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DRUGSURV: a resource for repositioning of approved
and experimental drugs in oncology based on patient
survival information

I Amelio1, M Gostev2, RA Knight1, AE Willis1, G Melino1,3 and AV Antonov*,1

The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and
cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug
exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting,
and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts
in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential
of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational
tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data
sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify
further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs
(B1700) as well as experimental drugs (B5000) and is freely available at http://www.bioprofiling.de/drugsurv.
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Drug repositioning (application of approved drugs to new
therapeutic indications) is currently widely used because
of the reduced development costs and simplicity of drug
approval procedure. The availability of a vast amount of
experimental data covering various diseases has stimulated
computational efforts to identify novel potential indications for
established drugs.1–5 The computational principles of drug
repositioning are based on a polypharmacology paradigm:6

the drugs are considered in the context of all proteins (genes)
affected upon treatment (i.e., the drug signature), and specific
diseases are modelled by the multiple genes involved/
perturbed in the disease state (i.e., disease signature).
Significant similarity between drug and disease signatures is
indicative of the potential application of the drug to treat the
disease (Figure 1).1–3

Gene expression data were a primary source of information
used by most computational approaches. The sets of genes
that are up- and downregulated in a disease state compared
with a normal state were used as a gene signature of a
disease.1,2,4 On the other hand, expression data from human
cell lines treated with a broad range of approved drugs has
been used to derive genes affected by the drugs. The linkage
between a drug and a disease is computed as similarity
between the drug and the disease gene signatures.1,2

Different studies varied in principles to compute similarity.
Some of them additionally incorporate gene pathway
information.2

In oncology, effect on patient survival outcome is a key
criterion of drug efficiency in clinical trials. However, none of
the studies have considered patient survival information in
modelling the potential of existing/new drugs in the manage-
ment of cancer. Therefore, we have developed DRUGSURV;
this is the first computational tool to estimate the potential
effects of a drug using patient survival information
derived from clinical cancer expression data sets. In contrast
to other approaches, DRUGSURV uses genes significantly
associated (P-valueo0.01) with patient survival as a
cancer signature specific for a cancer type or clinical
condition studied in a particular data set (Figure 2b). At the
moment, DRUGSURV covers 44 independent clinical
cancer expression data sets (in most cases each
data set contains 4100 patients annotated with survival
information).

DRUGSURV covers both FDA approved drugs (B1700)
and experimental drugs (B5000). The coverage of drugs by
DRUGSURV significantly exceeds any previous efforts in the
field. Drug signature is defined based on known drug targets.
This information is integrated from DrugBank7 and Pubchem
Bioassays8 databases. The proteins that are known targets of
a drug, or involved in the drug transport/metabolism, or have
been reported to be inhibited by the drug in high-throughput
screening chemical assays (Pubchem Bioassays) are
referred to as direct drug targets (Figure 2a). We also use
the term indirect drug targets to refer to the proteins that
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interact with the direct drug targets according to the
IntAct database.9

DRUGSURV is incorporated in the bioprofiling.de analytical
portal for high-throughput cell biology10 and is freely available
at http://www.bioprofiling.de/drugsurv. DRUGSURV provides
multiple query options to explore systematically the effect of
genes, which are known to be modulated upon drug treatment
on survival in different cancers and clinical conditions. The
user can query interested drug, specific cancer or explore any
gene as a potential anticancer target. We demonstrate that
DRUGSURV validates therapeutic indications for known
cancer drugs. DRUGSURV also suggests that the antipsy-
chotic agent, thioridazine, recently demonstrated in vitro to
selectively target cancer stem cells,11 could also be effective
in vivo: there is a significant proportion of thioridazine targets
associated with patient survival in several cancer expression
data sets.

Results

Thioridazine: antipsychotic to anticancer agent.
Originally thioridazine was positioned as a phenothiazine

antipsychotic and has been used in the management of
psychoses, including schizophrenia, and in the control of
severely disturbed or agitated behaviour. It has been widely
accepted that thioridazine blocks postsynaptic mesolimbic
dopaminergic D1 and D2 receptors in the brain, blocks alpha-
adrenergic effects, depresses the release of hypothalamic
and hypophyseal hormones and is believed to depress the
reticular activating system.7

Very recently, thioridazine was shown to selectively target
cancer stem cells.11 Thioridazine reduced the ability of human
acute myeloid leukaemia samples to proliferate and to
self-renew, as shown by a decrease in both the ability of the
treated cells to form colonies in vitro and in the efficiency
of transplantation into recipient mice.12 The anticancer
properties of thioridazine have also been shown in several
other previous studies,13 but thioridazine may become
particularly important because the selective targeting
of cancer stem cells offers promise for a new generation of
therapeutics with anticancer potential.12

Thioridazine is known to act through dopamine receptors
and this was a primary hypothesis while searching for a
mechanism for thioridazine’s anticancer activity.11,12 Data
from recent high-throughput screens indicate that thioridazine
inhibits about 20 proteins, which are considered to be off
target, including those that are known to be associated with
tumour progression, such as EGFR. First, this suggests
that thioridazine modulates more genes than previously
considered. Second, DRUGSURV shows that a statistically
significant proportion of these indirect targets affect patient
survival in various expression data sets derived from various
cancers (Table 1).

The results in Table 1 provide additional independent
statistical evidence that thioridazine could have potential
therapeutic effects in patients. For example, in the ‘chronic
lymphocytic leukaemia’ data set, 86 (out of 502) indirect
thioridazine targets are significantly associated with survival.
In the ‘multiple myeloma’ data set, 55 (out of 502) indirect
thioridazine targets are significantly associated with survival.
DRUGSURV visualization of the ‘drug-data set’ model
(Figure 3) simplifies our understanding of the potential
anticancer mechanism of thioridazine and suggests that a
major impact of thioridazine on cancer could be mediated by
interaction with EGFR and FYN genes. Although expression

Figure 1 Computational principles of drug repositioning. Drugs are considered
in the context of all proteins (genes) affected upon treatment (i.e., the drug
signature). Disease is modelled by genes involved/perturbed in the disease state.
Significant similarity (intersection between drug signature and disease signature) is
indicative of the potential application of the drug to treat the disease

Figure 2 DRUGSURV data mining principles. (a) Drug signature is derived based on DrugBank, Pubchem BioAssays and IntAct databases. (b) Cancer signature (specific
for each data set) is derived based on genes significantly (P-value o0.01) associated with survival in the data set. Each data set models specific for cancer type or clinical
conditions (i.e. cancer stage, status)
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of EGFR and FYN genes are rarely associated with survival
directly, both EGFR and FYN interact with multiple genes,
which do affect survival in patients with chronic lymphocytic
leukaemia and multiple myeloma.

DRUGSURV: validation therapeutic indications for
known cancer drugs. Breast cancer is one of the most
well-studied cancer types. DRUGSURV incorporates 17
independent clinical expression breast cancer data sets,
which model various specific clinical conditions. We used
breast cancer as an example to demonstrate that DRUG-
SURV validates therapeutic indications for well-established
cancer drugs.

Among the top 10 drugs suggested by DRUGSURV (based
on the indirect drug targets) to be potential breast cancer
treatments, 6 are well-stablished anticancer drugs (Table 2).
Tamoxifen and mitoxantrone are currently commonly used for
the treatment of breast cancer, whereas danazol is used for
the treatment of benign breast disorders (which are important
risk factors for breast cancer14), and has been tested in clinical
trials for the treatment of advanced breast cancer. It was
concluded that danazol is an effective agent in patients with
advanced breast cancer, but the response rate is inferior to
that of other agents, such as tamoxifen.15

Sunitinib, erlotinib and sorafenib are tyrosine kinase
inhibitors, which have been approved for the treatment of

Table 1 Cancer expression data sets significantly (FDR adjusted P-value o0.01) associated with thioridazine indirect targets

GEO Data set Cancer type P-value, FDR
adjusted

Odds
ratio

k (l) m (N)

Prediction of survival in diffuse large B-cell lymphoma
treated with chemotherapy plus rituximab

Diffuse large B-cell
lymphoma

0.00019 (4.34e-06) 1.35 179 (502) 5432 (20 387)

Expression data from untreated CLL patients Chronic lymphocytic
leukaemia

0.00021 (9.56e-06) 1.61 86 (502) 2200 (20 386)

Molecular subclasses of high-grade glioma: prognosis,
disease progression, and neurogenesis

High-grade glioma 0.0024 (0.00021) 1.64 58 (468) 1000 (12 940)

Subtype classification, grading, and outcome prediction
of urothelial carcinomas by combined mRNA profiling and
aCGH

Urothelial carcinomas 0.0024 (0.00021) 3.66 12 (340) 114 (10 911)

MAQC-II project: multiple myeloma data set Multiple myeloma 0.0047 (0.00053) 1.60 55 (502) 1416 (20 387)
Validation cohort for genomic predictor of response and
survival following neoadjuvant taxane-anthracycline
chemotherapy in breast cancer

Breast cancer 0.00702 (0.00095) 1.61 49 (468) 858 (12 940)

Whole-transcript expression data for liposarcoma Liposarcoma 0.0071 (0.0011) 1.38 90 (468) 1827 (12 940)
Experimentally derived metastasis gene expression
profile predicts recurrence and death in colon cancer patients

Colon cancer 0.0098 (0.0017) 1.55 50 (502) 1326 (20 387)

Abbreviation: FDR, false discovery rate.
The last two columns (k (l), m (N)) report statistical details of association, k denotes the number of drug targets (genes) significantly associated (P-value o0.01) with
survival in the data set, l denotes the overall number of indirect drug targets, m denotes the overall number of genes significantly associated with survival in the data set
and N denotes the overall number of genes measured in the data set.

Figure 3 Visual output of DRUGSURV for ‘drug-data set’ models for thioridazine. Rectangles denote direct drug targets, triangles correspond to indirect targets. Colours
indicate effect of gene overexpression on survival. In several available data sets, genes significantly associated with survival are overrepresented among thioridazine
indirect targets
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different solid tumours. However, none of them has been
approved for the treatment of breast cancer, although multiple
preclinical studies have suggested their potential as likely
breast cancer agents in human patients. For example,
erlotinib was reported to inhibit tumour cell proliferation
in hormone receptor-positive breast cancer and to induce
breast cancer regression.16,17 Sorafenib has been assessed
in phase IIB trials with Capecitabine for locally advanced or
metastatic human epidermal growth factor receptor 2 (HER2)-
negative breast cancer. Addition of sorafenib to capecitabine
improved progression-free survival in patients with HER2-
negative advanced breast cancer, although with unaccepta-
ble toxicity for many patients.18

Sunitinib has demonstrated potential for the treatment of
breast cancer in multiple preclinical studies, involving
the human breast cancer MX-1 xenograft model, where in
combination with docetaxel, doxorubicin or fluorouracil it
enhanced the antitumour activity of the chemotherapeutic
agents and increased survival.19 Sunitinib also inhibited
osteolysis and tumour growth in a mouse model of breast
cancer metastatic to bone.20 However, Sunitinib failed in a
randomized phase III study, which investigated whether
sunitinib plus docetaxel improved clinical outcomes for
patients with (HER2)/neu-negative advanced breast cancer
versus docetaxel alone.21 Interestingly, DRUGSURV is able
to predict this outcome. The only breast cancer data set where
indirect targets of sunitinib were depleted among genes
associated with survival is data set GSE3521, which
investigated patients with distant metastases and poor
outcomes. Patients in the data set were annotated
with HER2 status and 72% of them were HER2-negative.
Therefore, DRUGSURV indicates that clinical conditions
modelled in the data set GSE3521 at the molecular level
involve genes that are not modulated by sunitinib and,
therefore, treatment with sunitinib is not expected to result in
any benefit.

Finally, bithionol, hexachlorophene and vitamin A are three
top-rated drugs by DRUGSURV, which have never been used
as anticancer agents. Hexachlorophene is a chlorinated
bisphenol antiseptic with a bacteriostatic action against
Gram-positive organisms. Bithionol was shown to cause
serious skin disorders and was withdrawn from the market in
1967. Both hexachlorophene and bithionol were reported to

exhibit anticancer cell cytotoxicity22,23 but have never been
extensively studied for anticancer properties.

Discussion

In most studies, the novel anticancer therapeutic effect of
new/established drugs is usually demonstrated in vitro, and
there will always remain doubt whether the anticancer
potential is still manifest in vivo. Clinical trials are very
expensive and time consuming, but remain the only way to
validate drug efficiency in vivo. Before embarking on the time
and expense of a clinical trial, however, any additional, and
more easily obtainable, evidence that the observed drug
effect in vitro will also be observed (or not) in vivo would be of
paramount importance. DRUGSURV is a tool, which is likely
to provide such statistical evidence.

In contrast to other similar studies, DRUGSURV exploits
patient survival information. In oncology, the effect on
patient survival outcome is a key criterion of drug efficiency.
From this standpoint, modelling cancer signatures with genes
that are significantly associated with survival is more direct in
comparison to previous approaches. Availability of data sets
that model very specific clinical conditions provides a
possibility to estimate drug efficiency in patients with specific
cancer subtypes. For example, DRUGSURV would be able to
predict the inefficiency of sunitinib in patients with (HER2)/
neu-negative advanced breast cancer (see Results).

DRUGSURV implements as ‘drug signature’ known direct
drug targets inferred from DrugBank and PubChem data.
Previous studies have inferred drug signatures from data-
bases containing gene expression data for cell lines treated
with drugs (e.g., connectivity maps24). In this case, drug
signatures are biased in relation to the cell cultures, which
have been used in the experiments, and could contain multiple
response genes, which are not drug specific.25 In addition,
multiple statistical issues exist as to how to determine precise
estimates of statistical significance and false-positive
rates.24,25 Drug signatures implemented in DRUGSURV do
not have these limitations, although for many drugs our current
knowledge about targets is incomplete. Therefore, in these
cases, the genes that are affected upon drug treatment are
modelled only partially. Finally, the number of drugs covered
by the connectivity map pilot project, for example, is only 164,
whereas DRUGSURV covers both FDA approved drugs
(B1700) and experimental drugs (B5000). We would like to
emphasise that the coverage of drugs by DRUGSURV
significantly exceeds any previous efforts in the field.

DRUGSURV provides multiple query options. The user can
interrogate interested drug, specific cancer or explore
any gene as a potential anticancer target. At present,
DRUGSURV covers 44 independent clinical cancer expres-
sion data sets (in most cases each data set contains 4100
patients annotated with survival information). DRUGSURV is
regularly updated as new expression data sets become
available26 to cover novel cancer types or specific clinical
conditions as well as to update information on drug targets.

Finally, we must caution that this kind of statistical inference
(the limitation also applies to all previous and most probably to
all future similar studies) is based on simplified assumptions
that all genes from both signatures (drug and cancer) are

Table 2 Drugs associated (FDR adjusted P-value o0.01) with at least with 10
independent breast cancer expression data sets (‘indirect drug targets’)

Drug Drug type Number of
associated
data sets

Known
anticancer

agent

Danazol Approved 13 Yes
Sunitinib Approved 12 Yes
Sorafenib Approved 12 Yes
Mitoxantrone Approved 10 Yes
Tamoxifen Approved 10 Yes
Erlotinib Approved 10 Yes
Bithionol Withdrawn 10 No
Hexachlorophene Approved 10 No
Vitamin A Approved 10 No

Abbreviation: FDR, false discovery rate
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weighted equally (or could be weighted based on some data
or assumptions). There might be cases when the modulation
of one gene might be more important than modulation of many
other genes.

Materials and Methods
Cancer expression data sets. Gene expression data sets were down-
loaded from the Gene Expression Omnibus repository.26 To be selected, the data
set must be a clinical (patients) microarray expression data set with at least 70
samples and annotated with patient survival data. At present, DRUGSURV covers
more than 40 data sets.

Cancer survival gene signature. For each available data set, we
computed the set of genes whose up/downregulation is associated
(P-valueo0.01) with patient survival. Gene expression rank reflects relative
mRNA expression level and is more consistent as it requires no normalization
and thus introduces no normalization bias. For each gene in the data
sets, samples were grouped with respect to expression rank of the gene.27,28

The ‘Low expression’ and ‘High expression’ groups are those where the
expression rank of the gene of interest is less or more than average expression
rank across the data set, respectively. Standard statistical tests29 were used to
find any statistical differences in survival outcome between the ‘Low expression’
and ‘High expression’ patient groups. Genes those split patients in groups with
significant differences (P-valueo0.01) in outcome were selected as a cancer
gene signature specific for the clinical conditions studied in the data set.

Direct drug targets. The set of genes (derived based on the set of
proteins) that are indicated in DrugBank7 as drug target, drug transporter or
drug-metabolizing enzyme is defined as direct drug targets. In addition, we used
Pubchem Bioassay repository.8 Reference to the Pubchem Bioassay repository
means that the drug was tested in an HTS assay and was found to inhibit the
activity of the tested protein.

Indirect drug targets. Indirect drug targets, along with direct drug targets,
are proteins which interact with the direct drug targets based on the records of the
IntAct database of protein–protein interactions.9

Linking statistically ‘drug targets’ with ‘cancer survival gene
signature’. Let us denote l to be the number of targets (either direct or indirect)
for drug B and kof them associated with survival (P-valueo0.01) in the data set A.
The rate k/l reflects the proportion of the drug B targets associated with survival.
The rate k/lis compared with the rate m/N, where m is the total number of genes
significantly associated with survival in the data set A and Nis a number of all genes
measured in the data set A. A standard Hypogeometric test (with parameters k, l,
m, N) is applied to derive the P-value of enrichment. The same procedure is
repeated across all available data sets. Finally, derived P-values (Hypogeometric)
are adjusted for multiple testing using false discovery rate control procedure30,31

(the number of hypotheses tested is equal to the number data sets available).
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