44
DELs. However, most LncRNAs (79.55 %) were up-
regulated under 44 °C, while most LncRNAs belonged to
the down-regulated under other three cold treatments
(56.21 % ~96.89 %).

Construct the coexpression network between LncRNAs
and protein-coding genes

We constructed a coexpression network for LncRNAs
and protein-coding genes according to the previously
proposed method [40]. For each treatments and for each
pair of genes (LncRNA or protein-coding), we computed
the PCCs of expression patterns using the expression
values. We found that approximately 57.59 % were posi-
tive connections, and 42.40 % were negative connections
(Additional file 1: Figure S19a). Among all connections,
the PCCs of 29.27 % were between -0.4 to -0.2, and
followed by 26.29 % connections were between 0.8 to 1.
Furthermore, we identified 65,568,352 connections be-
tween protein-coding and protein-coding genes, among
which, 42.11 % were positive connections, and 57.89 %
were negative connections (Additional file 1: Figure
S19b). However, the opposite result was found between

LncRNA and LncRNA connections, and the values were
50.12 and 49.88 % for positive and negative connections,
respectively.

To be more accurate and intuitive showed the rela-
tionship between the LncRNAs and protein-coding
genes, we selected the connections with the high correl-
ation (|PCC|>0.95) to construct the interaction net-
work. Overall, the whole network constituted by these
connections was divided into 8 clusters, including 3
large networks and 5 relative small networks (Additional
file 1: Figure S20a). In the cluster 1, about 67 % connec-
tions with the PCC > 0.95, and ~33 % with the PCC=1.
The PCCs of all connections in the cluster 2 were larger
than 0.95, but less than 1. Only three connections with
PCC less than -0.95 were located in the clusterl and
cluster3. Most connections (362,213) in the networks
belonged to positive, and only 636 connections were
negative correlation (Additional file 1: Figure S20b). This
phenomenon was also found in LncRNA vs LncRNA
and protein-coding vs protein-coding genes. Among all
of these three types, 99.72 % connections were positive,
and 0.28 % were negative connections.

To further analyze the correlation between LncRNA
and protein-coding genes under temperature stresses,
we annotated the function of the target genes. A total of
67 target genes were regulated by LncRNAs under all
three cold treatments, and comparing them with Arabi-
dopsis (Additional file 2: Table S14). The annotation
showed that most of them belonged to the cold respond
proteins, such as CBF1, COR6.6, and LEA14. Similar, we
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identified 192 target genes of LncRNAs under 44 °C
treatment, and most of them belonged to the heat re-
spond genes, such as HSP, LTP, and CBF4 (Additional
file 2: Table S15). Furthermore, we also found several
target genes of LncRNAs under cold and heat stresses,
such as KIN2. This phenomenon indicated that they
might play important roles in the corsstalk between cold
and heat stresses responses.

Conclusion

In this study, approximately 790 million paired-end
reads representing 136,189 unigenes with a total length
of 153.1 Mb were obtained. Only few genes were DDD
or UUU expression patterns, and majority genes
belonged to MMM pattern during the temperature de-
crease process. 14,329 DEGs were detected between at
least one treatment and control library. Among which,
10 DEGs were identified in all treatments, including 7
up-regulated and 3 down-regulated genes. The enrich-
ment analyses demonstrated that most temperature re-
lated categories were discovered under cold and heat
treatments. Among the enrichment categories, 25 and
33 genes were identified in both CO and KEGG data-
bases under cold and heat treatments, respectively.

Totally, 10,001 LncRNAs were identified from NHCC
transcriptome dataset, and 9,687 belonged to novel
LncRNAs. The analyses indicated the expression of pro-
tein coding transcripts were higher than that of pri-
miRNA and LncRNA. We constructed a coexpression
network for LncRNAs and protein-coding genes. A total
of 67 and 192 target genes were regulated by LncRNAs
under three cold and heat treatments, respectively. Fur-
thermore, we also identified several shared target genes
of LncRNAs under cold and heat treatments, which in-
dicated that they might play important roles in the cors-
stalk between cold and heat stresses.

In conclusion, we conduct comprehensive analyses for
cold and heat stresses in NHCC using RNA-seq, and
identified numerous differentially and specifically
expressed transcripts. Many important genes and TFs
response to treatment stress were detected, and their
crosstalk between cold and heat stress responses was
discovered. In addition, we also identified large number
of LncRNAs, and constructed the coexpression network
of LncRNAs and protein encoding genes. This study
provides a platform for elucidating physiologic responses
to low and high temperature in B. rapa.

Methods

Plant materials, growth conditions, and treatments

The NHCC advanced inbred line, ‘Suzhouqing, was used
in this study. The surface-sterilized seeds were grown in
pots containing a soil: vermiculite mixture (3:1) in a
controlled-environment growth chamber programmed
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for 16/8 h at 25/18 °C for day/night. Seedlings at the
five-leaf stage were transferred to growth chambers set
at -4, 0, 4 °C as cold treatments, 25 °C as control, and
44 °C as heat treatment under 4 h for RNA-Seq and
qRT-PCR. Three samples of each treatment were gener-
ated from different batches of plants for three biological
replicates. All leaf samples collected from control and
treated plants were washed with distilled water, immedi-
ately frozen in liquid nitrogen, and stored at —80 °C for
RNA extraction.

RNA extraction for transcriptome sequencing and RT-PCR
validation

The RNA was isolated from leaves using RNA kit (Tian-
gen, Beijing, China) according to manufacturer’s instruc-
tions. RNA samples were treated with RNase free DNase
I to avoid DNA contamination. The RNA was reverse
transcribed into ¢cDNA using Prime Script RT reagent
Kit (TaKaRa, Kyoto, Japan). The ¢cDNA libraries were
constructed using an mRNA-seq assay with a fragment
length range of 200 bp (+25 bp). Finally, the library was
sequenced for paired-end reads of 90 bp using Illumina
HiSeq™ 2000 platform, which was performed by the
Beijing Genomics Institute (BGI) (http://www.genomics.cn/
index). For qRT-PCR, the actin gene (AF111812) was
used as an internal control to normalize the expression
level of the target gene. Primer 5.0 designed the specific
primers according to gene sequences. The qRT-PCR as-
says were performed with three biological and technical
replicates. Each reaction was performed in 20-pL reac-
tion mixtures containing a diluted ¢cDNA sample as
template, SYBR Premix Ex Taq (2x) (TaKaRa, Kyoto,
Japan) and gene-specific primers. qRT-PCR was per-
formed according to our previous report [48]. The com-
parative Ct value method was adopted to analyze the
relative gene expression. RNA expression levels relative
to actin gene were calculated as 27**“T according to a
previous analysis [48, 49].

Data filtering and de novo assembly

Raw reads generated by Illumina Hiseq™ 2000 were ini-
tially processed to get clean reads through the following
three steps. i) Remove reads with adaptors contamin-
ation; ii) Discard reads with ambiguous sequences “N”
larger than 5 %; iii) Remove low quality reads, which
contained more than 20 % Q <20 bases [50]. In addition,
we used FastQC (http://www.bioinformatics.babraham.a-
c.uk/projects/fastqc/) to check and visualize the quality
of RNA-seq reads (Additional file 1: Figure S1). After fil-
tering, all clean reads were assembled using a de novo
assembly software Trinity [51]. Firstly, clean reads with a
certain length of overlap were combined to generated
contigs. Then, the paired-end reads were realigned to
contigs to obtain unigene, which could identify different
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contigs in the same transcript and ensure the interval
among these contigs. The contigs in one transcript were
assembled by Trinity and gained the sequence not being
extended on either end, which defined as unigene [34].
Then, the TGICL program was used to delete redundant
unigene and further assembled all unigenes to form a
single set of non-redundant unigenes [52].

Gene expression quantification and differential

expression analyses

RNA-Seq reads were aligned to the assembled tran-
scripts using TopHat pipeline with the built-in Bowtie
mapping program [53]. The expression of all unigenes
was estimated by calculating read density as ‘fragments
per kilobase of exon per million mapped reads’ (FPKM)
[54]. The DEGs (FC >2, g-value >0.8) between normal
and stress-treated conditions were identified using
NOISeq (http://www.bioconductor.org/) [55]. GO en-
richment analyses were performed using Blast2GO [56].
The temperature-dependent gene expression patterns
were analyzed according to the previous report [57].
The comparisons were made between two adjacent
temperatures—that is, 25 °C vs 4 °C, 4 °Cvs 0 °C, and 0 °
C vs -4 °C. A gene with FC > =2 was grouped into ‘up’ pat-
tern, a gene with FC < =0.5 was grouped into ‘decrease, and
the remaining genes were grouped into ‘maintain’. There-
fore, a gene was grouped to 1 out of 27 patterns, ranging
from up-up-up (UUU), maintain-maintain-maintain
(MMM), to decrease-decrease-decrease (DDD).

Functional annotation and classification of the transcripts
All assembled transcripts were annotated with the
publicly available protein databases, including Nr (http://
www.ncbinlm.nih.gov), GO (http://www.geneontology.org),
COG (http://www.ncbi.nlm.nih.gov/COG), Swiss-Prot pro-
tein  (http://www.expasy.ch/sprot), and KEGG (http://
www.genome.jp/kegg) databases using BLAST (E-value
<107). Then, the best alignments were used to de-
cide sequence direction and to predict coding re-
gions of the unigenes. ESTScan software was used to
decide sequence direction and coding regions when a uni-
gene unaligned to none of the above databases [58].
WEGO software was used to conduct GO classifica-
tion for understanding the distribution of gene func-
tion [59]. The unigenes were also aligned to COG
database to predict and classify possible functions. In
addition, KEGG was used to annotate the pathway of
the unigenes.

LncRNA detection

To de novo detect LncRNAs using RNA-seq, we devel-
oped a flowchart according to previous reports with
slightly modification (Additional file 1: Figure S21) [40,
41, 60, 61]. We applied several filters to ensure reliability
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of LncRNAs. Firstly, all unigenes (136,189) were anno-
tated using BLAST (E-value <107°) alignment with
NR,NT,Swiss-Prot, KEGG,COG, and GO databases.
There were 14,445 unigenes un-annotated by any pro-
tein databases above mentioned. Among which, 14,300
unigenes selected for transcripts greater than or equal to
200 bp. Secondly, Coding-Non-Coding Index (CNCI,
http://www.bioinfo.org/software/cnci) was applied on all
candidate unigenes in order to distinguish protein-
coding and non-coding sequences [62]. The unigenes
with score <0 were defined as non-coding. In addition,
Coding Potential Calculator (CPC, http://cpc.cbi.pku.e
du.cn) was also used for identifying all candidate tran-
script models in order to assess their coding potential by
a second independent method [63]. In order to extract
potential non-coding transcripts with a high reliability
from our dataset, all transcripts with a score (CPC < -1)
were retained as potential non-coding. By combining
these two methods, 10,930 unigenes were identified as po-
tential non-coding RNAs. Thirdly, we discard transcripts
with an ORF greater than 100 amino acids by OREF-
Predictor (E-value <107°), and 813 unigenes were discard.
Finally, 10,117 candidate transcripts were identified and
compared against several non-coding RNA databases, in-
cluding Rfam, miRBase, NONCODE with designated
threshold value (E-value <107, identity >90 %) by BLAST
[64—66]. Candidate transcript models with known protein
motifs were discarded. We obtained 50 pri-miRNA se-
quences by comparing with the miRBase and Rfam data-
bases. To identify LncRNA, we filtered other non-coding
RNAs through comparing with Rfam and NONCODE da-
tabases. Finally, 10,001 unigenes were identified as
LncRNA based on a series of analyses above mentioned.
Furthermore, among which, 9,687 belonged to the novel
novel LncRNAs by comparing with NONCODE databases.

Statistical analysis

The differential expression levels of genes under the dif-
ferent temperatures were clustered using Cluster pro-
gram (http://bonsai.hgc.jp/~mdehoon/software/cluster),
and visualized using Tree View software (http://jtree
view.sourceforge.net/) [67]. Using in-house Perl script,
PCCs were calculated for correlation studies, including
the three repeats correlation, LncRNA and target mRNA
correlation, and key candidate mRNA-mRNA correl-
ation. The coexpression interaction networks were con-
structed using Cytoscape (http://www.cytoscape.org/)
according to PCC [68]. The numbers of specific and
common genes were plotted using Venn diagram in R
package [69].
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